February 11,2020 Numerical Analysis
One may with to find x such that
$$f(x)$$
 is as large
lor small as possible on some interval $(a,b]$:
and smooth
 $f(x) = 0$, $f(x) = 1$, $f(x) =$

Generalization: Fixed point iterations

Recall: Newton's Method

$$X_{n+1} = X_n - \frac{f(x_n)}{f'(x_n)} = g(x_n)$$

 $\zeta = \Im(\zeta)$. the true rout is 4, then Τf E/We suy & is a fixed =7 If $x_{u}=5$, then $x_{u+1}=5$. point of the iteration For arbitrary functions g, one $x_{u+1} = g(x_u)$. could ask : (1) are there fixedpoints?

Definition A simple iteration is given by $\chi_{n+1} = g(\chi_n) ,$

when we assume g is continuous on [a,b], and that

Brower's Fixed Point Theorem: If g is as above, then
there exists
$$S \in [a,b]$$
 such that $S = g(s)$.
Proof Since $g(x) \in (a,b]$ for all $x \in [a,b]$, it is easy to
show that $g(x) - x = h(x)$ has at least one noot in $(a,b]$:
Hint show that $h(a) h(b) < 0$.

Definition [Contraction]: Let g be continuous on [a,b]. The function g is a contraction on [a,b] if the exists a number L with OLLL such that: |g(x)-g(y)| \leq L[x-y] for all xiy \in [a,b]. This means that g maps points to value which are closer together. If L is allowed to be any positive number, then this is known as a Lipschitz condition. (I.e. if L is also allowed to be 31.) (Compare with Lipschitz continuous from Analysis.) [3] Theorem [Contraction Mapping Theorem] Let g be continuous on [a,b], $g(x) \in [a,b]$ for all $x \in [a,b]$, and assume that g is a contraction on (a,b]. Then, g has a unique fixed point s = g(s). Furthermore, $x_{n+1} = g(x_n)$ converges to s for any initial starting value $x_b \in [a,b]$.

Proof next time ...