Integral Equations: Continuous Theory

Freddy Law

October 14, 2020
10.1 Reducing the dimension of the computational domain

- Our model problem will be the Laplace equation with Dirichlet data:

\[
\begin{align*}
-\Delta u &= 0, \quad \text{in } \Omega \\
u &= f, \quad \text{on } \Gamma := \partial \Omega
\end{align*}
\]

where \(\Omega \subset \mathbb{R}^2 \) is simply connected, open, with smooth boundary \(\Gamma \).
10.1 Reducing the dimension of the computational domain

- Our model problem will be the Laplace equation with Dirichlet data:

\[
\begin{aligned}
-\Delta u &= 0, \quad \text{in } \Omega \\
u &= f, \quad \text{on } \Gamma := \partial \Omega
\end{aligned}
\]

where \(\Omega \subset \mathbb{R}^2 \) is simply connected, open, with smooth boundary \(\Gamma \).

- We want a solution \(u \) of the form

\[
u(x) = \int_{\Gamma} \phi(x - y) \sigma(y) \, ds(y), \quad x \in \Omega
\]

where \(\phi(x) = -\frac{1}{2\pi} \log(|x|) \) is the free space Green’s function for \(-\Delta\) in 2D.

- This expression for \(u \) looks like a superposition of \(\phi \) weighted by \(\sigma \). So we formally expect \(-\Delta u = 0\) since \(\phi \) is harmonic away from 0.
To match the boundary condition, we solve the *Boundary Integral Equation* (BIE) formulation of our original problem:

\[
\int_{\Gamma} \phi(x - y) \sigma(y) \, ds(y) = f(x), \quad x \in \Gamma
\]

(1)

From a numerics standpoint, this formulation requires *fewer degrees of freedom* since discretizing \(\Gamma \) is much easier than discretizing \(\Omega \).

1 more details in chapters 6, 7 of *Linear Integral Equations* by R. Kress
10.1 Reducing the dimension of the computational domain

To match the boundary condition, we solve the *Boundary Integral Equation* (BIE) formulation of our original problem:

\[
\int_{\Gamma} \phi(x - y) \sigma(y) \, ds(y) = f(x), \quad x \in \Gamma
\]

(1)

From a numerics standpoint, this formulation requires *fewer degrees of freedom* since discretizing \(\Gamma \) is much easier than discretizing \(\Omega \).

Our *single-layer operator* \(S \) is:

\[
[S\sigma](x) = \int_{\Gamma} \phi(x - y) \sigma(x) \, ds(y) = \int_{\Gamma} -\frac{1}{2\pi} \log(|x - y|) \sigma(y) \, ds(y)
\]

Existence and uniqueness of solutions \(\sigma \) to (1) require some technical assumptions (primarily \(f \in C^{1,\alpha}(\Gamma) \) + geometric condition on \(\Omega \))^1, but formal manipulations typically hold.

^1 more details in chapters 6, 7 of *Linear Integral Equations* by R. Kress
10.2 Obtaining a well-conditioned mathematical equation

- The BIE (1) leads to linear systems with condition number $O(h^{-1})$ using a grid size h. This beats $O(h^{-2})$ from FD or FEM discretizations.
- The approach in this section will give a BIE leading to condition number converging to a finite number as $h \to 0$.
The BIE (1) leads to linear systems with condition number $O(h^{-1})$ using a grid size h. This beats $O(h^{-2})$ from FD or FEM discretizations.

The approach in this section will give a BIE leading to condition number converging to a finite number as $h \to 0$.

For $y \in \Gamma$, define

$$d(x, y) = n(y) \cdot \nabla_y \phi(x - y) = \frac{n(y) \cdot (x - y)}{2\pi |x - y|^2}$$

for $x \in \Omega$. This is just the normal derivative of ϕ at y.

Now seek solutions of the form

$$u(x) = \int_{\Gamma} d(x, y) \sigma(y) \, ds(y)$$
10.2 Obtaining a well-conditioned mathematical equation

- Just like before, we expect \(u \) to satisfy \(-\Delta u = 0\) in \(\Omega \), so we just need to worry about matching the boundary condition.

