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We investigate theoretically and numerically the modulation of near-inertial waves
by a larger-amplitude geostrophically balanced mean flow. Because the excited wave
is initially trapped in the mixed layer, it projects onto a broad spectrum of vertical
modes, each mode n being characterized by a Burger number, Bun, proportional to
the square of the vertical scale of the mode. Using numerical simulations of the
hydrostatic Boussinesq equations linearized about a prescribed balanced background
flow, we show that the evolution of the wave field depends strongly on the spectrum
of Bun relative to the Rossby number of the balanced flow, ✏, with smaller relative
Bun leading to smaller horizontal scales in the wave field, faster accumulation of wave
amplitude in anticyclones and faster propagation of wave energy into the deep ocean.
This varied behaviour of the wave may be understood by considering the dynamics
in each mode separately; projecting the linearized hydrostatic Boussinesq equations
onto modes yields a set of linear shallow water equations, with Bun playing the role
of the reduced gravity. The wave modes fall into two asymptotic regimes, defined by
the scalings Bun ⇠ O(1) for low modes and Bun ⇠ O(✏) for high modes. An amplitude
equation derived for the former regime shows that vertical propagation is weak for
low modes. The high-mode regime is the basis of the Young & Ben Jelloul (J. Mar.
Res., vol. 55, 1997, pp. 735–766) theory. This theory is here extended to O(✏2), from
which amplitude equations for the subregimes Bun ⇠ O(✏1/2) and Bun ⇠ O(✏2) are
derived. The accuracy of each approximation is demonstrated by comparing numerical
solutions of the respective amplitude equation to simulations of the linearized shallow
water equations in the same regime. We emphasize that since inertial wave energy
and shear are distributed across vertical modes, their overall modulation is due to the
collective behaviour of the wave field in each regime. A unified treatment of these
regimes is a novel feature of this work.
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1. Introduction

Internal gravity waves with frequencies close to the inertial frequency, termed
‘near-inertial waves’ (NIWs), dominate upper-ocean wave energy and shear (Garrett
& Munk 1979). They are preferentially excited by wind forcing and these fast
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motions are known to contain nearly half of the energy transferred to the ocean by
atmospheric forcing (Pollard 1980). This energy may be exchanged with sufficiently
strong geostrophic currents (Whitt & Thomas 2015), playing a role in the ocean’s
mesoscale energy balance. Moreover, downward propagation of NIW energy can lead
to mixing via wave breaking in the thermocline (Alford et al. 2016), thus contributing
to global-scale tracer distribution and transport.

Depending on the spatial variability of the wind stress and speed of propagation
of storms over the upper ocean, the NIWs horizontal scales can vary between
synoptic and mesoscales (Chelton et al. 2004, Silverthorne & Toole 2009). However,
observations indicate that even in cases where synoptic-scale wind stress excites
extremely large-scale NIWs, the wave field develops lateral spatial scales comparable
to that of the pre-existing mesoscale eddy field as time progresses (Elipot, Lumpkin &
Prieto 2010; Joyce et al. 2013). In such cases, it is typically assumed that the initial
wave has the scale of the forcing, suggesting that the ocean eddy field modulates the
wind-generated NIWs, imprinting the eddy horizontal scales on the wave field. Linear
slab models of the type introduced by Pollard (1970) and Pollard & Millard (1970)
can predict the observed rate of generation of upper-ocean near-inertial waves, but do
not capture their spatial modulation. Moreover, the Pollard model predicts a vertical
propagation rate far too small to account for the observed energy of near-inertial
waves at depth.

The basic effect of the wave scale on its evolution can be understood by considering
the standard dispersion relation and corresponding group velocity for hydrostatic
inertia–gravity waves:

!2 = f 2 (1 + Buwave) , Buwave = N2k2
h

f 2k2
z

) @!

@kz
= �N2k2

h

!k3
z

, (1.1a,b)

where the final expression above is the vertical group velocity, ! is the wave
frequency, N is the buoyancy frequency, f is the Coriolis parameter and kh and
kz are the horizontal and vertical wavenumbers. This highlights the importance of
the waves’ Burger number Buwave, which for the storm-generated NIWs is so small
that all relevant frequencies are narrowly concentrated near the inertial frequency
f . In addition, the waves’ propagation into the deep ocean would be exceptionally
slow, of the order of a few centimetres per day (Gill 1984). Observations in the
Ocean Storms experiment, however, found that near-inertial waves excited by storms
propagate into the deep ocean within days (D’Asaro et al. 1995), possibly consistent
with a reduction in their horizontal scales by the eddy field, as in the observations
mentioned above.

