Ch22 Linear Complexity "Sweeping" Scheme

Guanchun Li, Courant Institute, 12/02/2020

WARNING!

The algorithm is....

- Neither the most efficient one
- Nor the most general one that exists!
- But simple both to describe and to implement when using uniform gird!

Ch22.1 A basic sweeping scheme (uniform rectangular grids)

Partition of nodes

 $I = I_1 \cup I_2 \cup \cdots \cup I_{n_1},$

The grid: n_1 columns, n_2 rows

Each I_k holds the points in the kth column of the grid

Linear system

Notice that

- Points in I_k only interact with I_{k-1} and I_{k+1} !
- Each $A_{k,j}$ is also banded!

Linear system

$$A_{1,1}u_1 + A_{1,2}u_2 = f_1,$$

 $A_{2,1}u_1 + A_{2,2}u_2 + A_{2,3}u_3 = f_2.$

$$(\mathbf{A}_{2,2} - \mathbf{A}_{2,1}\mathbf{A}_{1,1}^{-1}\mathbf{A}_{1,2})\mathbf{u}_2 + \mathbf{A}_{2,3}\mathbf{u}_3 = \mathbf{f}_2 - \mathbf{A}_{2,1}\mathbf{A}_{1,1}^{-1}\mathbf{f}_1.$$

$$\begin{array}{l} \mbox{Schur complement (iii)} \\ & \mbox{$\mathbf{S}_2 \mathbf{u}_2 + \mathbf{A}_{2,3} \mathbf{u}_3 = \tilde{\mathbf{f}}_2$.} \\ & \mbox{$\mathbf{A}_{3,2} \mathbf{u}_2 + \mathbf{A}_{3,3} \mathbf{u}_3 + \mathbf{A}_{3,4} \mathbf{u}_4 = \mathbf{f}_3$.} \end{array} \\ \hline & \mbox{$\mathbf{A}_{3,2} \mathbf{u}_2 + \mathbf{A}_{3,3} \mathbf{u}_3 + \mathbf{A}_{3,4} \mathbf{u}_4 = \mathbf{f}_3$.} \end{array}$$

Schur complement (iv)

$$\mathbf{S}_{n_1}\mathbf{u}_{n_1} = \widetilde{\mathbf{f}}_{n_1},$$

$$\square$$
 u_n

$$\mathbf{u}_{n_1} = \mathbf{S}_{n_1}^{-1} \tilde{\mathbf{f}}_{n_1}.$$

Start of 'leftward' sweeping

Schur complement (v)

Sequentially, we have

Schur complement (vi)

The iteration of Schur Complements (Actually we care about its inverse!)

Define
$$\mathbf{X}_k = \mathbf{S}_k^{-1}$$

 $\mathbf{X}_k = \begin{cases} \mathbf{A}_{1,1}^{-1}, & \text{when } k = 1, \\ (\mathbf{A}_{k,k} - \mathbf{A}_{k,k-1} \mathbf{X}_{k-1} \mathbf{A}_{k-1,k})^{-1}, & \text{when } k > 1. \end{cases}$

INVERTING AND SOLVING A BLOCK-TRIDIAGONAL LINEAR SYSTEM

Algorithm

Complexity: $O(n_1n_2) = O(N)$ Linear! Build all solution operators in a rightward sweep: $X_1 = A(I_1, I_1)^{-1}$ for i = 2 : m $X_i = (A(I_i, I_i) - A_{i,i-1}X_{i-1}A_{i-1,i})^{-1}$ end for

Given a load \mathbf{f} , compute equivalent loads in a rightward sweep: $\tilde{\mathbf{f}}(I_1) = \mathbf{f}(I_1)$ for i = 2 : m $\tilde{\mathbf{f}}_i = \mathbf{f}(I_i) - \mathbf{A}(I_i, I_{i-1}) \mathbf{X}_{i-1} \tilde{\mathbf{f}}(I_{i-1})$ end for

Given the equivalent loads, compute solutions in a leftward sweep: $u(I_m) = X_m \tilde{f}(I_m)$ for i = (m - 1) : (-1) : 1 $u(I_i) = X_i (\tilde{f}(I_i) - A_{i,i+1}u(I_{i+1}))$ end for

Important Message

The algorithm right now...

