Sept 25,2019

Last time:
- Numerical Methods for Inchil Value problems
$$y^{1/(k)} = f(t_{1}y_{1})$$

- Numerical Methods for Inchil Value problems $y^{1/(k)} = y_{0}$
Explicit Euler's Method
Side $y(t) = y_{0} + \int_{t_{0}}^{t} f(s, y_{1}s_{1}) ds$, the solution can be
approximated as:
 $y(t) \approx y_{0} + (t_{0}t_{0}) f(t_{0}y_{0})$ for one skp.
=> If $t_{2} = t_{0} + hk$, then
 $y_{2+1} = y_{2} + h f(t_{0}y_{2})$ Explicit Euler
More generally, after many truesteps, if $h \Rightarrow h/z_{1}$ then the
error decreases by a factor of t_{1} as well \Rightarrow first order consequent
Implicit Euler's Method
The integral where approximated by
 $y(t) \approx y_{0} + (t_{0}t_{0}) f(t_{1}y_{0}t_{0})$ move solve for $y(t_{0})$.
=> $y_{2+1} = y_{2} + h f(t_{2}y_{1}y_{0})$.

$$\frac{A \text{ better approximation}}{g(t_1) = g_0 + \int_{t_0}^{t_1} f(s, g(s)) ds} \approx g_0 + \frac{h}{2} \left(f(t_0, g_1) + f(t_0, g(t_1)) \right)$$

$$Trapezoidal Rule | Also an error is $\mathcal{O}(h^2)$.
$$\Rightarrow Global Error's \mathcal{O}(h^2).$$
How do we solve these ejuntions for $g_{\ell+1}$ in implicit methods for IVP_s ?$$

Newton's Method

In general, can be used to solve equations of the form:

$$f(x) = 0$$
"Nonlivian"
root Findig"
To derive, Taylor (repead f around some privit near the root, x's

$$f(x) \approx f(x) + f'(x') (x-x')$$
New, if x is the root of F, then $f(x) = 0$, solve for x:

$$0 \approx f(x') + f'(x') (x-x')$$

$$\frac{-f(x)}{f'(x')} \approx x - x' = 7$$

$$(x \approx x' - \frac{f(x)}{f(x')})$$
Starting with (reitial gams xe., Neuton's Method is than

$$x_{Lel} = x_L - \frac{F(x)}{F'(x)} - \frac{1}{F'(x)}$$
To ran be shown that if x, is close enough to the root, and

$$f^{iii} \equiv 0, \quad (x_{Li} - x') = 2 \quad (x_{Li} - x')^{2}$$

$$(x_{Li} - x') = (x_{Li} - x')^{2}$$

127

 $\frac{\partial uick}{\partial uick} \leq x_{i}etch \quad \partial f \quad Proof$ Taylor expand (un Taylors Thum) $f(x) = f(x') + f'(x') (x-x') + \frac{f''(s)}{2} (x-x')^{2}.$ Solve for x^{*} if x^{*} is root (f(x) = 0): $x^{*} = x' - \frac{f(x')}{f'(x')} - \frac{f''(f)}{2f'(x')} (x^{*}x')^{2}$ Set $x' = x_{k}.$ $x^{*} = x_{k} - \frac{f(x_{k})}{f'(x_{k})} - \frac{f''(f)}{2f'(x_{k})} (x^{*} - x_{k})^{2}$

Subtract

$$x_{l+1} - x^* = x_l - \frac{f(x_l)}{f'(x_l)} - \left(x_l - \frac{f(x_l)}{f'(x_l)} - \frac{f''(s)}{2f'(x_l)}\right)$$
Newton
Taylor

$$= \frac{f''(s)}{2f'(x_{k})} \left(x^{*} - x_{k}\right)^{2}$$

= $|x_{k+1} - x^{*}| \leq \frac{1}{2} \left|\frac{f''(s)}{f'(x_{k})}\right| |x^{*} - x^{*}_{k}|^{2}$ [7]

Next topic 2nd order liver differential equations
General form
$$y'' = f(t_1y, y')$$

Liver implies that the form of the equation is:
 $y'' + p(t)y' + q(t)y = g(t)$. This is a much racher
and more interesting class of
Unsurprisingly, two extra conditions
nucl to be enforced to uniquity specify the solution.
Ex: $y(t_0) = y_0$
 $y'(t_0) = y_0$
STILL AN IVP
/3

Contrast this with the other type of 2nd order Lineur Differential equation that we will study: two-point boundary value problems:

So if a force function
$$F(t)$$
 is applied, the equation of motion is $F(t) = malk = m\chi''(t)$.

$$E \times 2: \text{ Motion of pendulum}$$
Force on the mass in the tangential direction \vec{T} is
given by $F = -\text{mg sin} \theta$ $\leq \text{with respect to}$
 $y_{2} - \text{coordinats}.$
The change in arclingth s is velated to θ by
 $s = L\theta$, so that
 $\frac{ds}{dt} = L\frac{d\theta}{dt}$, $\frac{ds}{dt^2} = L\frac{d^2\theta}{dt^2}$
 $\int \text{non-linear}$
 $f = 0$ mg sin $\theta = \text{mL}\frac{d^2\theta}{dt^2} = 2$
 $\int \frac{d^2\theta}{dt} + \frac{9}{2}\sin\theta = 0$
 $\int \text{pecifying } \theta(0) = \theta_0$
 $\theta'(0) = \theta_0'$ uniquely determines the motion of
the pendulum.

14)