Apr: 17, 2020
Nonerical Analysis
Last Time: - Finished Jacobi's Algerithm for computing
eigenvalues /vectors for a real symmetric matrix
Not up: Polynomial Interpolation
Sien computer can only multiply/add ; basically the
only function that your comptr can evaluate arc polynomials.
Ex: 2 pairs in the
sty-plane define o line.
* 3 pairs define
a parabola (a dag 2
polynomial)
In general; not unique points in the symptome define
a polynomial of degree a:

$$p(x) = y_0$$

 $p(x) = y_0$
 $p(x) =$

 \square

Optim 2. The coefficients of usually don't writter - the
goal is usually to evaluate prior some new point
$$x = x_2$$
.
While the polynomial prior is unique, there are many ways
to construct/evaluate it, the most common of which is
the Lagrange Interpolation Polynomial. Polynomial subspace of
polynomial schepera of polynomials $L_k \in \mathbb{P}_n$ degree in
such that:
 $L_k(x_3) = \begin{cases} 1 & \text{if } j \in k_1 \\ 0 & \text{if } j \neq k_2 \end{cases}$
If this is possible, then $p_n(x) = \sum_{k=0}^{n} y_{k-k}(x)$ is the
interpolation of usually polynomials L_k is straightforward:
 $L_k (x_3) = \begin{cases} 1 & \text{if } j \in k_2 \\ 0 & \text{if } j \neq k_2 \end{cases}$
The construction of such polynomials L_k is straightforward:
 $L_k (x_1 - x_3) = (x_1) = \sum_{k=0}^{n} y_{k-k}(x) = 0 \dots n$.
The construction of such polynomials L_k is straightforward:
 $L_k (x_1 - x_3) = (x_1) = (x_1 - x_3) = 0 \dots n$.
The construction of such polynomials L_k is straightforward:
 $L_k (x_1 - x_3) = (x_1) = (x_1 - x_3) = 0 \dots n$.
The construction dute $(x_3, y_3) = 0 \dots n$, there exists a unique
polynomial $p_n \in \mathbb{N}$ such that $p_n(x_3) = y_3$.
Proof Existence : Immediately follows from the Lagrange formula (x)
Uniqueness : See thatbook.
The firm of the interpolation formula of degree n^{-1} .
The firm of the interpolation formula of degree n^{-1} .

Moreover:

$$\begin{split} \left| f(x) - p_n(x) \right| &\leq \frac{M_{n+1}}{(n+1)!} \left| \Pi_{n+1}(x) \right| \\ \text{where} \quad M_{n+1} &= \max_{\substack{1 \leq n \\ t \in [n, b]}} \left| f^{(n+1)}(t) \right| \\ \\ \overline{\Pi_{n+1}}(x) &= \frac{n}{|I|} \left(x - x_j \right) \quad \text{Proof is detailed , will not} \\ go \quad \text{Fhrough it, see fixt.} \end{split}$$

Two takeaway points:
(i) Only unfill if Mun can be completed.
(i) The interpolation error brighty depends on where
the nodes
$$x_j$$
 are located.
This will be very important later on.
(i) The cost of evaluating pn depends on the form
it is written in.
Lagrange Form: $p_n(x) = \sum_{k=0}^{n} y_{k-k}(x)$, $L_k(x) = \prod_{j=0}^{n} \frac{x - x_j}{x_{k-} - x_j}$
if $x = 0$, x

Compare this with Horner's Method,
If the coefficients
$$a_{05,...,7} a_{1}$$
 are becomen in
 $p_{n}(x) = a_{0} + a_{1}x + a_{1}x^{2} + \dots + a_{n}x^{n}$ the vic can
vewrite p_{n} as:
 $p_{n}(x) = a_{0} + x (a_{1} + a_{2}x + \dots + a_{n}x^{n-1})$
 $= a_{0} + x (a_{1} + x(a_{2} + a_{3}x + \dots + a_{n}x^{n-2})$
 $= a_{0} + x (a_{1} + x(a_{2} + a_{3}x + \dots + a_{n}x^{n-2})$
 $= a_{0} + x (a_{1} + x(a_{2} + x(\dots))$
 $b_{n-1} = a_{n-1} + a_{n}x$
 $b_{n-2} = a_{n-2} + b_{n-1}x$
 b_{n-2}