- Nothing more than traditional Gaussian elimination with column-by-column ordering
- Can be accelerated since these Schur complements are highly compressible!

Remarks

• An alternative solver is based on LU factorization

$$\mathbf{A} = \mathbf{L}\mathbf{U} = \begin{bmatrix} \mathbf{L}_{1,1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots \\ \mathbf{L}_{2,1} & \mathbf{L}_{2,2} & \mathbf{0} & \mathbf{0} & \cdots \\ \mathbf{0} & \mathbf{L}_{3,2} & \mathbf{L}_{3,3} & \mathbf{0} & \cdots \\ \mathbf{0} & \mathbf{0} & \mathbf{L}_{4,3} & \mathbf{L}_{4,4} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \mathbf{U}_{1,1} & \mathbf{U}_{1,2} & \mathbf{0} & \mathbf{0} & \cdots \\ \mathbf{0} & \mathbf{U}_{2,2} & \mathbf{U}_{2,3} & \mathbf{0} & \cdots \\ \mathbf{0} & \mathbf{0} & \mathbf{U}_{3,3} & \mathbf{U}_{3,4} & \cdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{U}_{4,4} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Remarks

It leads to the recursive formula:

$$\begin{aligned} [\mathsf{L}_{1,1}, \, \mathsf{U}_{1,1}] &= \mathsf{lu}(\mathsf{A}_{1,1}).\\ \mathsf{L}_{i,i-1} &= \mathsf{A}_{i,i-1}\mathsf{U}_{i-1,i-1}^{-1},\\ \mathsf{U}_{i-1,i} &= \mathsf{L}_{i-1,i-1}^{-1}\mathsf{A}_{i-1,i},\\ [\mathsf{L}_{i,i}, \, \mathsf{U}_{i,i}] &= \mathsf{lu}(\mathsf{A}_{i,i} - \mathsf{L}_{i,i-1}\mathsf{U}_{i-1,i}). \end{aligned}$$

PS: We can always use a Cholesky factorization when A is SPD!

LU FACTORIZATION AND SOLVE OF A BLOCK-TRIDIAGONAL SYSTEM

Build the LU factorization through a rightward sweep: $\begin{bmatrix} \mathbf{L}_{1,1}, \mathbf{U}_{1,1} \end{bmatrix} = \mathbf{lu}(\mathbf{A}_{1,1})$ for i = 2 : m $\mathbf{S}_i = \mathbf{A}_{i,i} - \mathbf{A}_{i,i-1}\mathbf{U}_{i-1,i-1}^{-1}\mathbf{L}_{i-1,i-1}^{-1}\mathbf{A}_{i-1,i}$ $\begin{bmatrix} \mathbf{L}_{i,i}, \mathbf{U}_{i,i} \end{bmatrix} = \mathbf{lu}(\mathbf{S}_i)$ end for

Algorithm (LU)

Given a load \mathbf{f} , solve $\mathbf{L}\mathbf{y} = \mathbf{f}$ in a rightward sweep: $\mathbf{y}(I_1) = \mathbf{L}_{1,1}^{-1} \mathbf{f}(I_1)$ for i = 2 : m $\mathbf{y}(I_i) = \mathbf{L}_{i,i}^{-1} \left(\mathbf{f}(I_i) - \mathbf{A}_{i,i-1} \mathbf{U}_{i-1,i-1}^{-1} \mathbf{u}(I_{i-1}) \right)$ end for Given y, solve Uu = y in a leftward sweep: $\mathbf{u}(I_m) = \mathbf{U}_{m,m}^{-1} \, \mathbf{y}(I_m)$ for i = (m - 1) : (-1) : 1 $\mathbf{u}(I_i) = \mathbf{U}_{i,i}^{-1} \left(\mathbf{y}(I_i) - \mathbf{L}_{i,i}^{-1} \mathbf{A}_{i,i+1} \mathbf{u}(I_{i+1}) \right)$ end for

Ch22.2 Buffered sweeping schemes

Partition of nodes (Buffered)

