April 23, 2020
Numerical Analysis
Trape solution rule for appearing the integral

$$\int_{a}^{b} f(x) dx \approx T_{n} f$$

$$= \sum_{i}^{2} h \cdot \frac{1}{2} \cdot (f(x_{n}) + f(x_{i}))$$

$$= \sum_{j=0}^{2} h \cdot f(x_{j}) - \frac{1}{2} h (f(a) + f(b)),$$

$$= \sum_{j=0}^{n} h \cdot f(x_{j}) - \frac{1}{2} h (f(a) + f(b)),$$

$$= \sum_{j=0}^{n-1} h \cdot f(x_{j}) - \frac{1}{2} h (f(x_{i}) + f(x_{i}))$$

$$= \sum_{j=0}^{n-1} h \cdot f(x_{j}),$$

$$= \sum_{j=$$

$$\frac{Gaussian Quadratua Rules}{General form of quadratua rules} : \int_{a}^{b} f(x) dx \approx \sum_{j=1}^{n} w_j f(x_j).$$
This rule can be made exact for certain functions.

$$E_{X'} IF \int_{a}^{b} \cos x \, dx = w_j \cos x_j \quad \text{then} \quad x_j \quad \text{can be anything} i$$

and $w_j = \frac{1}{\cos x_j} \int_{a}^{b} \cos x \, dx$
 $= a \quad n \cup m \, b er$.

Once the nodes
$$x_j$$
 are determined, finding the cornert wij's
such that $f_{1, \dots, j} f_n$ are integrated exactly irequires only
solving a linear system.
Ex: If the gundrature rule $\int_a^b f(x) dx = \sum_{j=1}^n w_j f(x_j)$

is exact for
$$f = f_1, f_2, ..., f_n$$
 then it must be
the cost that

$$\frac{1}{2} w_{j} f_{i}(x_{j}) = \int_{a}^{b} f_{i}(x) dx = I_{i}$$

$$\frac{1}{2} w_{j} f_{i}(x_{j}) = \int_{a}^{b} f_{i}(x) dx = I_{2} \quad \text{If the nodes are specified, then the is is pecified, then the is is is is indexerved in the is is is is indexerved in the is is is is indexerved in the is is is is indexerved.$$

=> This can be
$$\begin{pmatrix} f_1(x_1) & f_2(x_2) & \cdots & f_n(x_n) \\ \vdots & \vdots & \vdots \\ f_n(x_1) & \cdots & f_n(x_n) \end{pmatrix} \begin{pmatrix} W_1 \\ W_2 \\ \vdots \\ \vdots \\ W_n \end{pmatrix} = \begin{pmatrix} I_1 \\ I_2 \\ \vdots \\ \vdots \\ \vdots \\ I_n \end{pmatrix}$$
.

A gundador whe of the form
$$\int_{0}^{b} f(x) dx \approx \sum_{j=1}^{b} w_j f(x_j)$$

is called Gaussian if it is exact for 2n liverly
independent functions.
How is this possible? Nonlinear optimization/rood finding
I.e. find weights and node simultaneously so that
2n intrials are completed exactly.
Special Care Integrating the functions $1, x, x^{a}, \dots, x^{2n-1}$ exactly.
polynomials of degree
less then or equal to 2n-1.
The key to derivery Gaussian quadrature when for polynomials
is orthogonal polynomial.
(MThreem IF $x_{1,n}, x_{1}$ are the zeros (root) of Pn, the
degree in Legendre polynomial, then the formula:
 $\int_{0}^{b} f(x) dx \approx \sum_{j=1}^{b} w_j f(x_j)$
when $w_j = \int_{0}^{b} g_j(x) dx$, $g_j(x) = \prod_{k=1}^{m} \frac{x - x_k}{x_j - x_k}$
is exact for 2n liverly independent functions!
Legendre Polynomials of degree $2n - 1$ or less.
 \Rightarrow Exact for 2n liverly independent functions!
Legendre Polynomials are the set of polynomials wheth are
orthogonal on the interval (-1,1), with Phil, P(x) = x, 1
[3]

and
$$P_{n+1}(x) = \frac{2n+1}{n+1} \times P_n(x) - \frac{n}{n+1} P_{n-1}(x)$$
. Three term recordence.

