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Chapter 1

Modeling infectious diseases

There are many different types of diseases that affect humans and animals. As indicated by the chapter title
we will focus on infectious diseases, which are pathogens that are passed between individuals. A pathogen
is broad term and is used to describe any disease-causing agent such as bacteria, viruses, etc. In contrast,
non-infectious diseases are not caused by pathogens and cannot be transmitted between individuals. For
example, diabetes and arthritis are non-infectious diseases.

We can further divide infectious diseases into two categories: macroparasites (e.g. helminths) and mi-
croparasites (e.g. bacteria). Each of these categories can once again be broken down into two categories:
direct and indirect transmission. Direct transmission occurs when a pathogen is transmitted between indi-
viduals through close contact (saliva, etc). Indirect transmission occurs when a pathogen survives outside
of its host before causing infection. This can occur through vector-borne diseases in which a secondary vec-
tor (or host), such as mosquitoes and ticks, transmits the pathogen to a new human or animal host. Dengue
virus and malaria are both examples of vector-borne diseases.

This chapter will primarily focus on microparasitic directly transmitted infectious diseases. This is summa-
rized in Figure 1.1.
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Disease types

Infectious Non-infectious

Macroparasite Microparasite

Indirect transmissionDirect transmission

Figure 1.1. Characterization of diseases. The categories highlighted in red will be the primary focus in this course.

1.1 Creating compartmental models

Epidemic models are generally constructed as “compartmental models.” In other words, we take a given
population and divide it into compartments based on an individual’s infection status (e.g. susceptible,
infected, etc.). In the most simple model, we make a number of assumptions:

1. The population is “closed” (no deaths – natural or disease-induced, no births, population sizeN is fixed)

2. Only two processes occur: infection and recovery

3. and so on.

Such a model is shown in the schematic diagram in Figure 1.2.

Y (# Infectious) Z (# Recovered)X (# Susceptible)

Figure 1.2. Schematic representation disease model

To model the infection process, we let λX be the rate of new infections occurring in a population. λ has im-
portant meaning and it is called the force of infection, or the per capita rate at which susceptible individuals
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acquire infection. Intuitively, new infections must somehow be related to Y – the number of infectives –
and there are two ways to do this. Let N be the population size (again, we are assuming this is fixed). The
two formulations are:

1. Density dependent transmission: λ = βY . Here, β is the transmission rate and inherently contains two
components: contact rate multiplied by transmission probability. In density dependent transmission, λ
increases with Y .

2. Frequency dependent transmission: λ = β
Y

N
. Here, λ is independent of population size and instead

depends on the fraction of individuals who are infective in a population. This is usually the formulation
used in directly transmitted infectious diseases in human populations, and what we will consider in this
course.

The only other process we need to consider in this model is recovery from infection. Here, we let γ be the
recovery rate. Note that 1/γ is the average duration of time spent in the infectious class. Now, our model is
given by:

dX

dt
= −β Y

N
X

dY

dt
= β

Y

N
X − γY

dZ

dt
= γY

Notice that the population size is given by

N = X + Y + Z

and that the population size is not changing, i.e.

N ′ = X ′ + Y ′ + Z ′ = 0

When modeling infectious diseases using frequency-dependent transmission, it is often useful to nondi-
mensionalize the state variables X , Y , and Z. Assuming that N (population size) is constant, we define
new variables:

S = X/N, I = Y/N,R = Z/N

so that S, I , and R are the fractions of the population that are susceptible, infectious, and recovered, respec-
tively, to disease. This leaves us with the simpler model:

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

There are a couple of important properties to point out. Namely,

S + I +R = 1
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and
S′ + I ′ +R′ = 0

Because S, I , and R sum to one, we can find R implicitly:

R = 1− S − I

and from this,
R′ = −S′ − I ′

We can see that the final equation holds by looking at the original differential equations.