- The singularity from \(d(x, y) \) is stronger than from \(\phi(x - y) \). Turns out \([S\sigma](x)\) is continuous as you approach \(\Gamma \), but when using \(d(x, y) \) we pick up an extra term.

\[
\frac{1}{2} \sigma(x) + \int_\Gamma d(x, y) \sigma(y) \, ds(y) = f(x), \quad x \in \Gamma
\]
Just like before, we expect u to satisfy $-\Delta u = 0$ in Ω, so we just need to worry about matching the boundary condition.

The singularity from $d(x, y)$ is stronger than from $\phi(x - y)$. Turns out $[S\sigma](x)$ is continuous as you approach Γ, but when using $d(x, y)$ we pick up an extra term.

Our BIE formulation now becomes

$$-\frac{1}{2}\sigma(x) + \int_\Gamma d(x, y)\sigma(y) \, ds(y) = f(x), \quad x \in \Gamma$$

Our double-layer operator D is

$$[D\sigma](x) = \int_\Gamma d(x, y)\sigma(y) \, ds(y) = \int_\Gamma \frac{n(y) \cdot (x - y)}{2\pi|x - y|^2} \sigma(y) \, ds(y)$$

Note $[D\sigma]$ is defined on $\bar{\Omega}$, but has a jump as you approach Γ.
10.2 Obtaining a well-conditioned mathematical equation

- The BIE \((-\frac{1}{2}I + D)\sigma = f\) is a Fredholm equation of the second kind, and technical results regarding compact operators tell us that discretizations of this BIE lead to exceedingly well-conditioning systems.

- Even better, the eigenvalues for discretizations of \((-\frac{1}{2}I + D)\sigma = f\) are clustered near \(-1/2\), so we can expect iterative solvers to converge rapidly (with \# of iterations independent of grid size).
What about exterior problems?

\[
\begin{align*}
-\Delta u &= 0, \quad \text{in } \Omega \\
u &= f, \quad \text{on } \Gamma \\
\lim_{|x| \to \infty} \left(u(x) + \frac{Q}{2\pi} \log |x| \right) &= 0, \quad \text{for some } Q \in \mathbb{R}
\end{align*}
\]

where now \(\Omega \) is the domain \textit{exterior} to the smooth close contour \(\Gamma \). The third line is a growth condition at \(\infty \).

The computational domain \(\Omega \) is \textit{unbounded}, so if we used FD or FEM methods, we would have to artificially truncate the domain and impose artificial boundary conditions.
10.3 External domain and B.C. at ∞ for Laplace equation

- What about exterior problems?

\[
\begin{cases}
-\Delta u = 0, & \text{in } \Omega \\
u = f, & \text{on } \Gamma \\
\lim_{|x| \to \infty} (u(x) + \frac{Q}{2\pi} \log |x|) = 0, & \text{for some } Q \in \mathbb{R}
\end{cases}
\]

where now Ω is the domain *exterior* to the smooth close contour Γ. The third line is a growth condition at ∞.

- The computational domain Ω is *unbounded*, so if we used FD or FEM methods, we would have to artificially truncate the domain and impose artificial boundary conditions.

- Conversion to a BIE makes the computational domain Γ which is *bounded*. With a single-layer potential, the solution is $u(x) = [S\sigma](x)$ in Ω, where $\sigma(y)$ solves the BIE:

\[
[S\sigma](x) = \int_\Gamma \phi(x - y)\sigma(y) \, ds(y) = f(x), \quad x \in \Gamma \quad (3)
\]
10.3 External domain and B.C. at ∞ for Laplace equation

- The single-layer solution u automatically satisfies $-\Delta u = 0$ in Ω like before, and also automatically satisfies the growth condition since

$$\inf_{y \in \Gamma} |\phi(x - y)| \lesssim |u(x)| \lesssim \sup_{y \in \Gamma} |\phi(x - y)|, \quad \forall x \in \Omega$$

- Similar to the interior Dirichlet problem, the single layer formulation upon discretization gives linear systems whose condition number grows with $\#$ of points describing Γ.

F. Law

Integral Equations: Continuous Theory

October 14, 2020 8 / 23
The single-layer solution u automatically satisfies $-\Delta u = 0$ in Ω like before, and also automatically satisfies the growth condition since

$$\inf_{y \in \Gamma} |\phi(x - y)| \lesssim |u(x)| \lesssim \sup_{y \in \Gamma} |\phi(x - y)|, \quad \forall x \in \Omega$$

Similar to the interior Dirichlet problem, the single layer formulation upon discretization gives linear systems whose condition number grows with # of points describing Γ.

