MATH/BIOL 255: Mathematics in Medicine and Biology Homework 11
 Due: Wednesday 12/14 11:59 PM

1) Consider a pair of species (u, v) which evolve according to the set of equations

$$
\begin{gathered}
\frac{d u}{d t}=a u+(u-1) v \\
\frac{d v}{d t}=-b v+(1-v) u
\end{gathered}
$$

where a and b are positive constants.
(a) What happens to species u if there is no competition (if $v=0$)? Likewise, what happens to species v if there is no competition (if $u=0$)? [2 pts]
(b) Notice that the interaction terms change their sign if based on if u and v are greater or smaller than 1 . With that in mind, fill in the table below with the words "competition," "symbiosis," or "predation" for the different regimes. If predation, identify the predator and prey. [4 pts]

	$u<1$	$u>1$
$v<1$		
$v>1$		

(c) Find the steady states (there are two) for this system. [3 pts]
(d) When is the steady state physical? [1 pt]
(e) Setting $a=1 / 2$ and $b=2 / 3$, compute the Jacobian matrix for this system and use it to determine the stability of both steady states. [4 pts]
(f) Where does the population tend to in the long term? [1 pt]