There are a couple of questions that we can ask about this model. First, under what conditions will a disease
die out? In other words, when will it fail to invade? Suppose we want to consider the dynamics at t = 0.
Then the disease will fail to invade if:

I ′|t=0 < 0

We can first rewrite the differential equation for I as

I ′ = βSI − γI = I (βS − γ)

Now, we want to consider
I ′|t=0 = I(0) (βS(0)− γ) < 0

We know that I(0) ≥ 0 so we only consider

I ′|t=0 = βS(0)− γ < 0⇒ β

γ
S(0) < 1

In other words, the initial fraction of susceptibles multiplied by the transmission rate and the duration of
time spent in the infectious class must be small enough so that the epidemic cannot take off. At the onset
of an epidemic, I is close to zero and in the limit of a fully susceptible population S(0) = 1. Therefore, we
simplify this so that

β

γ
< 1

implies the disease will die out and, in contrast, if

β

γ
> 1

the disease will successfully invade. This is a threshold phenomenon and the quantity
β

γ
is called R0, or

the basic reproductive number. R0 is defined as the “average number of secondary cases arising from
an average primary case in an entirely susceptible population.” We note that each model will have an
R0 dependent on model parameters. This quantity is arguably the most important quantity in disease
modeling.

Before adding complexity to these models, we ask the question: do any susceptible individuals “escape”
infection? In other words, what is:

lim
t→∞

S(t) =?
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We will use a couple of convenient steps to answer this question. First, by the chain rule we know that:

dS

dt
=
dS

dR

dR

dt

Let’s take a closer look at
dS

dR
:

dS

dR
=

dS

dt
/
dR

dt

=
−βSI
γI

= −β
γ
S

= −R0S

We can solve this new differential equation and arrive at:

S(t) = Ce−R0R(t)

If we assume that R(0) = 0 (given that we are considering the beginning of an epidemic, this is reasonable),
then we see that

S(t) = S(0)e−R0R(t)

Recalling our original question, we want to find:

lim
t→∞

S(0)e−R0R(t)

However, by definition R0 > 0 and 0 ≤ S(0), R(t) ≤ 1 so this limit is a positive number. This is coun-
terintuitive! Our model assumes that the only processes affecting the dynamics are infection and recovery
from infection. However, as time approaches∞ there is still a positive fraction of susceptible individuals
remaining! This is called epidemic burnout because transmission eventually dies out because there are not
enough infected individuals to sustain transmission. Super cool.

Note that we coded this model in MATLAB and used the program to explore the effects of varying R0 as
well as varying γ while fixing R0,

SIR model with demography

Now that we have a handle on the SIR model, we can begin relaxing assumptions and explore the impli-
cations of more biologically realistic models. The first assumption that we’ll relax is that there are no births
and deaths. To include demography in the SIR model, we need to keep in mind that we nondimensional-
ized the state variables under the assumption that population size is constant. This requires that:

N ′ = X ′ + Y ′ + Z ′ = 0

or, equivalently,
X ′

N
+
Y ′

N
+
Z ′

N
= S′ + I ′ +R′ = 0
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Therefore, any “inputs” (births) must equal the “outputs” (deaths) from the population. We now assume
that birth and death rates are equal and denote this rate by µ, noting that 1/µ is interpreted as the average
lifespan of an individual in our population. We assume that death rates are the same within each class, each
class has the same birth rate, and births result in new susceptible individuals. Now, our model is given by:

dS

dt
= µ(S + I +R)− βSI − µS

dI

dt
= βSI − γI − µI

dR

dt
= γI − µR

Because S + I +R = 1 we can rewrite this model as:

dS

dt
= µ− βSI − µS

dI

dt
= βSI − (γ + µ)I

dR

dt
= γI − µR

We can now find R0 as we did in the previous section:

I ′|t=0 = (βS(0)− γ − µ) I(0) < 0

Again, since I(0) ≥ 0, we only want to look at

βS(0)− γ − µ < 0 =⇒ βS(0)

γ + µ
< 1

and in the limit of an entirely susceptible population, this leaves us with the basic reproductive number:

