Two events $E, F \subset S$, then the conditional probability of E given F is

$$P(E|F) = \frac{P(EF)}{P(F)}$$

Fix the event F, and consider the function $Q(E) = P(E|F)$.

It turns out that $Q(E) = P(E|F)$ satisfies the three axioms of probability:

1. $0 \leq Q(E) \leq 1$

 Proof:

 $$0 \leq P(E|F) \leq 1$$

 $$0 \leq \frac{P(EF)}{P(F)} \leq 1$$

 $$\Rightarrow 0 \leq P(EF) \leq P(F)$$

 satisfied because $EF \subset F$

2. $P(S|F) = 1 = Q(S)$

 $$P(S|F) = \frac{P(SF)}{P(F)} = \frac{P(F)}{P(F)} = 1$$

3. Let E_i be mutually exclusive events:

 $$Q\left(\bigcup_i E_i\right) = \sum_i Q(E_i)$$

 $$P\left(\bigcup_i E_i|F\right) = \frac{P\left(\bigcup_i E_i \cap F\right)}{P(F)} = \frac{P\left(\bigcup_i E_i \cap F\right)}{P(F)} = \sum_i \frac{P(E_i|F)}{P(F)} = Q\left(\bigcup_i E_i\right)$$

The events $E_i \cap F$ are mutually exclusive.
Define a new probability function:

\[Q(E) = P(E|F) \]

Consider conditional probabilities under \(Q \):

\[
Q(E_1 | E_2) = \frac{Q(E_1 E_2)}{Q(E_2)} = \frac{P(E_1 E_2 | F)}{P(E_2 | F)} = \frac{P(E_1 E_2 | F)}{P(F)} \cdot \frac{P(F)}{P(E_2 | F)} = \frac{P(E_1 E_2 F)}{P(E_2 F)}
\]

Conditional Independence

Definition: \(E_1 \) and \(E_2 \) are conditionally independent with respect to \(F \) if:

\[P(E_1 | E_2 F) = P(E_1 | F) \]

Independence means: \(P(A | B) = P(A) \).

An equivalent definition of conditional independence is:

\[P(E_1 E_2 | F) = P(E_1 | F) P(E_2 | F) \]

\((\text{compare with } P(AB) = P(A) P(B) \text{ if } A, B \text{ are independent})\).

\[P \text{ of equivalence:} \]

\[
P(E_1 | E_2 F) = \frac{P(E_1 E_2 F)}{P(E_2 F)} = \frac{P(E_1 E_2 | F) P(F)}{P(E_2 F)}
\]
Since $P(E, E_2 | F) = P(E, 1 | F)$, we have that

$$P(E, 1 | F) = \frac{P(E, E_2 | F) P(F)}{P(E_2 | F)}$$

$$P(E, E_2 | F) = P(E, 1 | F) \frac{P(E_2 | F)}{P(F)} = P(E_2 | 1 F)$$

$$P(E, E_2 | F) = P(E, 1 | F) P(E_2 | 1 F)$$