If we want to use a double-layer formulation, we need to correct for the growth condition, since

$$[D\sigma](x) = \int_{\Gamma} d(x, y)\sigma(y)\,ds(y) = \int_{\Gamma} \frac{n(y) \cdot (x - y)}{2\pi |x - y|^2} \sigma(y)\,ds(y)$$

should now decay like $|x|^{-1}$.

\[\int_{\Gamma} \frac{n(y) \cdot (x - y)}{2\pi |x - y|^2} \sigma(y)\,ds(y)\]
To manually correct for the decay of the double-layer, we fix z interior to Γ, and look for solutions of the form

$$u(x) = [D\sigma](x) + \phi(x - z) \int_{\Gamma} \sigma(y) \, ds(y)$$

These solutions now satisfy the growth condition and still satisfy $-\Delta u = 0$ in Ω since $z \not\in \Omega$. The resulting BIE for σ is then

$$\frac{1}{2} \sigma(x) + \int_{\Gamma} [d(x, y) + \phi(x - z)] \sigma(y) \, ds(y) = f(x), \quad x \in \Gamma \quad (4)$$

note that in the exterior problem we pick up a term $+\frac{1}{2} \sigma(x)$ while in the interior problem we picked up $-\frac{1}{2} \sigma(x)$.
10.4 The Helmholtz equation

- Other PDE can be also be solved using a BIE formulation. Consider the interior Dirichlet problem for the Helmholtz equation with positive wave number κ.

$$
\begin{align*}
-\Delta u - \kappa^2 u &= 0, \quad \text{in } \Omega \\
u &= f, \quad \text{on } \Gamma
\end{align*}
$$

- The free space Green’s function for the Helmholtz operator is given by the zeroth order Hankel function: $\phi_{\kappa}(x) = \frac{i}{4} H_0^{(1)}(\kappa|x|)$.

10.4 The Helmholtz equation

- Other PDE can be also be solved using a BIE formulation. Consider the interior Dirichlet problem for the Helmholtz equation with positive wave number κ.

\[
\begin{align*}
-\Delta u - \kappa^2 u &= 0, \quad \text{in } \Omega \\
 u &= f, \quad \text{on } \Gamma
\end{align*}
\]

- The free space Green's function for the Helmholtz operator is given by the zeroth order Hankel function: $\phi_\kappa(x) = \frac{i}{4} H_0^{(1)}(\kappa|x|)$.

- We can repeat the exact same process as for $-\Delta$ and get the single and double-layer operators:

\[
[S_{\kappa}\sigma](x) = \int_{\Gamma} \phi_\kappa(x - y)\sigma(y) \, ds(y)
\]

\[
[D_{\kappa}\sigma](x) = \int_{\Gamma} d_{\kappa}(x, y)\sigma(y) \, ds(y)
\]

where $d_{\kappa}(x, y) = n(y) \cdot \nabla_y \phi_\kappa(x - y)$.
The function $\phi_\kappa(x)$ has a log-singularity near the origin, just like $\phi(x)$, hence we expect the layer operators to behave similarly.

If we try to use a double-layer formulation and look for solutions of the form $u(x) = [D_\kappa \sigma](x)$, we get the BIE $\left(-\frac{1}{2}I + D_\kappa\right) \sigma = f$ on Γ which is not well defined for all κ.
The function $\phi_\kappa(x)$ has a log-singularity near the origin, just like $\phi(x)$, hence we expect the layer operators to behave similarly.

If we try to use a double-layer formulation and look for solutions of the form $u(x) = [D\kappa\sigma](x)$, we get the BIE $(-\frac{1}{2}I + D\kappa)\sigma = f$ on Γ which is not well defined for all κ.