R0 =
β

γ + µ

Thus far, we have not explored equilibria in these compartmental models. In epidemiology, models gener-
ally have two important equilibria:

a.) Disease-free equilibrium (DFE): This equilibrium requires there to be no infected individuals in the
population, or I∗ = 0. In the SIR model presented in this section, the DFE is given by (S∗, I∗, R∗) =

(1, 0, 0).

b.) Endemic equilibrium: Here, infected individuals are able to persist in the population long-term. In
other words, I∗ 6= 0. Solving for this equilibrium we see that

(S∗, I∗, R∗) =

(
1

R0
,
µ

β
(R0 − 1), 1− 1

R0
− µ

β
(R0 − 1)

)

Notice how the quantity R0 keeps appearing – it is very important and ubiquitous in disease modeling.
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Now that we have introduced the two types of equilibria, we can use a linear stability analysis to show that
the endemic equilibrium is:  stable if R0 > 1

unstable if R0 < 1

In contrast, the DFE is:  unstable if R0 > 1

stable if R0 < 1

Note: this model was also programmed in MATLAB and we explored the effects of demography by varying
µ.

1.2 Modifying the SIR model

The standard SIR model is an extremely powerful model and creates a framework in which to develop
models of other infectious disease. The SIR inherently makes many assumptions: lifelong immunity,
immediate transfer of individuals between classes, no disease-induced mortality, etc. While this may be
appropriate to model things like the common cold, it is not applicable to more complex pathogens. In the
following sections, we will introduce a few modifications of the SIR model under various assumptions.

The purpose of this section is to introduce the reader to constructing a compartmental model based on a set
of assumptions, and become comfortable with the types of corresponding analyses.

Fatal infections

Consider a disease such as Ebola virus. Transmission occurs from animals to humans and then humans
are able to transmit the virus to other humans, allowing Ebola to spread. Ebola has an extremely high case
fatality rate – proportion of infections that are fatal – of up to 0.9, or 90% of infections result in death. For
viruses such as Ebola, it may be reasonable to assume that all infections result in death. Of course, this
is a simplification, but may be appropriate. Let’s also relax the assumptions that births equal deaths, and
assume that µ is the per capita death rate and ν is the per capita birth rate.

IS

Figure 1.3. SI model

The resulting model includes only two classes – susceptible and infectious – and is called the SI model
(schematic in Figure 1.3). Under these assumptions, we can write down the equations:

S′ = ν − βSI − µS
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I ′ = βSI − (γ + µ)I

Again, we are assuming that S+I = 1. Here, 1/γ is again the average number of days spent in the infectious
class, but now it is equivalent to the average number of days being infected prior to death.

In this model, we need to be careful! We are assuming that N is changing, both because µ 6= ν and through
disease-induced mortality. It’s ok to write the model as we did above, but we need to clearly state this is the
case. Also, it is critical to keep track of N when programming the model. We can put this back in terms of
X and Y to see exactly how N is changing:

X ′ = νN − βXY
N
− µX

Y ′ = β
XY

N
− (γ + µ)Y

Since N = X + Y , we know that

N ′ = X ′ + Y ′ = νN − (X + Y )N − γY = (ν − µ)N − γY

Finally, we can find R0 in the same way as we did in the previous section, and see see that

R0 =
β

γ + µ
.

Why is R0 the same as it was for the SIR model?

No immunity, multiple infections

In this section, let’s consider a pathogen such as rotavirus. Prior to the introduction of vaccination in 2006,
almost all children in the U.S. were infected by the age of 5. Following infection, there is no immunity
and individuals can be infected multiple times. Also, let’s ignore any demographic behavior. This can be
described by an SIS model, where individuals become infected and upon recovery re-enter the susceptible
class (schematic in Figure 1.4).