The grid: n_1 columns, n_2 rows

Buffers: I_2 , I_4 , I_6 , Each holds bcolumns of the grid

 $I = I_1 \cup I_2 \cup I_3 \cup I_4 \cup I_5 \cup \cdots \cup I_{2m+1}.$

 $n_1 = 1 + m(b+1)$

Linear system

Linear system

Γ	$\mathbf{A}_{1,1}$	$\mathbf{A}_{1,2}$	0	0	0	0	•••]	$\begin{bmatrix} \mathbf{u}_1 \end{bmatrix}$	I [f_1	
	$oldsymbol{A}_{2,1}$	$\mathbf{A}_{2,2}$	$\mathbf{A}_{2,3}$	0	0	0		u_2		\mathbf{f}_2	IJ
	0	$A_{3,2}$	$A_{3,3}$	$A_{3,4}$	0	0		u_3		f_3	
	0	0	${f A}_{4,3}$	$A_{4,4}$	${\sf A}_{4,5}$	0		u_4	_	\mathbf{f}_4	
	0	0	0	$\mathbf{A}_{5,4}$	$A_{5,5}$	$A_{5,6}$		u_5		\mathbf{f}_5	
	0	0	0	0	$A_{6,5}$	$\mathbf{A}_{6,6}$		u_6		\mathbf{f}_6	
	:	:	:	:	:	:		:		:	

Schur complement (i)

$$\begin{aligned} \mathbf{A}_{2,1}\mathbf{u}_1 + \mathbf{A}_{2,2}\mathbf{u}_2 + \mathbf{A}_{2,3}\mathbf{u}_3 &= \mathbf{f}_2. \\ \mathbf{u}_2 &= \mathbf{A}_{2,2}^{-1} \big(\mathbf{f}_2 - \mathbf{A}_{2,1}\mathbf{u}_1 - \mathbf{A}_{2,3}\mathbf{u}_3 \big). \end{aligned}$$

Schur complement (ii)

$$= \begin{bmatrix} \mathbf{f}_1 - \mathbf{A}_{1,2}\mathbf{A}_{2,2}^{-1}\mathbf{f}_2 \\ \mathbf{f}_3 - \mathbf{A}_{3,2}\mathbf{A}_{2,2}^{-1}\mathbf{f}_2 \\ \mathbf{f}_4 \\ \mathbf{f}_5 \\ \mathbf{f}_6 \\ \vdots \end{bmatrix}$$

•

Schur complement (ii)

in an analogous manner!

New Linear system (i)

$$\begin{bmatrix} \tilde{A}_{1,1} & \tilde{A}_{1,3} & 0 & 0 & \cdots \\ \tilde{A}_{3,3} & \tilde{A}_{3,3} & \tilde{A}_{3,5} & 0 & \cdots \\ 0 & \tilde{A}_{5,3} & \tilde{A}_{5,5} & \tilde{A}_{5,7} & \cdots \\ 0 & 0 & \tilde{A}_{7,5} & \tilde{A}_{7,7} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} u_1 \\ u_3 \\ u_5 \\ u_7 \\ \vdots \end{bmatrix} = \begin{bmatrix} \tilde{f}_1 \\ \tilde{f}_3 \\ \tilde{f}_5 \\ \tilde{f}_7 \\ \vdots \end{bmatrix},$$

New Linear system (ii)

Diagonal :

$$\tilde{\mathbf{A}}_{2k+1,2k+1} = \mathbf{A}_{2k+1,2k+1} - \mathbf{A}_{2k+1,2k} \mathbf{A}_{2k,2k}^{-1} \mathbf{A}_{2k,2k+1} \\ - \mathbf{A}_{2k+1,2k+2} \mathbf{A}_{2k+2,2k+2}^{-1} \mathbf{A}_{2k+2,2k+1},$$

Off-Diagonal :

$$\tilde{A}_{2k-1,2k+1} = -A_{2k-1,2k}A_{2k,2k}^{-1}A_{2k,2k+1},$$
 $\tilde{A}_{2k+1,2k-1} = -A_{2k+1,2k}A_{2k,2k}^{-1}A_{2k,2k-1}.$

And

$$\tilde{\mathbf{A}}_{1,1} = \mathbf{A}_{1,1} - \mathbf{A}_{1,2}\mathbf{A}_{2,2}^{-1}\mathbf{A}_{2,1},$$
$$\tilde{\mathbf{A}}_{2m+1,2m+1} = \mathbf{A}_{2m+1,2m+1} - \mathbf{A}_{2m+1,2m}\mathbf{A}_{2m,2m}^{-1}\mathbf{A}_{2m,2m+1}.$$

```
New Linear system (iii)
```

Given the new reduced system

$$\tilde{A}\tilde{u} = \tilde{f}$$

We use the algorithm in Chapter 22.1 to solve it!

