Lecture notes

Thursday Feb 13, 2020

1 Fixed point iterations

1.1 Contractions

Definition 1.1 (Contraction). Let g be continuous on [a, b]. The function g is a contraction on [a, b] if there exists a number L with 0 < L < 1 such that |g(x) - g(y)| < L|x - y for all $x, y \in [a, b]$.

The above definition means that g maps points to values which are closer together.

The above definition is also related to the concept of *Lipschitz continuity*, in which the restriction of L < 1 is lifted.

Theorem 1 (Contraction Mapping Theorem (CMT)). If g is a contraction on [a, b] and $g(x) \in [a, b]$ for all $x \in [a, b]$, then g has a unique fixed point $\xi = g(\xi) \in [a, b]$. Furthermore, the sequence defined by $x_{k+1} = g(x_k)$ converges to ξ for any $x_0 \in [a, b]$.

Proof. A fixed point ξ exists due to Brouwer's Fixed Point Theorem. Now, we show that it is unique by contradiction. Assume that ξ is not unique; this means that there exists another $\xi' \neq \xi$ such that $\xi' = g(\xi')$. Furthermore, we have that

$$\begin{aligned} |\xi - \xi'| &= |g(\xi) - g(\xi')| \\ &\leq L|\xi - \xi'|. \end{aligned}$$
(1)

Dividing each side by $|\xi - \xi'|$ implies that $L \ge 1$, and therefore g cannot be a contraction. This is a contradiction, and therefore $\xi = \xi'$, proving that ξ is the unique fixed point.

Next, we will show that the x_k 's converge to ξ for any initial $x_0 \in [a, b]$. Since $x_k = g(x_{k-1})$ and g is a contraction,

$$|x_k - \xi| = |g(x_{k-1}) - g(\xi)|$$

$$\leq L|x_{k-1} - \xi|.$$

Repeating this argument k times, we have that

$$|x_k - \xi| \le L^k |x_0 - \xi|,$$

and since 0 < L < 1, $L^k \to 0$ and therefore $|x_k - \xi| \to 0$ as $k \to \infty$. This proves convergence of the x_k 's.

Example 1.1. Take the function $f(x) = e^x - 2x - 1$ on the interval [1, 2]. It is easy to show that f(x) = 0 has a unique solution on this interval, call it ξ , i.e. $f(\xi) = 0$. This root finding

problem can be re-written as a fixed point problem:

$$e^{x} = 2x + 1$$
$$\log e^{x} = \log(2x + 1)$$
$$x = \log(2x + 1)$$
$$= g(x).$$

Clearly the function g is continuous on the interval [1, 2], as well as differentiable. By the Mean Value Theorem (MVT), there exists some $\eta = \eta(x, y) \in [1, 2]$ such that for any $x, y \in [1, 2]$:

$$|g(x) - g(y)| = |g'(\eta)(x - y)| = |g'(\eta)||x - y|.$$

Since g'(x) = 2/(2x+1), clearly $|g'(x)| \le 2/3$ for $x \in [1,2]$. Therefore we have that

$$|g(x) - g(y)| \le \frac{2}{3}|x - y|,$$

and therefore $g(x) = \log(2x + 1)$ is a contraction.

By the CMT, we know that the sequence defined by $x_{k+1} = g(x_k)$ converges to ξ (the root of f) for any $x_0 \in [1, 2]$.

How many iterations do we need to guarantee that $e_k = |x_k - \xi| \le \epsilon$, where $\epsilon > 0$ is some desired precision?

Using the proof of the CMT, we have that:

$$|x_k - \xi| \le \left(\frac{2}{3}\right)^k |2 - 1|.$$

Setting the expression above to be less than or equal to ϵ we have that:

$$\left(\frac{2}{3}\right)^k \le \epsilon \qquad \Longrightarrow \qquad k \ge \frac{\log \epsilon}{\log 2/3} \approx 2.5 |\log \epsilon|.$$

1.2 Stability of fixed points

Some fixed points are attracting and some are repelling, the following definitions classify these fixed points.

Definition 1.2 (Stable fixed point). A fixed point $\xi = g(\xi)$ is stable if $x_k \to \xi$ for every x_0 in some sufficiently small neighborhood of ξ .

Definition 1.3 (Unstable fixed point). A fixed point $\xi = g(\xi)$ is unstable if the **only** initial condition that yields a convergent sequence is $x_0 = \xi$, i.e., the sequence x_k diverges for every x_0 in a neighborhood of ξ .

1.3 Rates of convergence

In the case that ξ is a stable fixed point, at what rate do we expect the sequence to converge? Examine the limit of the ratio of successive errors:

$$\lim_{k \to \infty} \frac{|x_{k+1} - \xi|}{|x_k - \xi|} = \lim_{k \to \infty} \frac{|g(x_k) - \xi|}{|x_k - \xi|}$$
$$= |g'(\xi)|.$$

So the derivative of q dictates how fast the sequence will converge.

Remark. Of course it has to be the case that $|g'(\xi)| < 1$ otherwise we have that for some sufficiently large k the errors obey $e_{k+1} > e_k$, and therefore the sequence diverges. Go back and contrast this situation with the discussion of *order of convergence* from a few lectures ago.

Definition 1.4 (Rate of convergence). As before, denote by e_k the error $e_k = |x_k - \xi|$, and furthermore set

$$\lim_{k \to \infty} \frac{e_{k+1}}{e_k} = \mu.$$

If $0 < \mu < 1$ then the x_k 's converge **linearly**. This is a **first order convergent sequence**. Now, set $\rho = -\log_{10} \mu$. The number ρ is known as the **asymptotic rate of convergence**. The above definition can be applied to *any* sequence, not just those obtained from fixed point iterations.

Example 1.2. Define a sequence by:

$$x_k = 1 + \frac{1}{10^k}.$$

Clearly the limit of this sequence as $k \to \infty$ is 1, and we therefore have that

$$\lim_{k \to \infty} \frac{e_{k+1}}{e_k} = \lim_{k \to \infty} \frac{1/10^{k+1}}{1/10^k} = \frac{1}{10},$$

and the rate of convergence is given by

$$\rho = -\log_{10}\frac{1}{10} = 1.$$

What exactly does ρ measure? The value of ρ measures the number of correct decimal digits gained on every successive iteration. E.g., if $\rho = 2$, then every iteration has two more digits of agreement with its limit.

For fixed point iterations, since

$$\lim_{k \to \infty} \frac{e_{k+1}}{e_k} = |g'(\xi)|,$$

we have that $\mu = |g'(\xi)|$ and $\rho = -\log_{10} |g'(\xi)|$. This means that the *flatter* the function g is near the fixed point, the *faster* $x_{k+1} = g(x_k)$ converges.