1 Pre-recorded Lecture

1.1 Conditional Expectation

For Continuous Random Variable:

\[E[X|Y = y] = \int x f_{x|y}(x|y) \, dx = \int x \frac{f(x,y)}{f_Y(y)} \, dx \]

For Discrete Random Variable:

\[E[X|Y = y] = \sum_i x_i p_{X|Y}(x_i|y) = \sum_i x_i P[X = x_i|Y = y] \]

For the Conditional Expectation of a function of a random variable:

\[E[g(x)|Y = y] = \int g(x) f_{x|y}(x|y) \, dx \]

Denote by \(E[X|Y] = g(Y) \) which is a function of the random variable \(Y \), and itself is a random variable here.

Whereas: \(E[X|Y = y] \) is not a random variable

\[E[E[X|Y]] = \int E[X|Y = y] f_Y(y) \, dy \]

\[= \int \int x f_{X|Y}(x|y) \, dx f_Y(y) \, dy \]

1
\[\int \int f(x, y) \, dx \, dy = E[X] \]

This calculation shows that \(E[E[X|Y]] = E[X] \) (Note: \(E[E[X|Y]] \) is a iterated expectation)

1.2 Conditional Variance

\[Var(X|Y) = E[(X - E[X|Y])^2|Y] = E[X^2|Y] - (E[X|Y])^2 \]

Since \(Var(X|Y) \) is a random variable of function \(Y \), we can do this:

\[E[Var(X|Y)] = E[E[X^2|Y] - (E[X|Y])^2] \]

\[= E[X^2] - E[E[X|Y]^2] \quad (\ast) \]

Also we know that \(E[E[X|Y]] = E[X] \), so:

\[Var(E[X|Y]) = E[(E[X|Y])^2] - (E[E[X|Y]])^2 \]

Here \((E[E[X|Y]])^2 = E[X] \)

Hence, \(Var(E[X|Y]) = E[(E[X|Y])^2] - (E[X])^2 \) \((\ast\ast) \)

\[(*) + (\ast\ast) = E[Var(X|Y)] + Var(E[X|Y]) \]

\[= E[X^2] - (E[X])^2 = Var(X) \]

We have the following result:

Conditional Variance Formula:

\[Var(X) = Var(E[X|Y]) + E[Var(X|Y)] \]

Example: Let \(x_1, x_2, ..., x_n \) be independent random variables, and \(N > 0 \) is an intervalued random variable. What is the \(Var(\sum_{i=1}^{N} X_i) \)? (Hint: The sum depends on several random variables including all the x’s and the N, so we have to conditioned on N first to see with fixed values of N what’s the variance of the sum)
1.3 Conditional Expectation and Prediction

Consider two random variables X, Y. We observe X and predict what value Y will take. Let $g(x)$ be our predictor (i.e. Observe $X=x$, predict $y=g(x)$)

Once choice for a "good" predictor is to minimize the square error:

$$\min_{g} E[(Y - g(x))^2] = \min_{g} \int \int (y - g(x))^2 f(x, y) \, dx \, dy$$

Proposition: $E[(Y - g(x))^2] \geq E[(Y - E[Y|X])^2]$

Example: the best linear predictor of Y

i.e. Find the best a, b to minimize $E[(Y - (a + bx))^2]$

sol: Because $a = \mu_Y - \frac{\rho \sigma_Y \mu_X}{\sigma_X}$, $b = \frac{\rho \sigma_Y}{\sigma_X}$

$$g(x) = \mu_Y + \frac{\rho \sigma_Y}{\sigma_X} (x - \mu_x)$$

And using these values of a, b, we can compute the mean square error:

$$E[(Y - (a + bx))^2] = \sigma_Y^2 (1 - \rho^2)$$

This means that if $\rho = \pm 1$ then the mean square error is zero

2 In-class Lecture

2.1 Conditional Expectation

$$E[X|Y = y] = \int x \cdot f_{X|Y}(x, y) \, dx$$

Note: The above equation depends on y.

$$E[E[X|Y]] = \int E[X|Y = y] \cdot f_Y(y) \, dy$$

Note: $E[X|Y]$ is a random variable

$$= \int \int x \cdot f_{X|Y}(x, y) \, dx f_Y(y) \, dy$$
\[
\int \int x \cdot f_Y(y) \frac{f(x, y)}{f_Y(y)} \, dx \, dy = \int \int x \cdot f(x, y) \, dx \, dy = E[X]
\]

