MATH 234 - Homework 7 Prof. O'Neil Due in recitation, April 11th, 2014

Each question is worth 10 points.

1. The Pareto distribution occurs frequently in economics. Its probability density function depends on two parameters, c > 0 and $\theta > 1$, and is given by the formula:

$$f(x; c, \theta) = \theta c^{\theta} x^{-\theta-1}$$
 for $x \ge c$.

Let $x_1, x_2, \ldots x_n$ be independent observations from this distribution. Assume that c is known.

- (a) Find the maximum likelihood estimate $\hat{\theta}$ of θ .
- (b) What is the asymptotic variance (as $n \to \infty$) of $\hat{\theta}$?
- (c) Find a sufficient statistic for θ . Show that the statistic that you find is, in fact, sufficient.
- 2. Let x_1, \ldots, x_n be independent observations from a geometric distribution X, which has the discrete probability density function

$$P(X = k; p) = p (1 - p)^{k-1}.$$

This distribution can be used to model the number of trials necessary to obtain a success.

- (a) Find the maximum likelihood estimator \hat{p} of the probability of a success in one trial, p.
- (b) What is the asymptotic variance of \hat{p} ?
- (c) Is $T(x_1, ..., x_n) = \bar{x}$ a sufficient statistic? Show why or why not.
- 3. This question will address one way of comparing two samples. Assume that n₁ people are given treatment 1, and n₂ people are given treatment 2. Let X₁ be the number of people on treatment 1 who respond favorably to the treatment, and let X₂ be the number of people on treatment 2 who respond favorably. Assume that X₁ ~ Binomial(n₁, p₁) and X₂ ~ Binomial(n₂, p₂). Let τ = p₁-p₂.
 - (a) Find the MLE $\hat{\tau}$ for τ .
 - (b) Find the Fisher information matrix $I(p_1, p_2)$.
 - (c) What is the asymptotic distribution of $\hat{\tau}$?
- 4. Let $x_1, \ldots, x_n \ge 0$ be I.I.D. samples from the random variable X with probability density:

$$f(x;\theta) = \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}}.$$

Find a sufficient statistic for the parameter θ .