This three ferm recurrence can be derived from Grun-Schmidt:

$$P_{0}(x) = 1 , \qquad \hat{P}_{0}(x) = \frac{1}{\|P_{0}\|_{2}} = \frac{1}{\left|\int \frac{1}{|I|^{2}} dx - \frac{1}{\sqrt{2}}\right|^{2}}$$

$$P_{1}(x) = x , \qquad \hat{P}_{1}(x) = \frac{x}{\|P_{1}\|_{2}} = \frac{x}{\int \frac{1}{|I|^{2}} dx} = \int \frac{3}{\sqrt{2}} x .$$

$$Gram-Schmit surg set (for example) \qquad q_{2}(x) = x^{2}, \qquad (a new liverly independent fourly independent fourly independent fourly and pajet Aft
So $P_{2}(x) = x^{2} - (q_{2}, \hat{P}_{1})\hat{P}_{1} - (q_{2}, \hat{P}_{0})\hat{P}_{2} \qquad \text{the } P_{0}, P_{1} \text{ compound}$
and in general 1 $P_{n} = x^{n} - \sum_{j=0}^{n-1} (q_{n}, \hat{P}_{j})\hat{P}_{j}$

$$Instead of using q_{n} = x^{n}, \qquad set \qquad q_{n}(x) = x \cdot \frac{\hat{P}_{n}(x)}{q_{n}(x)}.$$

$$degree n \qquad polynomial$$$$

So her
$$n = L, S, Y \dots$$

Set O $P_{v_1}(x) = x \hat{P}_{n-1}(x) - \sum_{j=0}^{n-1} (x \hat{P}_{n-1}, \hat{P}_j) \hat{P}_j$
 $= \int_{-1}^{1} x \hat{P}_{n-1}(x) \cdot \hat{P}_j(x) dx$
(2) and then normalize: $\hat{P}_n = \frac{P_n}{\|P_n\|_{L^2}}$.
Why is this procedure better?

Any polynomial of Legne
$$\leq n-2$$
 can be written as a
livear combination of P_0, P_1, \dots, P_{n-2} . There functions are all
orthogonal to P_{n-1} .
So =7 $\left(x \hat{P}_{n-1}, \hat{P}_{j}\right) = \left(\hat{P}_{n-1}, x \hat{P}_{j}\right) = 0$ if $j \leq n-3$.

This means that the Gran-Schmidt process simplifies:

$$P_{n}(x) = x \hat{P}_{n-1}(x) - (x \hat{P}_{n-1}, \hat{P}_{n-1}) \hat{P}_{n-1} - (x \hat{P}_{n-1}, \hat{P}_{n-2}) \hat{P}_{n-2} \cdot \\ = (x - (x \hat{P}_{n-1}, \hat{P}_{n-1})) \hat{P}_{n-1} - (x \hat{P}_{n-1}, \hat{P}_{n-2}) \hat{P}_{n-2} \cdot \\ Three term recorrect, meaning \hat{P}_{n} can$$

As we had befor: $P_{n+1}(x) = \frac{2n+1}{n+1} \propto P_n(x) - \frac{n}{n+1} P_{n-1}(x)$.

Back to Gaussian Quadraturs:
Proof [of theorem (*)] Let
$$f$$
 be a polynomial of degree $\leq 2n-1$.
This implies that $f = q P_n + r$, where
 $deg(q) \leq n-1$ $deg(P_n) = n$ $deg(r) \geq n-1$ deg by polynomial
 $deg(q) \leq n-1$ $deg(r) \geq n-1$ $deg(r) \leq n-1$ deg $division$

So, if
$$x_j$$
 is a vot of P_n , then

$$f(x_j) = q(x_j) P(x_j) + r(x_j) = r(x_j).$$

$$\boxed{5}$$

Now integrate:

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{1} q(x) P_n(x) dx + \int_{-1}^{1} r(x) dx$$

$$= \int_{-1}^{1} r(x) dx.$$

Now: given the choice of our weight earlier,

$$\int_{1}^{1} v(x) \, dx = \sum_{j=1}^{2} w_j r(x_j) = \sum_{j=1}^{2} w_j f(x_j).$$
But w_j was chosen to give an exact integral for any
polynomial of deguee $\leq n-1$. (From the Newton-Cotos construction.)
 \underline{To} summarize On the interval $[-1,1]$, the n-point
Gaussian Quadration integrates $1, x, x^2, ..., x^{2n-1}$ exactly, where
the nodes x_j or the voots of Pn and the weight can
be precomputed from Newton-Cotes.

Another Example: Chebysher Polynomials
Chebysher polynomials are orthogonal (-1,1) with oreignt
Function
$$w(x) = \frac{1}{\sqrt{1-x^2}}$$
.

Let
$$x_j$$
 be the roots of T_n . Then the weights are:
 $w_j = \int q_j(x) w(x) dx$, $q_j(x) = TT \frac{x - x_e}{x_j - x_e}$.

Then the quadrature rule:

$$\int_{-1}^{1} f(x) \int_{1-x^{2}} dx \approx \int_{j=1}^{n} w_{j} f(x_{j}) \quad \text{is exact for } f = a$$

$$polynomial of degree \leq 2n-1.$$