To remedy this, the combined field formulation uses a linear combination of $S\kappa$ and $D\kappa$. We look for solutions of the form $u(x) = [(D\kappa + i\eta S\kappa)\sigma](x)$ where $\eta = \pm\kappa$. The resulting BIE is

$$\left[\left(-\frac{1}{2}I + D\kappa + i\eta S\kappa\right)\sigma\right](x) = f(x), \quad x \in \Gamma$$

(5)
Just like for the Laplace equation, we can also apply a BIE formulation for exterior Helmholtz problems:

\[
\begin{align*}
-\Delta u - \kappa^2 u &= 0, \quad \text{in } \Omega \\
 u &= f, \quad \text{on } \Gamma \\
 \lim_{r \to \infty} \sqrt{r} \left(\frac{\partial u(rz)}{\partial r} - i\kappa u(rz) \right) &= 0, \quad \text{for every unit vector } z
\end{align*}
\]

where the last term is a condition at \(\infty \). This exterior equation is useful in modeling certain types of scattering problems.

Using the combined field formulation and guessing solutions like \(u(x) = [(D_\kappa + i\eta S_\kappa)\sigma](x) \), the corresponding BIE for \(\sigma \) is

\[
\left[\left(\frac{1}{2} I + D_\kappa + i\eta S_\kappa \right) \sigma \right](x) = f(x), \quad x \in \Gamma
\]

(6)
Here, we derive a direct method of reformulating Laplace’s equation as a BIE. Let \(s(x, y) = \phi(x - y) \) and \(d(x, y) = n(y) \cdot \nabla_y \phi(x - y) \).

Theorem

Let \(\Gamma \) be a smooth, bounded domain in \(\mathbb{R}^2 \). For any \(u \) such that \(-\Delta u = 0\) in \(\Omega \), then for \(x \in \mathbb{R}^2 \):

\[
\theta(x) u(x) = \int_{\Gamma} \left(s(x, y) \frac{\partial u(y)}{\partial n} - d(x, y) u(y) \right) \, ds(y), \tag{7}
\]

where

\[
\theta(x) = \begin{cases}
1 & \text{for } x \in \Omega \\
1/2 & \text{for } x \in \Gamma \\
0 & \text{for } x \in \Omega^c
\end{cases}
\]
Given boundary conditions on Γ, we can use (7) to immediately convert the PDE to a BIE:

- **Dirichlet data**: $u = f$ on Γ. Then (7) gives the BIE for $\frac{\partial u}{\partial n}|_{\Gamma}$:

$$
\int_{\Gamma} s(x, y) \frac{\partial u(y)}{\partial n} \, ds(y) = \frac{1}{2} f(x) + \int_{\Gamma} d(x, y) f(y) \, ds(y), \quad x \in \Gamma
$$

If we solve this BIE for $\frac{\partial u}{\partial n}|_{\Gamma}$, we can use (7) to recover u in Ω.
Given boundary conditions on Γ, we can use (7) to immediately convert the PDE to a BIE:

- **Dirichlet data**: $u = f$ on Γ. Then (7) gives the BIE for $\frac{\partial u}{\partial n} \bigg|_{\Gamma}$:

 $$\int_{\Gamma} s(x, y) \frac{\partial u(y)}{\partial n} \, ds(y) = \frac{1}{2} f(x) + \int_{\Gamma} d(x, y) f(y) \, ds(y), \quad x \in \Gamma$$

 If we solve this BIE for $\frac{\partial u}{\partial n} \bigg|_{\Gamma}$, we can use (7) to recover u in Ω.

- **Neumann data**: $\frac{\partial u}{\partial n} = f$ on Γ. Then (7) gives the BIE for $u \bigg|_{\Gamma}$:

 $$\frac{1}{2} u(x) + \int_{\Gamma} d(x, y) u(y) \, ds(y) = \int_{\Gamma} s(x, y) f(y) \, ds(y), \quad x \in \Gamma$$

 If we solve this BIE for $u \bigg|_{\Gamma}$, we can use (7) to recover u on Ω.
10.6 ”Direct” derivation of BIE for harmonic potentials

- Equation (7) also tells us why we pick up a factor of $\frac{1}{2}$ in the double layer formulation. Applying (7) with $u \equiv 1$ gives

$$\int_{\Gamma} d(x, y) \, ds(y) = \begin{cases} -1, & \text{for } x \in \Omega \\ -1/2, & \text{for } x \in \Gamma \\ 0, & \text{for } x \in \Omega^c \end{cases}$$
Equation (7) also tells us why we pick up a factor of $\frac{1}{2}$ in the double layer formulation. Applying (7) with $u \equiv 1$ gives

$$\int_{\Gamma} d(x, y) \, ds(y) = \begin{cases}
-1, & \text{for } x \in \Omega \\
-1/2, & \text{for } x \in \Gamma \\
0, & \text{for } x \in \overline{\Omega}^c
\end{cases}$$

