April 9,2020 Numerical Analysis

As notivation: Examine the bargentai coordinates on
a trivingle.
Ex:
A
The bargentai coordinates of a point
P inside a triangle with vertices
B
P =
$$\kappa A + \beta B + \gamma C$$
 (α, β, γ) coordinates
with $\alpha + \beta + \gamma = 1$, $\kappa \ge 0$, $\beta \ge 0$, $\gamma \ge 0$.

The centre A muss of the truiple is the given by
$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} \beta \\ \gamma_{5} \\ \gamma_{5} \end{pmatrix}.$$

$$Iden: Replace A,B,C with Euchons that sum to I.
Short with the Lagrange Form: (and revertile)
$$p_{n}(x) = \sum_{k=0}^{2} \begin{pmatrix} TT (x - x_{5}) \\ J \neq k (x_{k} - x_{5}) \end{pmatrix} y_{k}$$

$$= \frac{2}{2} \begin{pmatrix} TT (x - x_{5}) \\ J \neq k (x_{k} - x_{5}) \end{pmatrix} y_{k}$$

$$= \frac{2}{2} \begin{pmatrix} TT (x - x_{5}) \\ J \neq k (x_{k} - x_{5}) \end{pmatrix} y_{k}$$

$$= q(x) \sum_{k=0}^{2} \frac{1}{x - x_{k}} \begin{pmatrix} TT - 1 \\ J \neq k (x_{k} - x_{5}) \end{pmatrix} y_{k}$$

$$= q(x) \sum_{k=0}^{2} \frac{W_{k}}{x - x_{k}} y_{k}$$

$$= q(x) \sum_{k=0}^{2} \frac{W_{k}}{x - x_{k}} (x_{k} - x_{k}) \int f(x_{k} - x_{k}) \int f(x_{k} - x_{k}) \int f(x_{k} - x_{k}) \int f(x_{k} - x_{k}) f(x_{k} - x_{k}) f(x_{k} - x_{k}) \int f(x_{k} - x_{k}) \int f(x_{k} - x_{k}) f(x_{k} - x_{k}) f(x_{k} - x_{k}) f(x_{k} - x_{k}) \int f(x_{k} - x_{k}) f(x_{k} - x_{k}) \int f(x_{k} - x_{k}) f(x_{k} - x_{k}) f(x_{k} - x_{k}) \int f(x_{k} - x_{k}) f(x_{k} - x_{k}) f(x_{k} - x_{k}) \int f(x_{k} - x_{k}) f$$$$

ond rycentric mula.

This firm is "shale for any reasonable choice of
$$g_{3}^{*}$$
 (2004,
Higham).
One should changs vie this from to do polynomial
interpoletion.
Convergence of Polynomial Interpolation
Let's example the question of what happens as ano, c.e.
lim wax $|f(N) - p_{0}(x)| = ?$
This is the 00-norm.
The pointwire error is approximably:
 $\max_{n \neq \infty} \frac{|f^{(n+1)}(s)|}{(n+1)!} \cdot \max_{g \neq 0} \frac{\pi}{1} |x-x_{s}|$
If not obvious if this increases or decreases as $n=0$...
(see Mathab dimo for interpolation of
Range's Function $f(x)z = \frac{1}{1+bx}$
This behavior is celeted to the fact that the
function $f(x) = \frac{1}{1+c} = \frac{1}{1+c} = \frac{1}{0} = 0$.
This distates the radius of increases of it Taylor serves:
 $f(x) = 1 - x^{2} + x^{2} - x^{2} + x^{2} - x^{0} + ...$
(can be fixed, we'll fact on)

Function approximation
Polynomial interpolation mainly has applications in
function approximation, with respect to some morms:
For functions, some example norms are:

$$\|f\|_{\infty} = \max_{x \in [a,b]} |f(x)|^2$$

 $\|f\|_{2} = \int_{a}^{b} |f(x)|^2 dx$
 $\|f\|_{2} = \int_{a}^{b} |f(x)|^2 dx$
 $\|f\|_{1} = \int_{a}^{b} |f(x)| dx$
 $\|f\|_{1} = \int_{a}^{b} |f(x)| dx$

()
$$||f|| \ge 0$$
, $||f|| = 0$; $ff = c$
(2) $||cf|| = |c| ||f||$
(3) $||f+g|| \le ||f|| + ||g||$

Ex: The Znorm of a function can be generalized
by introducing a "weight" function
$$W>0$$
:
 $\|f\|_{2,W} = \iint_{a}^{b} |f(x)|^{2} w(x) dx$

However, we can explicitly write down then minimax
polynomial approximation to the monomial
$$f(x) = x^{nt/on}[0,1]$$

if $f(x) = x^{nt/1}$.
Theorem Let $n \ge 0$, then $\||p_n - f||_{\infty}$, with $f(x) = x^{nt/1}$, is
minimized when $p_n(x) = x^{nt/1} - \frac{1}{2^n} \cos((n+1) \cos x)$.
The function $T_n(x) = \cos(n \cos x)$ is known as the
Chebyshev polynomial of degree n. These functions play
a very important role in numerical chalgesis.