April 21, 2020
Numerical Analysis
Last Time:
- Finished best approximation to a function in the 2-norm
- Constructing orthogonal polynomials under the inner
product:
(f,g) =
$$\int_{a}^{b} f(x) g(x) w(x) dx$$
, w>0

Numerical Integration

Almost no integral can be computed analytically, they mot
be evaluated numerically.

$$E_X:$$

 $erf(x) = \frac{2}{5\pi} \int_0^x e^{-t^2} dt$
 $error function$

Application ODES, initial value problems
(*)
$$y'(t) = f(t)$$
 The analytic solution is
 $y(0) = y_0$ $y(t) = y_0 + \int_0^t f(t) dt$
All numerical methods for solving (*) are based on numerically
approximating the integral.
More to come later...

In general : Interpolate f at the points
$$(x_n, f(x_n))$$

 $p_n(x) = \sum_{j=0}^{n} \lfloor_j(x) f(x_j)$
 $lagrange function $\lfloor_j(x) = \prod_{i \neq j} \frac{x - x_i}{x_j - x_i}$
Then the integral of f can be approximated as:
 $\int_{a}^{b} f(x) dx \approx \int_{a}^{b} p_i(x) dx$
 $= \int_{a}^{b} \sum_{j=0}^{c} \lfloor_j(x) f(x_j) dx$
 $= \sum_{i=j=0}^{c} (\int_{a}^{b} \lfloor_j(x) dx] f(x_j)$
 $= \sum_{i=j=0}^{c} (\int_{a}^{b} \lfloor_j(x) dx] f(x_j)$
 $= \sum_{j=0}^{c} W_j f(x_j) \sum_{j=0}^{c} Standard form of a Quadrature Role
 $W_j = quadrature$ $x_j = quadrature nodes (the location where
 W_{eij} $W_j = \int_{a}^{b} \lfloor_j(x) dx$ and η depends on the location where
 d the quadrature nodes in the location
 d the quadrature nodes f_i .
Note 2: Warning : Large a many result in an inscende
approximation by the interpolating polynomial due to
Runge's Phenomena.
Remedy: Use wany smaller lower-order interpolation,
 $glive$ the result hypether.
[3]$$$

The Composite Trapezoidal Rule

$$y = f(x)$$
Apply the tapezoidal rule on
$$x_{s} = a + j\left(\frac{b-a}{n}\right)$$

$$y = f(x)$$
Apply the tapezoidal rule on
$$x_{s} = a + j\left(\frac{b-a}{n}\right)$$

Then, the integral is approximated by:

$$\int_{a}^{b} f(x) dx \approx T_{n}f \qquad N-interval Trapezsid Rule$$

$$= \frac{2}{5}h\left(\frac{f(x_{j-1}) + f(x_{j})}{2}\right)$$

$$= h\left(\frac{2}{5}f(x_{j}) - \frac{1}{2}(f(x) + f(b))\right)$$
Question: What is the error $\int_{a}^{b} f(x) dx - T_{n}f\right|^{2}$

This error can be shown to be $O(h^2)$.

Iden I the proof : on a single interval [a,b], Tuylor
expand f about
$$\chi = \frac{a+b}{2}$$
 (the midpoint). Apply the
Trapezoidal rule to this Taylor sories.

In fact, a much mon powerful formula exists that characterizes the error explicitly.

The Eder-Muchavin Expansion
Theorem: Let
$$f \in C^{2k}(a,b)_{f}$$
 and $[a,b]$ be divided
into in equal subintervals, $[x_{3^{n}}, x_{3}]$, with $x_{j} = a + jh$.
Then, $\int_{-r_{1}}^{b} f(x) dx = T_{n}f$
 $T = \sum_{r=1}^{k} C_{r}h^{2r}(f(b) - f(a)) = d_{2k}(\frac{b}{2})^{2k}$.
 $= \frac{b_{1}^{k}(f(b) - f(a)) - \frac{b_{1}^{k}(f(b) - f(a))}{r_{20}} + \dots + (r_{1})^{k-1} \frac{b_{n}}{r_{n}}h^{2k}(\frac{b}{1})^{2k}$.
These coefficients as given by:
 $C_{r} = -\frac{b_{2r}}{(2r)!}$, B_{2r} is a Bernaulli number:
 $\frac{X}{2} \operatorname{coth}(\frac{X}{2}) = \sum_{r=0}^{\infty} \frac{b_{2r}}{(2r)!}x^{2r}$.
The calculation of B_{2r} was the output of anyonolog
the first "computer program" written by Adm Love lace
and Charles Babbage.
Timplications of Euler-Machavini
Tf $f \in C^{n}(a,b)$ and periodic write $f^{(1)}(a) = f^{(1)}(b)$
(thick Evice Series, or convex, sin max, etc.) then this error
 $[T.T_{n}f]$ decays superalizebraically as $n=\infty$.

Def:
$$E_n \rightarrow 0$$
 superalgebraically if

$$\lim_{n \rightarrow \infty} \frac{E_n}{h^{pn}} = 0 \quad \text{for any } p > 0,$$

This means that En=0 faster than any power of h. For this reason, the tripezoidal role is very important important in various promerical methods.

$$\underline{E_{X^{*}}} \qquad \overline{J_{o}(x)} = \frac{1}{\pi} \int_{0}^{\pi} e^{i \times los \theta} d\theta.$$

e is not periodic on [0,T], but it is on [0,2T]. It can be shown that

$$J_{o}(x) = \frac{1}{\pi} \int_{0}^{\pi} e^{ix \cos \theta} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} e^{ix \cos \theta} d\theta.$$

See mybessel.m for compting
this via the tapezoidal role.