IS

Figure 1.4. SIS model

This model can simply be described by

S′ = −βSI + γI

I ′ = βSI − γI

We are assuming S+ I = 1, or S = 1− I . We can use this relationship to implicitly find the S dynamics and
rewrite the equation for I as:

I ′ = β(1− I)I − γI
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= I(β − γ − βI)

= (β − γ)I
(
1− β

β − γ
I

)
.

This is exactly the logistic equation! Here,

I∗ = 1− 1

R0
.

Here, if R0 > 1, the endemic equilibrium is positive (and therefore exists). In this case, we know that the
endemic equilibrium is stable. In contrast, if R0 < 1 the endemic equilibrium does not exist and the DFE is
the only stable equilibrium. This echoes our results from previous sections.

1.3 SEIR model and the next generation matrix

Let’s return to models that assume that following infection, individuals confer lifelong immunity. For
example, consider measles. Following successful transmission to an individual, they first enter an incubation
period in which they are not transmitting measles. This period usually lasts 10-12 days before the individual
progresses to the infectious period. They then remain infectious for 5-6 days and recovery. Individuals
acquire lifelong immunity following natural infection. Therefore, we modify the SIR model to include
an exposed (E) class. This is known as the SEIR model and essentially introduces a time delay before
exposed individuals progress to the infectious class (Figure 1.5. We will include demography in this model
and assume that birth and death rates are equal.

ES I R

Figure 1.5. SEIR model

If we let 1/σ be the average time spent in the E class, we can write the model as:

dS

dt
= µ− βSI − µS

dE

dt
= βSI − (σ + µ)E

dI

dt
= σE − (γ + µ)I

dR

dt
= γI − µR

Since S + E + I + R = 1, we can verify that the population size is constant. An interesting observation
about this model is that the DFE is given by (S∗, E∗, I∗, R∗) = (1, 0, 0, 0), and the endemic equilibrium is
given by:

S∗ = 1/R0

E∗ =
µ(µ+ γ)

βσ
(R0 − 1)

I∗ =
µ

β
(R0 − 1)
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Notice that in terms of R0, these two models have the same equilibrium! However, this equilibrium de-
pends on R0 and we have not yet determined what R0 is given by. Suppose we want to find R0 using the
same methods as before. We run into trouble because we want to examine the behavior of I at t = 0, and in
contrast to previous sections we cannot factor out an I . Instead, we have exposed individuals affecting the
dynamics. To address this issue, we can use a method that generalizes the computation ofR0. Keep in mind
that our previous method determined when I ′ < 0 to see when the change in I is negative. Equivalently,
we can set I ′ = 0 and find this critical value.

Here, we will outline the next generation matrix method for finding R0 and use the SEIR model as an
example to demonstrate how it works. First, we want to create a “new” model that only considers the
“disease” compartments. The disease compartments are those that include any individuals that are in a
stage of infection. In the SEIR model, this includes the exposed and infectious individuals. We want to
write this model in the form:

dxi
dt

= Fi(x)− Vi(x)

where xi is a vector of each of the i disease compartments (E and I , respectively) and Fi(x) is a vector of
the rates of new infections entering compartment i. Lastly, Vi(x) is a vector containing all other inputs and
outputs from each compartment i, and more specifically it is defined as

Vi(x) = V −i (x)− V +
i (x)

Here, V −i (x) is a vector of the rate of transfer out of each disease class i and V +
i (x) is the rate of transfer

into i. For the SEIR model, we can find each of these vectors:

dxi
dt

=

[
E′

I ′

]
= Fi(x)− Vi(x)

=

[
βSI
0

]
−
([

(µ+ σ)E
(µ+ γ)I

]
−
[

0
σE

])
=

[
βSI
0

]
−
[

(µ+ σ)E
(µ+ γ)I − σE

]
We can now rewrite this in matrix form so that:[

E′

I ′

]
=

([
0 βS
0 0

]
−
[
µ+ σ 0
−σ µ+ γ

])[
E
I

]
= (F−V)xi

noting that we defined these matrices as F and V. This is essentially the 2-dimensional version of the initial
methods we used to find R0 in the SIR model. Again, we want to determine if the change is positive or
negative near the DFE. Therefore, we set:

