
Spring 2020 MA-UY 4424 NYU Tandon Prof. M. O’Neil

Homework 2

Due: Friday 1:30pm, February 28, 2020, in recitation

Notes on the first (and all subsequent) assignments:

Submission: Homework assignments must be submitted in the class on the due date. If you cannot
attend the class, please send your solution per email as a single PDF before class. Please hand in
cleanly handwritten or typed (preferably with LaTeX) homework. Feel free to use original homework
LaTeX document to write-up your homework. If you are required to hand in code or code listings,
this will explicitly be stated on that homework assignment.

Collaboration: NYU’s integrity policies will be enforced. You are encouraged to discuss the problems
with other students. However, you must write (i.e. type) every line of code yourself and also write
up your solutions independently. Copying of any portion of someone else’s solution/code or allowing
others to copy your solution/code is considered cheating.

Plotting and formatting: Plot figures carefully and think about what you want to illustrate with a
plot. Choose proper ranges and scales (e.g. semilogx, semilogy, loglog), always label axes, and give
meaningful titles. Sometimes, using a table can be useful, but never submit pages of numbers. Discuss
what we can observe in, and learn from, a plot. If you do print numbers, in MATLAB for example,
use fprintf to format the output nicely. Use format compact and other format commands to control
how MATLAB prints things. When you create figures using MATLAB (or Python or Julia), please
try to export them in a vector graphics format (.eps, .pdf, .dxf) rather than raster graphics or bitmaps
(.jpg, .png, .gif, .tif). Vector graphics-based plots avoid pixelation and thus look much cleaner.

Programming: This is an essential part of this class. We will use MATLAB for demonstration
purposes in class, but you are free to use other languages. The TA will give an introduction to
MATLAB in the first few recitation classes. Please use meaningful variable names, try to write clean,
concise and easy-to-read code. As detailed in the syllabus, in order to receive full credit, your code
must be thoroughly commented.

1. Newton’s method can be extended to matrix-functions as well. For example, given a
square matrix A and real number t, the matrix-exponential etA is defined via the Taylor
series for the exponential function:

etA = 1 + tA + (tA)2

2! + (tA)3

3! + +(tA)4

4! + . . . (1)

Obviously, the matrix A must be square.

(a) [4pts] Derive Newton’s method for finding the root of an arbitrary matrix-valued
function f = f(X), where by root we mean that X is a root of f if f(X) = 0,
where 0 is the matrix of all zeros. Assume that the matrix argument of f is square
and invertible.

(b) [3pts] The square root of a matrix A is a matrix X such that XT X = A. For
a symmetric positive-definite matrix A, derive the Newton iteration for finding
X =

√
A.

1 of 3

Spring 2020 MA-UY 4424 NYU Tandon Prof. M. O’Neil

(c) [3pts] Write a program using the Newton iteration that you derived above to find
the square root of the matrix

A =


8 4 2 1
4 8 4 2
2 4 8 4
1 2 4 8

 . (2)

The stopping criterion for your Newton iteration should be when the absolute
difference between elements of successive iterations is at most 10−10. Submit your
code, as well as a cleanly formatted printout of the square root of the above matrix,
displaying elements to 2 decimal places.

2. [10pts] For a yearly interest rate 0 < r < 1 compounded over n intervals, an amount
of money C grows to be

f(C, r, n) = C

(
1 + r

n

)n

(3)

after one year.

Let r = 0.025. If n is extremely large, say n = 1016, in IEEE double precision arithmetic,

f
(
1.0, 0.025, 1016

)
= 1.0, (4)

when in fact,
f(1.0, 0.025, 1016) ≈ lim

n→∞

(
1 + 0.025

n

)n

= e0.025

≈ 1.025315 . . .

(5)

What happened? Without using the above approximation, is there another way to
evaluate f and not lose these digits of accuracy? (Assume you are only allowed to use
double precision accuracy.)

3. Let the matrix A ∈ Rm×n, with m ≥ n, have rank n and be such that when computing
its LU decomposition A = LU no pivoting whatsoever is needed.

(a) [5pts] Carefully derive the computational cost (in floating point operations, re-
ferred to as flops) of computing A = LU. Assume that addition, subtraction, multi-
plication, and division each count as 1 flop. For example, computing x = a(b + c)/d− e
requires 4 flops.

(b) [5pts] Now suppose that the matrix A ∈ Rn×n is such that in computing its LU
factorization row-pivoting is required. This means that we can write PA = LU
where P is a permutation matrix. Find P, L, and U for the matrix

A =

1 1 1
6 6 0
3 0 2

 . (6)

If you do not show your work, you will not receive any credit for the problem.

2 of 3

Spring 2020 MA-UY 4424 NYU Tandon Prof. M. O’Neil

4. Consider the n× n linear system
Ax = b,

where A has non-zero entries:

Aij = 1, if i = j,

Aij = −1, if i > j,

Ain = 1, for all i,

Aij = 0, otherwise.

For example, when n = 5, the matrix A is given by

A =


1 0 0 0 1
−1 1 0 0 1
−1 −1 1 0 1
−1 −1 −1 1 1
−1 −1 −1 −1 1

 .

(a) [3pts] Using induction, show that A is invertible for all n > 0.

(b) [2pts] In the case where n = 5 and b =
(
1 1

4
1
9

1
16

1
25

)T
, solve Ax = b using

Gaussian elimination.

(c) [2pts] For an arbitrary n, find the entries Lij and Uij of the LU-factorization of
A. What is maxij |Uij |?

(d) [2pts] For large values of n, for example n = 2000, what problems can you see
with trying to solve Ax = b on a computer using double precision floating point
arithmetic? Explain your reasoning.

3 of 3

