May 5,2020 Numerical Analysis

Re-cap: Last time
Initial Value Problem:
$$y'(t) = f(t, y(t))$$

 $y(t_0) = y_0$
Euler's Method: $y_{u+1} - y_u = f(t_u, y_u)$
h

=>
$$y_{k+1} = y_k + h - f(t_k, y_k)$$

 $\begin{aligned} & \mathcal{R}_{\mu} : \quad t_{\mu} := t_{\sigma} + k \cdot h \\ & y_{\mu} &\simeq y | t_{\mu} \rangle . \end{aligned}$

Additional Schems For solving
$$y' = f(t, y|t)$$
:
- Midpoint method : Half step of Echr, then a full step:
 $y_{kt}y_{k} = y_{k} + \frac{h}{2}f(t_{k}, y_{k})$
 $y_{kt}y_{k} = y_{k} + h \cdot f(t_{kt}t_{k}, y_{k}t_{k})$

Quadrature Method: Trupezoidal Method (\mathcal{X}) Yhere Yhere

Definition A one-step method is stable if there is
some
$$K>0$$
 and $h_0>0$ such that two solutions y_n, \tilde{y}_n
have $|y_n-\tilde{y}_n| \leq |K|y_0-\tilde{y}_0|$ whenever $h \leq h_0$ and
whenever $h \leq h_0$ and
whenever $d \leq T-t_0$
(number of steps.

Consider the two initial value problems:

$$y'(t) = f(t, y)$$
 $\tilde{y}'(t) = f(t, y)$
 $y(t_0) = y_0$ $\tilde{y}(t_0) = \tilde{y}_0$.

 $\begin{array}{l} -) \\ & \mathcal{Y}_n \cong \mathcal{Y}(t_n) \\ & \mathcal{\tilde{Y}}_n \cong \mathcal{\tilde{Y}}(t_n) \end{array}$

Theorem IF an explicit one-step method is stuble and
consistent and it has a local truncation error
of
$$O(h^p)$$
, then the global error is $O(h^p)$.

Overall fake home message :

Stiff Initial Value Problems

A prime example of when things go wrong is
stiff IVPs. Consider the system of initial value problem:

$$y'_{i}(t) = -100 y_{i}(t) + y_{i}(t)$$
 (an be written in
 $y'_{i}(t) = -\frac{1}{10} y_{i}(t)$) matrix form os
The solution to this system can $y'_{i} = Ay'_{i}$,
be obtained analytically:
 $y'_{i}(t) = -\frac{1}{10} y'_{i}(0) e^{\frac{1}{100}} = -\frac{1}{10} y_{i}(t)$ / $A(t) = \begin{pmatrix} -100 & 1 \\ 0 & -Y_{10} \end{pmatrix}$
 $y'_{i}(t) = -\frac{1}{10} y'_{i}(0) e^{\frac{1}{100}} = -\frac{1}{10} y_{i}(t)$ / $A(t) = \begin{pmatrix} -100 & 1 \\ 0 & -Y_{10} \end{pmatrix}$
 $y'_{i}(t) = \frac{-100t}{10} + c_{1}e^{\frac{1}{100}}$
 $y'_{i}(t) = \frac{-100t}{10} + c_{1}e^{\frac{1}{100}}$
 $y'_{i}(t) = 0.9$

Try Euler's Method:

$$2^{nd}$$
 Equation: $y_{2,k+1} = y_{2,k} - \frac{h}{10} y_{2,k}$.
 $= \left(1 - \frac{h}{10}\right) y_{2,k}$.
 $= \left(1 - \frac{h}{10}\right) y_{2,k}$.
 $= \left(1 - \frac{h}{10}\right) y_{2,k}$.
 $= h \leq 10$

14]

$$I^{\text{st}} E_{\text{guadian}} : Y_{1,k+1} = Y_{1,k} + h \left(-100 y_{1,k} + y_{2,k}\right)$$
$$= \left(1 - 100h\right) y_{1,k} + h y_{2,k}$$
$$= h \left(1 - \frac{h}{10}\right) y_{k}(0)$$
.... continue back substituting for $y_{1,k}$

We finally obtain that

$$y_{1,1411} = (1 - 100h) y_{1}(0) + h (1 - \frac{h}{10})^{L} \left(\frac{L}{2} \left(\frac{1 - 100h}{1 - \frac{1}{10}} \right)^{L} \right) y_{2}(0)$$
can be computed,

$$= d_{1} \left(1 - 100h \right)^{Lr1} + d_{2} \left(1 - \frac{h}{10} \right)^{Lr1}$$
The order for $y_{1,14} \rightarrow 0$ as $k \rightarrow 0$, we used leath

$$(1 - 100h)^{Lr1} = h < \frac{1}{20}.$$
If $h > \frac{1}{50}$, then $(1 - 100h)^{Lr1}$ will gave even offer
the analytic solution \tilde{e}^{100t} has decayed to near zero.
Stiff equation:

$$The defining (3) The solutions have components that before
 $f = y_{2} = h < \frac{1}{50}.$
If $y \approx a \tilde{e}^{3/0} + b \tilde{e}^{200t}$
 $f = y_{2} = h < \frac{1}{50}.$
The defining $f = \frac{1}{50}$ the solutions have components that before
 $f = \frac{1}{100} = \frac{1}{50}$ the solutions have components that before
 $f = \frac{1}{50} = \frac{1}{50}$.
The defining $f = \frac{1}{50} = \frac{1}{50}$ the solutions have components that before
 $f = \frac{1}{50} = \frac{1}{50} = \frac{1}{50}$.
 $f = \frac{1}{50} = \frac{$$$

Definition
$$\frac{Definition}{Definition} = \frac{Definition}{Definition} = \frac{Definition}{Def$$

$$Example \quad Euleris \quad Mithod
y_{k+i} = y_{k} + h \lambda y_{k}.
= (1 + h \lambda) y_{k}
= (1 + h \lambda) y_{k}
y_{k} \rightarrow 0 \quad iff \quad |1 + h \lambda| < 1 \quad the interior of
this disk is the
L=>
$$\frac{1}{2} + \frac{1}{2} + \frac{1}$$$$