$$\begin{array}{rcl} \overline{J_{an}} & 30, 2020 & \text{Numerical Analysis} & - \text{Drive Newhow method} \\ \hline & \text{The Piratein Method used two prices of information to approximate the solution to $f(x) = 0$ - the sign of the finction. What is the $f(x) = 0$ - the sign of the factor. What is the $f(x) = 0$ - the sign of the factor. What is the $f(x) = 0$ - the sign of the factor. What is the $f(x) = 0$ - the sign of the factor. Show that the growth the prosent $f(x) = 0$ a second $f(x) = 0$ is $f(x) - f(x) = f(x) - f(x)$. The root of the scenar line substitutes $f(x) = 0$ is $f(x) - f(x) = f(x) - f(x)$. The root of the scenar line substitutes $f(x) = 0$ is $f(x) - f(x) = f(x) - f(x)$. The root of $f(x) - f(x) = f(x) - f(x)$. The root of $f(x) - f(x) = f(x) - f(x)$. We will very sit the convergence properties of their method later. Summing Approximate $f(x)$ a secant line, report using new approximate root. $f(x) = f(x) - f(x)$.$$

What if we are now allowed to use derivative information
to approximists
$$f$$
? (And then find the rost of this
approximant.)
(Suppose we know $f(x_0)$ and $f'(x_0)$,
 $f(x_0)$ then we can draw the trugent line.
 χ_{x_0}
 $I(x) = trugent line$

The equation of the tangent line is givin as:

$$t(x) = f(x_0) + f'(x_0)(x - x_0)$$

The root of the tangent line satisfies $t(x)=0$

$$= 7 \quad \chi = \chi_0 - \frac{f(\chi_0)}{f'(\chi_0)} \equiv \chi_1$$

 X_i is the next approximation to the voot of f. Repeating this procedure at X_i we obtain Newton's Mathod: $X_{i+1} = X_{i} - \frac{f(X_i)}{f'(X_i)}$.

Alternation interpretation: the tangent line is a first-order Taylor approximation to f.

$$\begin{aligned} \text{Recall: The Taylor series of f about x_o (assuming f has infinite derivatives):} \\ f(x) &= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_o)}{n!} (x - x_o)^n \\ &= f(x_o) + f'(x_o)(x - x_o) + \frac{f^{(n)}(x_o)}{2!} (x - x_o)^2 + \frac{f^{(s)}(x_o)}{3!} (x - x_o)^3 + \dots \\ &= \frac{f(x_o)}{2!} (x - x_o)^2 + \frac{f^{(s)}(x_o)}{3!} (x - x_o)^3 + \dots \end{aligned}$$

Truncating this series after the first two terms gives:

$$f(x) \approx f(x_0) + f'(x_0) (x-x_0)$$

If x_0 is close to the not of f , \hat{s} , $f(\hat{s}) = 0$, then
we get that
 $f(\hat{s}) = 0 \approx f(x_0) + f'(x_0) (\hat{s} - x_0)$
Solve for $\hat{s} \Rightarrow \qquad \hat{s} \approx x_0 - \frac{f(x_0)}{f'(x_0)}$. This is Newton's
 T approximately
Summary The Secant Method and Newton's Method both work
by the same mechanism : approximate f by a livear
function, find the not of that livear function.
Update and repeat.

Convergence Behavior
Let
$$4$$
 be the tric root of f , i.e. $f/5) = 0$.
We are interested in how the absolute error of x_{1e}
changes from iteration to iteration. $e_{1e} = |4 - x_{1e}|$.
For the bisection method:

$$e_{\rm kH} \approx \frac{1}{2} e_{\rm k}$$

It turns out that Newton converges <u>quadratically</u>: $e_{k+1} \approx A e_k^2$ E_{k+1} $E_{k+1} \approx A e_k^2$ E_{k+1} $E_{k+1} \approx A e_k^2$ $E_{k+1} \approx A$

3