Then for continuous σ defined on Γ and $x \in \Gamma$, we get

$$\lim_{x' \to x} [D\sigma](x') = -\frac{1}{2}\sigma(x) + [D\sigma](x), \quad x' \in \Omega$$

Proof sketch: $[D\sigma](x') = \int_{\Gamma} d(x', y)(\sigma(y) - \sigma(x)) \, ds(y) - \sigma(x)$, assume some regularity on σ, swap limit with integral.
10.6 "Direct" derivation of BIE for harmonic potentials

- Proof outline for Theorem. For a fixed $x \in \mathbb{R}^2$, set $v(y) = \phi(x - y)$. Green's 2nd identity says

$$
\int_{\Omega} u \Delta v - v \Delta u = \int_{\Gamma} d(x, y)u(y) - s(x, y)\frac{\partial u(y)}{\partial n} \, ds(y) \tag{8}
$$

- **Case 1**: $x \in \overline{\Omega}^c$. Then u, v harmonic in Ω, so LHS of (8) is 0.
Case 2: $x \in \Omega$. Now v is not harmonic in Ω. Let $B_\varepsilon(x)$ be ball of radius ε centered at x. Apply (8) to $\Omega \setminus B_\varepsilon(x)$ and show

$$\lim_{\varepsilon \to 0^+} \int_{\partial B_\varepsilon(x)} u \frac{\partial v}{\partial n} = u(x), \quad \lim_{\varepsilon \to 0^+} \int_{\partial B_\varepsilon(x)} v \frac{\partial u}{\partial n} = 0$$
Case 3: $x \in \Gamma$. Nearly same argument as in Case 2, but the cut boundary is slightly different. Apply (8) to $\Omega \setminus B_\varepsilon(x)$

$$\lim_{\varepsilon \to 0^+} \int_{\Lambda_\varepsilon} u \frac{\partial v}{\partial n} = \frac{1}{2} u(x), \quad \lim_{\varepsilon \to 0^+} \int_{\Lambda_\varepsilon} v \frac{\partial u}{\partial n} = 0$$

$\Omega \setminus B_\varepsilon(x)$

locally, Λ_ε looks like a semicircle with radius ε, on Λ_ε, $v \sim \log \varepsilon$
Now consider a body load g for Laplace’s equation:

$$\begin{cases}
-\Delta u = g, & \text{in } \Omega \\
u = f, & \text{on } \Gamma
\end{cases}$$

We can first compute a particular solution u_p which satisfies $-\Delta u_p = g$ on Ω, ignoring boundary conditions. Analytically:

$$u_p(x) = \int_{\Omega} \phi(x - y)g(y) \, dy$$

which will satisfy $-\Delta u = g$ in Ω.

Then set $u_h = u - u_p$ which solves (via BIE formulation):
Now consider a body load g for Laplace’s equation:

\[
\begin{cases}
-\Delta u = g, \quad \text{in } \Omega \\
 u = f, \quad \text{on } \Gamma
\end{cases}
\]

We can first compute a particular solution u_p which satisfies

$-\Delta u_p = g$ on Ω, \textit{ignoring boundary conditions}. Analytically:

\[
u_p(x) = \int_{\Omega} \phi(x - y) g(y) \, dy
\]

which will satisfy $-\Delta u = g$ in Ω.

Then set $u_h = u - u_p$ which solves (via BIE formulation):

\[
\begin{cases}
-\Delta u_h = 0, \quad \text{in } \Omega \\
u_h = f - u_p, \quad \text{on } \Gamma
\end{cases}
\]

Computing u_p can be challenging, due complicated Ω and singular ϕ. That said, there are methods of extending Ω and g to be simpler computationally (e.g. put Ω inside a big box and smoothly extend g). Then specialized methods like FMM or FFT can evaluate u_p fast.
11.2 Variable coefficient PDE; Lippmann-Schwinger equation

- For variable coefficient PDE, integral formulations are still possible but typically they are *volume integral equations*.
- While these formulations lose the benefit of reducing the dimension of the computational domain, they still retain the benefits of finite computational domain + well-conditioned systems.

\[
\begin{align*}
-\Delta u(x) - \kappa^2 (1 - b(x)^2) u(x) &= -\kappa^2 b(x) u(x) \quad \text{in } \mathbb{R}^2, \\
\partial u(x) / \partial r - i\kappa u(x) &= o(r - 1/2) \quad \text{as } r = |x| \to \infty.
\end{align*}
\]

This models acoustic wave propagation in a medium with variable wave speed. Assume \(b \) is smooth, vanishes outside \(\Omega \), and bounded by 1, and that \(u \) solves Helmholtz in \(\Omega \) with constant \(\kappa \).
For variable coefficient PDE, integral formulations are still possible but typically they are *volume integral equations*.

