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1 Deriving the Black–Scholes equation

Consider a financial asset/share with price St at time t that is modelled to evolve in time
according to the log-normal SDE

dSt = µSt dt+ σSt dWt. (1)

Here the expected growth rate µ and the volatility σ are constants. We now ask a
deceptively simple question: if at time t the asset price St = s and if we plan to sell
the asset at the later time T > t, then what is the fair present value of the asset? This
innocuous-looking question leads to the most important result in mathematical finance.

1.1 The central conceit of mathematical finance

Let’s try a very reasonable approach. At time T the asset price will be ST and this is the
amount of money we will obtain at that time. However, the present value of this future
income must be discounted with the risk-free interest rate r, say, as otherwise we could
do better by investing that amount of money in a risk-free bond. So, if we denote the fair
present value of our asset by the function u(s, t) then it is entirely reasonable to view the
expectation

u(s, t) = E
[
ST e

−r(T−t) |St = s
]

for T ≥ t (2)

as the fair present value of our asset. However this will quickly lead to absurd conse-
quences, so (2) is in fact wrong. Indeed, if (2) were correct then u(s, t) would be the
solution to the following PDE problem:

ut + Ls,tu− ru = ut + µsus +
σ2

2
s2uss − ru = 0 with u(s, T ) = s. (3)

This is the backward equation with a discount term added and a boundary condition
stating that the terminal pay-off is simply the asset price. Notably, the generator for
a log-normal process involves only homogeneous derivative terms sus and s2uss, which
is a reflection of the fact that our equations must be invariant under the simple scaling
transformation s → λs for arbitrary λ > 0. This must be so, because a price value such
as s can always be changed in a inconsequential way by rescaling the currency (think
of converting Lire to Euros). The mathematical upshot is that homogeneous derivative
terms often give rise to solutions that consists of simple power laws or logarithms, which is
why such solutions appear so often in mathematical finance. The problem is then usually
to fit such solutions to boundary data that is not of the same form, but in the present case
the boundary data is also a simple power law u = s, so this is easy. Hence, our problem
is easily solved by assuming that u = sf(t), which yields

u(s, t) = se(µ−r)(T−t) (4)

as the solution to (3). Now, this is a horrible solution unless µ = r. Suppose µ > r, then
(4) means that the fair value of the asset at time t exceeds the market price of the asset
at the same time, and vice versa for µ < r. This is hard to square with having a market
at all. Moreover, as T → ∞ the fair value goes to either infinity or zero. Clearly, this
cannot be right, despite the seemingly reasonable assumptions underlying (2).
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1.2 Arbitrage-free pricing of derivatives

To rectify the faults of (4) requires a new idea, which is the idea of arbitrage-free pricing.
Demanding that a market is arbitrage-free (i.e., that it should not be possible to make a
profit without risk) leads to many conclusions, but we will use only a single one: the rate
of return on any risk-free asset must equal the global risk-free rate of return r.

Let us know consider the value of a fairly general derivative based on the asset St,
which we denote by Vt. We will assume that there exists a function v(s, t) such that

Vt = v(St, t). (5)

In other words, our derivative depends only on the present asset price and on time; this
class of derivative includes a lot of the standard financial options as well as the example
of deferred asset selling in §1.1. Using Itô’s formula, the derivative Vt evolves in time as

dVt = [vt(St, t) + LSt,t v(St, t)] dt+ σStvs(St, t) dWt. (6)

Here the explicit notation is meant to highlight that v and its derivatives are evaluated
along the trajectory St. Clearly, the evolution of Vt involves risk due to the final, random
term. However, if we define an auxiliary derivative Yt as a linear combination of Vt and St
then we can arrange that this Yt evolves without risk at the present time t. Specifically,
if we set

Yt = Vt −4St with 4 = const (7)

then

dYt = [vt + LSt,t v] dt+ σStvs dWt −4[µSt dt+ σSt dWt] (8)

=

[
vt + µStvs +

σ2

2
S2
t vss −4µSt

]
dt+ [σSt(vs −4)] dWt.

We can eliminate the noise term by setting

4 = vs(St, t). (9)

For constant4 this only works at this single instant in time, of course, but that is sufficient
to deduce the main result. So, with this choice of the “hedge” 4 we can make Yt evolve
risk-free at this instant in time, so therefore dYt = rYtdt must hold by the principle of
arbitrage-free markets. Combining this with (8) we find that this implies the relation

vt + rStvs +
σ2

2
S2
t vss − rv = 0. (10)

In the most famous cancellation of financial theory, the expected growth rate µ has
dropped out! Now, this same construction can be made for arbitrary time t and for
arbitrary values of St as well. Therefore we conclude that (10) must in fact hold for at all
times and for all possible trajectories, in other words we can replace St by s and obtain
the celebrated Black–Scholes equation

vt + rsvs +
σ2

2
s2vss − rv = 0 (11)
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for the fair value of a derivative of the form (5). In the standard setting where there is a
pay-off Φ(ST ) at the final time, the derivative problem consists of (11) together with the
terminal condition

v(s, T ) = Φ(s). (12)

Notice that this problem would be compatible with (2) and (3) only if the expected rate
of growth of the asset were r instead of µ. The point of view of retaining (2) by replacing
µ with r in (1) is called the “risk-neutral” view, but to me it is unclear whether there is
any meaning attached to it beyond this formal observation.

Finally, the linear payoff Φ = s that occurred in (3) now leads to the trivial solution
v = s, which unlike (4) does not depend on µ, r, or T ! In other words, according to
arbitrage-free pricing, the fair present value of an asset is its present market price, as it
should be. As an amusing aside, in this example the hedge 4 is in fact constant in time
and equal to one, so the risk-free portfolio Yt = St − St = 0 that arose in the derivation
of (11) is actually empty.