Example: Let \(N \) be the number of customers entering a certain store and \(X_i \) be the amount of money that the customer \(i \) spends. The two random variables are independent to each other. (\(X_i \) is an independent and identically distributed random variable.) What is the expected value of the following expression?

\[
T = \sum_{i=1}^{N} X_i
\]

Solution:

\[
E[T] = E[\sum_{i=1}^{N} X_i] = E[E[T/N]] = E[E[\sum_{i=1}^{N} X_i/N]]
\]

From the property we concluded above:

\[
E[\sum_{i=1}^{N} X_i/N = n] = E[\sum_{i=1}^{n} X_i] = n \cdot E[X_i]
\]

Therefore, we conclude that

\[
E[T] = E[N \cdot E[X_i]] = E[N] \cdot E[X_i]
\]

2.2 Conditional Variance

\(Var(X|Y) \) is similar to \(Var(X) \) but all the expectations are conditional on the fact that \(Y \) is given.

\[
Var(X|Y) = E[(X - E[X|Y])^2|Y]
\]

\[
Var(X|Y) = E[X^2|Y] - (E[X|Y])^2
\]

So

\[
E[Var(X|Y)] = E[E[X^2|Y]] - E[(E[X|Y])^2]
\]
\[E[X^2] - E[(E[X|Y])^2] \]

Since \[E[E[X|Y]] = E[X] \]

We have \[Var(E[X|Y]) = E[(E[X|Y])^2] - (E[X])^2 \]

Thus, the conditional variance formula is

\[Var(X) = E[Var(X|Y)] + Var(E[X|Y]) \]

Example: Following the previous example, we want to calculate the conditional variance.

\[Var(T) = Var\left(\sum_{i=1}^{N} X_i\right) \]

\[= E[Var\left(\sum_{i=1}^{N} X_i|N\right)] + Var\left(E[\sum_{i=1}^{N} X_i|N\right]) \]

\[= E[N \cdot Var(X_i) + Var[N \cdot E[X_i]] \]

\[= Var[X_i] \cdot E[N] + (E[X_i]^2) \cdot Var[N] \]

3 Additional Examples

1. **Theoretical Exercise 7.26**

 Show that if \(X \) and \(Y \) are independent, then

 \[E[X|Y = y] = E[X] \text{ for all } y \]

 a. In the discrete case:

 From the definition of conditional expectation we have

 \[E[X|Y = y] = \sum_{i} x_i P[X = x_i|Y = y] = \sum_{i} x_i \frac{P[X = x_i, Y = y]}{P[Y = y]} \]
Since X and Y are independent,

$$\frac{P[X = x_i, Y = y]}{P[Y = y]} = \frac{P[X = x_i]P[Y = y]}{P[Y = y]} = P[X = x_i]$$

So,

$$E[X|Y = y] = \sum_i x_i P[X = x_i|Y = y]$$

$$= \sum_i x_i P[X = x_i]$$

$$= E[X] \text{ for all } y$$

b. In the continuous case:

Similarly from the definition of conditional expectation,

$$E[X|Y = y] = \int x \frac{f(x,y)}{f_Y(y)} \, dx$$

Since X and Y are independent,

$$\frac{f(x,y)}{f_Y(y)} = \frac{f_X(x)f_Y(y)}{f_Y(y)} = f_X(x)$$

Therefore

$$E[X|Y = y] = \int x \frac{f(x,y)}{f_Y(y)} \, dx$$

$$= \int x f_X(x) \, dx$$

$$= E[X] \text{ for all } y$$

2. Theoretical Exercise 7.30

Let $X_1, ..., X_n$ be independent and identically distributed random variables. Find

$$E[X_1|X_1 + \ldots + X_n = x]$$

We know that

$$E[X_1 + \ldots + X_n|X_1 + \ldots + X_n = x] = x$$
And, by properties of conditional expectation,

$$E[X_1 + ... + X_n|X_1 + ... + X_n = x] = E\left[\sum_{i=1}^{n} X_i|X_1 + ... + X_n = x\right]$$

$$= \sum_{i=1}^{n} E[X_i|X_1 + ... + X_n = x]$$

$$x = n \ E[X_1|X_1 + ... + X_n = x]$$

Rearranging the above equation,

$$E[X_1|X_1 + ... + X_n = x] = \frac{x}{n}$$