Now it's much smaller and more practicable!

A BUFFERED SWEEPING SCHEME

Initialize the block-tridiagonal matrix \tilde{A} by copying over the diagonal blocks from A: for k = 1 : (m + 1) $\tilde{A}_{2k-1,2k-1} = A_{2k-1,2k-1}$ end for

Algorithm (i)

Eliminate all buffer nodes (the loop can be executed in any order):
for
$$k = 1 : m$$

 $\tilde{A}_{2k-1,2k-1} = \tilde{A}_{2k-1,2k-1} - A_{2k-1,2k}A_{2k,2k}^{-1}A_{2k,2k-1}$
 $\tilde{A}_{2k+1,2k+1} = \tilde{A}_{2k+1,2k+1} - A_{2k+1,2k}A_{2k,2k}^{-1}A_{2k,2k}A_{2k,2k+1}$
 $\tilde{A}_{2k-1,2k+1} = A_{2k-1,2k}A_{2k,2k}^{-1}A_{2k,2k}A_{2k,2k+1}$
 $\tilde{A}_{2k+1,2k-1} = A_{2k+1,2k}A_{2k,2k}^{-1}A_{2k,2k-1}$
end for

Factorize the block-tridiagonal system in a rightward sweep: $\mathbf{X}_1 = \tilde{\mathbf{A}}_{1,1}^{-1}$. for k = 1 : m $\mathbf{X}_{2k+1} = (\tilde{\mathbf{A}}_{2k+1,2k+1} - \tilde{\mathbf{A}}_{2k+1,2k-1} \mathbf{X}_{2k-1} \tilde{\mathbf{A}}_{2k-1,2k+1}^{-1})^{-1}$ end for

Given a load
$$\mathbf{f}$$
, compute equivalent loads for the block-tridiagonal system:
for $k = 1 : (m + 1)$
 $\tilde{\mathbf{f}}_{2k-1} = \mathbf{f}(I_{2k-1})$
end for
for $k = 1 : m$
 $\tilde{\mathbf{f}}_{2k-1} = \tilde{\mathbf{f}}_{2k-1} - \mathbf{A}_{2k-1,2k} \mathbf{A}_{2k,2k}^{-1} \mathbf{f}(I_{2k})$
 $\tilde{\mathbf{f}}_{2k+1} = \tilde{\mathbf{f}}_{2k+1} - \mathbf{A}_{2k+1,2k} \mathbf{A}_{2k,2k}^{-1} \mathbf{f}(I_{2k})$
end for

Algorithm (ii)

Given the equivalent loads, compute solutions on the interfaces in a rightward sweep: $\mathbf{u}(I_{2m+1}) = \mathbf{X}_{2m+1} \,\tilde{\mathbf{f}}_{2m+1}$ for k = m : (-1) : 1 $\mathbf{u}(I_{2k-1}) = \mathbf{X}_{2k-1} (\tilde{\mathbf{f}}_{2k-1} - \tilde{\mathbf{A}}_{2k-1,2k+1} \mathbf{u}(I_{2k+1}))$ end for Solve for the solutions on all buffer nodes (the loop can be executed in any order):

Solve for the solutions on all buffer nodes (the loop can be executed in any order): for k = 1 : m $\mathbf{u}(I_{2k}) = \mathbf{A}_{2k,2k}^{-1} (\mathbf{f}(I_{2k}) - \mathbf{A}_{2k,2k-1}\mathbf{u}(I_{2k-1}) - \mathbf{A}_{2k,2k+1}\mathbf{u}(I_{2k+1}))$ end for

Implementation considerations

- Each matrix $A_{2k,2k}$ for two-dimensional problems will be banded. $A_{2k,2k}^{-1}$ can be applied very rapidly.
- Parallel implementation: Computing the blocktridiagonal matrix \widetilde{A} is trivially parallelizable since each buffer region can be eliminated independently.

Thank you!

Q&A time