By our definition earlier: substituting of the
solution to the input

$$\hat{1}$$
 $\hat{1}$
 \underline{x} \underline{b}
Let $\|\underline{b} - \underline{b}'\|$ be small, and $\underline{x} = A^{-1}\underline{b}$, $\underline{x}' = A^{-1}\underline{b}'$.
Then $\|\underline{x} - \underline{x}'\| = \|A^{-1}\underline{b} - A^{-1}\underline{b}'\|$
 $\underline{z} = \|A^{-1}\| \|\underline{b} - \underline{b}'\|$
 $\underline{z} = \|A^{-1}\| \|\underline{b} - \underline{b}'\|$
But remember, the absolute and this number
about the number of correct digits in the answer.
Need the number of correct digits in the answer.
Need the relation condition number:
 $\frac{\|\underline{x} - \underline{x}'\|}{\|\underline{x}\|} = \|A^{-1}\| \|\underline{b} - \underline{b}'\|$
 $\|\underline{y}\|$
 $= \|A^{-1}\| \| \|\underline{b} - \underline{b}'\|$
 $\|\underline{x}\|$
 $= \|A^{-1}\| \| \|\underline{b} - \underline{b}'\|$
 $\|\underline{y}\|$
 $\|\underline{x}\|$
 $= \|A^{-1}\| \| \|\underline{b} - \underline{b}'\|$
 $\|\underline{b}\|$
 $\|\underline{x}\|$
 $= \|A^{-1}\| \| \underline{b} - \underline{b}'\|$
 $\|\underline{b}\|$
 $\|\underline{b}$

What else is related to the engenzales of
A+A? [lecall the singular-value decomposition:
For and matrix A (square a rate, invertible or not)
A =
$$\frac{1}{\sqrt{5\sqrt{5}}}$$
 entropy of $\frac{1}{\sqrt{5}}$ = I
Langual - $\frac{1}{\sqrt{5}}$ = I
I f A is invertible, then $A^{4}A = (\sqrt{5})^{4}(\sqrt{5})^{4}(\sqrt{5})^{4}$
 $= (\sqrt{5^{2}}\sqrt{5})^{4}$
We will relate to compute the
SUD numerally...
Interpretation of the form number: ratio of stretching
to skrink g.
 $(A^{4}A)^{-1} = \sqrt{5^{4}}\sqrt{5}$ If $5^{4} : (\frac{\sigma^{2}}{\sigma_{1}}) = \frac{\sigma^{4}}{\sigma_{1}}$
 $\int (A^{4}A)^{-1} = \sqrt{5^{4}}\sqrt{5}$ If $S^{4} : (\frac{\sigma^{2}}{\sigma_{1}}) = \frac{\sigma^{4}}{\sigma_{1}}$
 $\int (A^{4}A)^{-1} = \sqrt{5^{4}}\sqrt{5}$ If $S^{4} : (\frac{\sigma^{2}}{\sigma_{1}}) = \frac{\sigma^{4}}{\sigma_{1}}$
 $\int (A^{4}A)^{-1} = \sqrt{5^{4}}\sqrt{5}$ If $S^{4} : (\frac{\sigma^{2}}{\sigma_{1}}) = \frac{\sigma^{4}}{\sigma_{1}}$
 $\int (A^{4}A)^{-1} = \frac{\sigma^{4}}{\sigma_{1}}$