April 9, 2020

Numerical Analysis

Last time: Constructive Formula for polynomial interpolation:

Lagrange Interpolating Formula.

For data \((x_i,y_i), (x_j,y_j), \ldots, (x_n,y_n)\), the polynomial interpolant is a degree \(n\) polynomial that passes through the points.

In some cases, the Lagrange form of the polynomial interpolant can be numerically unstable: has a large condition number, large round-off error, etc.

Barycentric Form(s) of Interpolation

The numerical stability of evaluating an interpolating polynomial can be fixed by rearranging its terms — this does not change what the actual interpolant is.

As motivation: Examine the barycentric coordinates on a triangle.

Ex:

The barycentric coordinates of a point \(P\) inside a triangle with vertices \(A, B, C\) are given by:

\[
P = \alpha A + \beta B + \gamma C \quad (\alpha, \beta, \gamma) \text{ coordinates}
\]

with \(\alpha + \beta + \gamma = 1\), \(\alpha \geq 0\), \(\beta \geq 0\), \(\gamma \geq 0\).
The center of mass at the triangle is given by
\[
\left(\frac{x}{y} \right) = \left(\frac{y_3}{y_3} \right).
\]

Idea: Replace \(A, B, C \) with functions that sum to 1.

Start with the Lagrange Form: (and rewrite)
\[
p_n(x) = \sum_{k=0}^{n} \left(\prod_{j=0}^{n} \frac{x-x_j}{x-x_k-x_j} \right) y_k L_k(x).
\]
\[
= \sum_{k=0}^{n} \left(\frac{n}{j=0} \frac{(x-x_j)}{1} \prod_{j=k}^{n} \frac{1}{x-x_j} \right) y_k
\]
\[
= \left(\frac{n}{j=0} \frac{(x-x_j)}{1} \right) \sum_{k=0}^{n} \frac{1}{x-x_k} \prod_{j=k}^{n} \frac{1}{x-x_j} y_k
\]
\[
= \phi(x) \sum_{k=0}^{n} \frac{W_k}{x-x_k} y_k \quad \text{(Modified Lagrange Form)}
\]
\[
= \phi(x) \sum_{k=0}^{n} \frac{W_k}{x-x_k} \quad \text{(First Barycentric Formula)}
\]

We can even further simplify this form by “dividing by 1.”

The polynomial interpolant of the function 1 at the same nodes \(x_j \) is simply:
\[
1 = \phi(x) \sum_{k=0}^{n} \frac{W_k}{x-x_k} \quad \text{(since } y_k = 1 \).
\]

Then
\[
p_n(x) = \frac{\phi(x) \sum_{k=0}^{n} \frac{W_k}{x-x_k} y_k}{\phi(x) \sum_{k=0}^{n} \frac{W_k}{x-x_k}} = \sum_{k=0}^{n} \frac{W_k}{x-x_k} \cdot y_k \quad \text{(Second Barycentric Formula)}
\]
This form is "stable for any reasonable choice of x_j" [2004, Higham].

One should always use this form to do polynomial interpolation.

Convergence of Polynomial Interpolation

Let's examine the question of what happens as $n \to \infty$, i.e.

$$\lim_{n \to \infty} \max_{x} |f(x) - p_n(x)| = ?$$

This is the ∞-norm.

The pointwise error is approximately:

$$\max_{x} \frac{|f^{(n+1)}(s)|}{(n+1)!} \cdot \max_{x, j=0}^{n} |x - x_j|$$

It's not obvious if this increases or decreases as $n \to \infty$...

(See Matlab demo for interpolation of

Runge's Function $f(x) = \frac{1}{1 + (3x)^2}$)

The **Runge Effect**

This behavior is related to the fact that the function $f(x) = \frac{1}{1 + x^2}$ has a singularity at $x = \pm i$ in the complex plane.

$$f(i) = \frac{1}{1 + i \cdot i} = \frac{1}{1 + 1} = \frac{1}{2} \infty.$$

This dictates the radius of convergence of its Taylor series:

$$f(x) = 1 - x^2 + x^4 - x^6 + x^8 - x^{10} + \ldots$$

(can be fixed, we'll see later on)
Function approximation

Polynomial interpolation mainly has applications in function approximation, with respect to some norm:

For functions, some example norms are:

\[\| f \|_\infty = \max_{x \in [a, b]} |f(x)| \]

\[\| f \|_2 = \left(\int_a^b |f(x)|^2 \, dx \right)^{1/2} \]

\[\| f \|_1 = \int_a^b |f(x)| \, dx \]

\[\text{Just like for } n\text{-dimensional vectors.} \]

Norms of functions satisfy the same properties as those in the finite dimensional vector case:

1. \(\| f \| > 0 \), \(\| f \| = 0 \) iff \(f = 0 \)
2. \(\| cf \| = |c| \| f \| \)
3. \(\| f + g \| \leq \| f \| + \| g \| \)

Ex: The 2-norm of a function can be generalized by introducing a "weight" function \(w > 0 \):

\[\| f \|_{2, w} = \left(\int_a^b |f(x)|^2 \, w(x) \, dx \right)^{1/2} \]

So: the polynomial \(p_n \) of degree \(n \) that best approximates a function \(f \) in the \(\infty \)-norm is

\[\min_{p_n \in P_n} \| p_n - f \|_\infty \]

Do not think of \(p_n \) as a polynomial interpolant of \(f \) with maximum pointwise error.
From analysis class, we know that continuous functions f on some finite interval can be approximated arbitrarily well by a polynomial of "some" degree. This result is known as the **Weierstrass Approximation Theorem**.

I.e. For any $\varepsilon > 0$, there exists a polynomial p such that $\|f - p\|_\infty < \varepsilon$, $\|f - p\|_2 < \infty$.

Unfortunately, this is a completely useless theorem for numerical approximation.

It doesn't tell you how to find p!

The question of restricting $p \in \mathbb{P}_n$ is much more interesting, and actually useful.

To pose the problem:

For $n \geq 0$, find $p_n \in \mathbb{P}_n$ such that

$$\|f - p_n\|_\infty = \min_{q \in \mathbb{P}_n} \|f - q\|_\infty.$$

Theorem: Such a p_n exists, and is unique.

(The proof does not tell us how to find p_n.)

In general, one cannot write down the *minimax polynomial*, i.e. the polynomial p_n such that

$$\|f - p_n\|_\infty = \min_{q \in \mathbb{P}_n} \max_{x \in [a,b]} |f(x) - q(x)|$$

\[5\]
However, we can explicitly write down the minimax polynomial approximation to the monomial \(f(x) = x^{n+1} \) on \([0,1]\):
\[
f(x) = x^{n+1}.
\]

Theorem Let \(n \geq 0 \), then \(\| p_n - f \|_\infty \), with \(f(x) = x^{n+1} \), is minimized when \(p_n(x) = x^{n+1} - \frac{1}{2^n} \cos((n+1) \cos x) \), a polynomial of degree \(n \).

The function \(T_n(x) = \cos (n \cos x) \) is known as the **Chebyshev polynomial** of degree \(n \). These functions play a very important role in numerical analysis.