Logistics : Mike O'Neil oneil c cinsingniedn cims.nyu.edu/~oneil/na20 Webpage Old definition of Numerial quelysis: "the study of vounding errors" This is boring, and not very meaningful. Better definition - Trefethen '92: "the study of algorithms for the problems of continuous mathematics" Much of the field of numerical analysis came at of trying to efficiently, and stably, solve Az=6 in florting-point arithmetic. NA touches all fields now: ODES, PDES, physics, etc. General overview of topics to be covered: - solving nonlinear systems of equations - numerical linear algebra - polynomial interpolation - numerial integration - ODES : initial value problems - Monte Carlo methods - Fast Fourier Transform . Then will be computing ! Familiarize yourself with MATLAB. ·Textbook: Suli & Mayers, Into to Numerical Analysis (free from NYU)

Many numerical analysis / Math Failurs can be bund
at imanum.edu/marashd/disasters
This is an important field!
First topic Solving a nonlinear equation
Linear :
$$3x + 7 = 2$$
 Can solve by hand,
explicit form of solvhain
Nonlinear : $\cos x + x^2 - 7 = 5$ No closed form solution,
must use a numerical method
General form of the problem:
Solve $f(x) = 0 = 7$ Rout finding
 $y = f(x)$
Many solution
Many solution
No solution (at least if
 x is required to be val-valed)
I.e. $x^2 + 1=0 = 7$ $x = \pm i$
A sofficient condition for a solution to exist
on the interval $[a,b]$: $f(a) < 0$ & $f(b) > 0$

or f(a) > 0 & $f(b) \ge 0$

Thus: If f is contrived and real-valued an
$$(a,b]$$
,
and if $f(a) \cdot f(b) \ge 0$, then then exists an
 $x \in (a,b)$ set. $f(x) = 0$.
Proof: Merely apply the Intermediate Value Thm. (Cale I).
Can use use this Thum to disjon a numerical method
for solving $f(x) = 0$?
Birchie
 $\int_{a}^{y} \frac{f(b)}{b} \cdot y = f(b)$
 $f(a) \ge 0$, $f(b) > 0 = 2$, $f(x) \ge 0$ has
a solution on $[a,b]$.
Idea: Split the interval in built,
apply the same Thus:
If $f(\frac{a+b}{2}) \le 0$, then $f(x) \ge 0$ has a solution on $[a, \frac{a+b}{2}]$.
Split interval in built, and repeat.
Let $a_0 = a$, $b_0 = b$, the original interval.
 $[a_{x,bx}]$ has the interval obtained after k splithings.
Then $b_{x} = \frac{b_0 - a_0}{2^{t}} = \frac{b_0}{2^{t}}$ with $L = b_0 - a_0$.
Let $x_k = \frac{a_k + b_k}{2}$ has an a splith of $f(x) \ge 0$ on step k .
[3]

When do we stop the splittings? How many steps of
bisiction do we take?
If we want to guarantic that
$$|x_2 - x^*| \le 6$$
,
 $|x_1 - x_2 - x^*| \le 6$,
 $|x_2 - x^*| \le \frac{x_1 - x_2}{2} = \frac{1}{2} \frac{x_2 - x^*}{2^2} = \frac{1}{2^{2+1}} = 0.$
then we need to choose k such that
 $|x_2 - x^*| \le \frac{b_2 - a_2}{2} = \frac{1}{2} \frac{b_2 - a_2}{2^2} = \frac{1}{2^{2+1}} = 26$
 $\Rightarrow 2^{k+1} > \frac{1}{6} = 32 k > 1 + \log_2 \frac{1}{6} = .$
If $e_2 = error on life step
 $= |x_2 - x^*| = \frac{absolve}{2} error in x_2.$
then $e_{2x_1} \le \frac{1}{2} e_2.$
 \Rightarrow The error goes down by a factor of 2.
This is not very fist.
Bisection only vied the sign of the factor f at a and
Can we derive a better (faster) method by using the
actual values flat and flot?
Next time: Secant method & Newbord Method.$

6.