F−V = 0 (1.1)

Since we are looking at this near the DFE, in the limit we can simply evaluate each matrix at the DFE. This
only affects F, which is now given by

F|(1,0,0,0) =
[
0 β
0 0

]
Now, to solve Equation 1.1 we bring V to the right hand side. In one dimension, we can divide both sides
by a constant but here we have to do the 2-dimensional equivalent which requires taking a matrix inverse.
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For the purposes of this course, we will ignore the details on finding matrix inverses, but given a matrix

A =

[
a b
c d

]
the inverse is given by

A−1 =
1

DetA

[
d −b
−c a

]
(1.2)

=
1

(ad− bc)

[
d −b
−c a

]
(1.3)

=

 d

ad− bc
−b

ad− bc
−c

ad− bc
a

ad− bc

 (1.4)

Also, evaluating
AA−1 = I

In other words, the identity matrix is returned. We can use this definition to find the solution to Equation
1.1, which is given by

FV−1 = I

The proof is omitted here, but it turns out that R0 is given by the eigenvalue with the largest absolute value
of FV−1. This is also called the spectral radius and is denoted by

ρ(FV−1).

Evaluating FV−1 for the SEIR model leaves us with the matrix:

FV−1 =

[ βσ

(σ + µ)(µ+ γ)

β

µ+ γ
0 0

]

R0, or the spectral radius, is given by
βσ

(σ + µ)(µ+ γ)

Here, notice that
σ

σ + µ

essentially discounts R0 according to the fraction of individuals who suffer natural mortality in the E class.

1.4 Risky behavior

The epidemiological models that we have considered thus far are all unstructured. This means that they do
not distinguish between age, sex, or other types of structure. In this section, we will develop and analyze
a model of a particular type of structure: risk structure. Risk structure is most easy applied to sexually
transmitted infections (STIs), and we will determine how this structure changes the model predictions as
compared to an unstructured model. We will consider to classes of risky behavior:
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a.) Low risk: low risk of acquiring STIs. This type of behavior is usually characterized by no or few
sexual partners, safe sex practices, etc.

b.) High risk: high risk of acquiring STIs. This type of behavior is usually characterized by multiple
sexual partners, unprotected sex, needle sharing by intravenous drug users (e.g. transmission of HIV
or hepatitis), etc.

We need to make a number of assumptions. First, we will ignore demographic behavior. Second, we will
assume that the model falls within the SIS paradigm. In other words, individuals recover from infection
and immediately following recovery they become susceptible again. This is the case for treatable STIs; for
example, chlamydia and gonorrhea. To divide the classes according to risk, there will be four classes in
total: high risk susceptible and infectious and low risk susceptible and infectious. Classes containing the
low risk group will always have a subscript L and classes containing the high risk group will always have
a subscript H .

To define the model, we begin by talking about numbers of individuals rather than fractions. We define
each let N be the total population such that:

N = NL +NH

where NL = XL + YL and NH = XH + YH . Now, we can define each class by fractions of individuals in the
population:

SL = XL/N

IL = YL/N

SH = XH/N

IH = YH/N

From this, notice that SL + IL + SH + IH = 1. Further, we define:

nL = SL + IL ≤ 1

nH = SH + IH ≤ 1

Now that we have constructed each of our compartments, we create a schematic diagram (Figure 1.6).
This model is similar to the standard SIS model, but IH individuals may infect SL individuals and IL

individuals may infect SH individuals.

We assume that γH is the recovery rate for high risk infections individuals and γL is the recovery rate for
low risk infectious individuals (note that these may be equal, but here we will assume that they are distinct).
Further, we let βij be the transmission rate from individuals in class j to class i. Now, we can write down
the model:

S′L = −βLLSLIL − βLHSLIH + γLIL

I ′L = βLLSLIL + βLHSLIH − γLIL
S′H = −βHHSHIH − βHLSHIL + γHIH

I ′H = βHHSHIH + βHLSHIL − γHIH
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SL IL

SH IH

Figure 1.6. Risk-structured SIS model. Black boxes indicate low-risk groups and red boxes indicate high-risk groups. The red dashed line indicates
that individuals from IH can infect individuals in SL and the black dashed line indicates that individuals from IL can infect individuals in SH .

