$\left| \right\rangle$

A PDE discretization loules lite:
$\Delta u(\vec{x}) = u_{xx} + u_{yy}$
$= u(x+h,y) - 2u(x,y) + u(x-h,y)$ $+ u(x,y+h) - 2u(x,y) + u(x,y-h)$ $+ u(x,y+h) - 2u(x,y) + u(x,y-h)$ h^{-} $The unknowns in my linear system ar He unlis d u. The vight hand side is mostly zeros.$
$ \frac{1}{h^{2}} \begin{pmatrix} -4 & 1 & 1 \\ 1 & -4 & 1 & 1 \\ 1 & -4 & 1 & 1 \\ 1 & -4 & 1 & 1 \\ 1 & 1 & -4 & 1 \\ 1 & 1 & -4 & 1 \\ 1 & 1 & 1 & -4 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$
The matrix A is sparse. Only $O(1) \approx 5$ entries per column are non-zero.
A can be applied very fist => Good for iteration solurs. O(n) Also, there exists a first algorithm (nested dissection) for reording the columns and directly computing A ⁻¹ . O(nlogn)

Integral Equation discretization

A Green's Function for the differential operator
$$\mathcal{L}$$
 is
the function G such that
 $\mathcal{L}G = \mathcal{S}$ A dirac detta function \mathcal{S}
Example: $\Delta G = \mathcal{S}$ is such that
 $G = \Delta^{-1}\mathcal{S}$ $f(x) = \int_{\mathbb{R}^{2}} f(y) \mathcal{S}(xy) dy$

$$T_{n} 2D \quad for \quad Laplace:$$

$$\Delta_{g} \frac{L}{2\pi} \log ||\vec{x} - \vec{y}|| = \delta(\vec{x} - \vec{y})$$

$$T_{n} 3D: \quad \Delta_{g} \frac{L}{4\pi ||\vec{x} - \vec{y}||} = \delta(\vec{x} - \vec{y})$$

One consequence of a Green's Fraction:
Free space Poission problem:
$$\Delta \mathcal{H} = g$$

The solution can immediately written down by
convolving both sids with the Green's Fraction.
 $\int G(\vec{x}-\vec{y}) \Delta \vec{u}(\vec{y}) d\vec{y} = \int G(\vec{x}-\vec{g}) g(y) d\vec{y}$
By integration $\vec{u}(\vec{x}) = \int G(\vec{x}-\vec{g}) g(\vec{y}) d\vec{y}$.

Graves Functions give us ways to represent solutions to PDES:
Graves Third Induitity: If
$$\Delta n = 0$$
 in Ω , then
 $N(x) = \int \frac{\partial G}{\partial \eta_y} (x-y) N(y) dy - \int G(x-y) \frac{\partial u}{\partial y} dy \frac{dy}{dy} \frac{dy}{d$

In genal, this fict might lead is to represent solutions to PDEs in terms of integrals of the Grens Function... Poission BVP: mhnown Represent (*) $n = \int G(x-y) g(y) dy + \int \frac{dG}{dG}(x-y) \sigma(y) dy$ automaticilly satisfies Double layer potential Do the PDE, but not the bondory unditin To derive an integral equation, insert (x) into the bonday condition. $= \frac{1}{2} \sigma(x) + \int \frac{\partial G}{\partial n_y} (x_y) \sigma(y) \, dy = f - \int G(x_y) g(y) \, dy.$ When discritized, me get $\left(\frac{1}{2}I + I\zeta\right)\sigma = RHS$ Apply: Q(n2). this matrix is druge. Invert: O(n3). which n is the number of Advantages of IES: - Mathematically better: () well-conditioned points on the bundary. (small condition number) problems (2) Excellent for exterior Disudvantages () Linieur systems ar dura D Requires singular integrals.