While these formulations lose the benefit of reducing the dimension of the computational domain, they still retains the benefits of finite computational domain + well-conditioned systems.

As an example, consider the free space, variance coefficient Helmholtz equation:

\[
\begin{aligned}
-\Delta u(x) - \kappa^2 (1 - b(x)^2) u(x) &= -\kappa^2 b(x) u_{in}(x), \quad \text{in } \mathbb{R}^2 \\
\frac{\partial u(x)}{\partial r} - i \kappa u(x) &= o(r^{-1/2}), \quad \text{as } r = |x| \to \infty.
\end{aligned}
\]

which models acoustic wave propagation in a medium with variable wave speed. Assume \(b \) is smooth, vanishes outside \(\Omega \), and bounded by 1, and that \(u_{in} \) solves Helmholtz in \(\Omega \) with constant \(\kappa \).
11.2 Variable coefficient PDE; Lippmann-Schwinger equation

\[
\begin{aligned}
-\Delta u(x) - \kappa^2 (1 - b(x)^2)u(x) &= -\kappa^2 b(x)u_{\text{in}}(x), & \text{in } \mathbb{R}^2 \\
\frac{\partial u(x)}{\partial r} - i\kappa u(x) &= o(r^{-1/2}), & \text{as } r = |x| \to \infty.
\end{aligned}
\]

Here, \(b \) indicates how much wave speed in \(\Omega \) differs compared to free space wave speed.
11.2 Variable coefficient PDE; Lippmann-Schwinger equation

- Free space Green’s function for Helmwoltz with radiating BC is $G_{\kappa}(x, y) = \frac{i}{4} H_0^{(1)}(|x - y|)$, where $H_0^{(1)}$ is the zeroth order Hankel function.
- Search for solutions of the form

$$u(x) = \int_{\Omega} G_{\kappa}(x, y) \sigma(y) \, dy, \quad x \in \mathbb{R}^2$$
11.2 Variable coefficient PDE; Lippmann-Schwinger equation

- Free space Green’s function for Helmholtz with radiating BC is
 \[G_\kappa(x, y) = \frac{i}{4} H_0^{(1)}(|x - y|), \] where \(H_0^{(1)} \) is the zeroth order Hankel function.

- Search for solutions of the form
 \[u(x) = \int_\Omega G_\kappa(x, y) \sigma(y) \, dy, \quad x \in \mathbb{R}^2 \]

- This leads to the BIE for \(\sigma \):
 \[\sigma(x) + \kappa^2 b(x) \int_\Omega G_\kappa(x, y) \sigma(y) \, dy = -\kappa^2 b(x) u_{\text{in}}(x), \quad x \in \Omega \]

- Computational domain is now \(\Omega \) which is bounded (instead of \(\mathbb{R}^2 \)), and the above BIE leads to well-conditioned systems (just like double-layer formulation).
Integral equations serve as a powerful, alternative modeling tool to PDE. Benefits include

- Reducing dimension of computational domain (Ω down to Γ).
- Well-conditioned systems upon discretization (e.g. double-layer formulation)
- Can handle exterior problems with a finite computational domain.

Different BIE formulations with different properties can be found for the same PDE.
Integral equations serve as a powerful, alternative modeling tool to PDE. Benefits include

- Reducing dimension of computational domain (Ω down to Γ).
- Well-conditioned systems upon discretization (e.g. double-layer formulation)
- Can handle exterior problems with a finite computational domain.

Different BIE formulations with different properties can be found for the same PDE.

With extra work/challenges, can be extended to other types of models (e.g. linear elasticity, Stokes flow, time-Harmonic Maxwell).

3D is possible, but Γ harder to treat as a surface + kernels are more singular.