Recall that the force of infection (FOI), λ, is equal to the per capita rate at which susceptibles acquire infection.
In this model, we have two distinct FOIs: one for high risk and the other for low risk individuals. These are
given by:

λL = βLLIL + βLHIH

λH = βHHIH + βHLIL

We can also write this in matrix form as:[
λL
λH

]
=

[
βLL βLH

βHL βHH

] [
IL
IH

]
The matrix containing the transmission rates has a special name, and it is known as the Who Acquires
Infection From Whom (WAIFW) (they clearly thought long and hard about making a clever acronym that
is easy to remember). It is often useful to make some assumptions about this matrix to determine what the
appropriate βij values should be. For example:

a.) Assortative mixing: this means that high risk individuals are more likely to partner with other high
risk individuals, and low risk individuals are more likely to partner with other low risk individuals.
Under these assumptions, βLL, βHH > βHL, βLH . Further, transmission is most likely to be highest
between high risk individuals, so βHH = max (βij)

b.) Symmetric mixing: under this assumption, the number of interactions between high and low risk
individuals is the same as the number of interactions between low and high risk individuals. In other
words, βHL = βLH .

Now, we want to find R0 using the next generation matrix. To do this, we need to know what the DFE is.
Here, it is slightly different compared to other models that we have studied because the total population is
divided into the low and high risk categories. Therefore, the DFE is given by:

(S∗L, I
∗
L, S

∗
H , I

∗
H) = (nL, 0, nH , 0)

Now, we want to find F and V. These are given by:

F =

[
βLLSL βLHSL

βHLSH βHHSH

]
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and

V =

[
γL 0
0 γH

]
After evaluating at the DFE, we can show that

FV−1 =


βLLnL
γL

βLHnL
γH

βHLnH
γL

βHHnH
γH


If we try to find the eigenvalues of this (the largest magnitude of which is R0), we end up with a big
messy equation. However, in the special case that βij is separable (i.e. for βij there exists αi, σj such that
βij = αiβj), we can show that the dominant eigenvalue is given by:

R0 =
βHHnH + βLHnL

γH
+
βLLnL + βHLnH

γL

= RH
0 +RL

0

This is just a weighted sum of the R0 values for each risk class! This is significantly different from an
unstructured model, in which transmission would be weighted equally between classes. For example,
notice how R0 would change as the relative values of nL and nH change. We will explore this further using
MATLAB.

1.5 Temporally forced models

An important consideration in SIR-type models is changes in parameter values through time. Here, we
briefly introduce one type of “forcing”: seasonal transmission. Because contact rates may change over time
(especially in the case of childhood infectious diseases), transmission rates can change as a consequence.
We can now write the standard SIR model with seasonal transmission as

S′ = µ− β(t)SI − µS
I ′ = β(t)SI − (γ + µ)I

where β(t) is now the time-dependent seasonal transmission rate. The most common way to define this is:

β(t) = β0 (1 + β1 cos (ωt)) .

Here, β0 is the average (or “baseline”) transmission rate, β1 is the amplitude of seasonal forcing (0 ≤ β1 ≤ 1),
and ω is the period of seasonal transmission. Assuming it is annually periodic and time is measured in days,

ω =
2π

365

As shown in class, we can determine when I is increasing based on the number of susceptibles at time t. In
particular, I is increasing when

S(t) > 1− 1

R0

An alternative way to introduce seasonal transmission is through “term-time” forcing, where transmission
only occurs during school terms. Here,

β(t) = β0 (1 + β1TERM(t))

where TERM(t) = 1 during school terms and -1 otherwise.

14