Assuming that the initial wave field is spatially homogeneous, i.e. infinite horizontal
scale, we may consider a modified Burger number

Bu = N2

f 2L2k2
z
, (1.2)

which naturally arises by non-dimensionalizing the governing equations using L as the
horizontal scale, as is done in (1.6) below. In a landmark theoretical paper, Young
& Ben Jelloul (1997, hereafter YBJ) used multi-time asymptotic analysis under the
assumptions of Bu ⇠ ✏, where

✏ = Vg

fL
⌧ 1 (1.3)
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is the Rossby number based on the geostrophic velocity Vg, to derive an amplitude
equation that describes the slow evolution of the wave field. The predicted wave
propagation speed from the YBJ model is in accord with observations from the
Ocean Storms experiment. By contrast, Klein & Treguier (1995), and later Danioux
& Klein 2008, analysed a regime where Bu ⇠ O(1), which keeps the (dispersive)
pressure term at leading order. Is such a regime ever realized in the ocean? We will
demonstrate that both scalings occur in the vertical spectrum of observed NIWs.

To clarify matters and make connection with the existing literature, we consider
an idealized setting: an initial value problem consisting of a horizontally scale-free
inertial oscillation superimposed on an eddy field that is assumed to be geostrophic,
barotropic, steady and stronger than the wave field. The assumption of a barotropic
eddy field is based on observations that indicate that NIWs have vertical scales
that are of order the mixed layer depth (see, for example, Alford et al. 2016),
small compared to the vertical scale of the eddy field, which is typically set by
the pycnocline depth (Vallis 2006). Geostrophy is consistent with the small Rossby
number that characterizes mid-latitude eddies, eddies that evolve on time scales of
order weeks or longer. Finally, we assume that the eddy velocity amplitude is large
compared to that of the waves, consistent with observed oceanic kinetic energy
frequency spectra (see, e.g. Ferrari & Wunsch 2009). It should be noted, however,
there are also indications that in some locations and times, the inertial field is stronger
than the eddy field, which may lead to an energetic exchange between the eddy and
wave fields (Xie & Vanneste 2015; Wagner & Young 2016).

With these assumptions, we consider the hydrostatic Boussinesq equations (hereafter
referred to as simply Boussinesq equations)

@v

@t
+ ẑ ⇥ v +

✓
N0H
fL

◆2

rp + ✏ {
V · rv + v · rV

} = 0, (1.4a)

@b
@t

+ Ñ2(z)w + ✏ V · rb = 0, (1.4b)

@p
@z

= b, (1.4c)

r · v + @w
@z

= 0, (1.4d)

linearized with respect to a steady barotropic geostrophic eddy field,

V = x̂U + ŷV = ẑ ⇥ r , (1.5)

where  =  (x, y) is the geostrophic streamfunction. In (1.4), r = x̂@/@x + ŷ@/@y
is the horizontal gradient operator, v = x̂u + ŷv and w are the horizontal and
vertical wave velocity components, p is the wave pressure, b the wave buoyancy,
Ñ(z) = N(z)/N0 is the non-dimensional buoyancy frequency and f is the constant
Coriolis frequency. (Although a variable Coriolis frequency is known to accelerate
the vertical propagation of NIWs (Balmforth & Young 1999, Moehlis & Llewellyn
Smith 2001), in the present work we shall focus attention on the modulation of
waves due to a mean flow alone.) All variables are non-dimensionalized, with L
the horizontal length scale of the geostrophic flow, H the depth of the fluid, Vg the
geostrophic velocity scale and Vw the horizontal wave velocity scale. Perturbation
vertical velocity is non-dimensionalized by VwH/L, buoyancy by N2

0 VwH/fL and
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pressure follows from hydrostasy. Although we distinguish between wave (Vw) and
eddy (Vg) velocity scales, for the linearized equations the magnitude of the wave
velocity scale is arbitrary. The Rossby number, defined in (1.3), is the central small
parameter.

Assuming rigid lid boundary conditions at the top and bottom of the domain, we
project (1.4) onto baroclinic modes (see appendix A for details) to obtain a set of
decoupled linear shallow water equations for each mode

@vn

@t
+ ẑ ⇥ vn + Bunrpn = �✏ {vn · rV + V · rvn} , (1.6a)

@pn

@t
� wn = �✏ V · rpn, (1.6b)

r · vn + wn = 0, (1.6c)

where Bun = (N0H/(�nfL))2 is the modified Burger number in (1.2) for the nth
baroclinic mode and �n is the eigenvalue of the Sturm–Liouville equation involved
in the projection (see (A 3a,b)). Recall that ‘L’ refers to the spatial scale of the
background flow, which is the only horizontal length scale in the problem at t = 0.
However, this does not necessarily mean that each vertical wave mode will acquire
this length scale, but rather is expected to reach a scale based on the dynamical
evolution of (1.6). Though not required for the analysis, for the sake of simplicity
we take a constant buoyancy frequency, for which �n = np and therefore

Bun =
✓

N0H
npfL

◆2

. (1.7)

Since the wave field corresponding to the barotropic mode (n = 0) remains as a trivial
horizontally uniform inertial oscillation, we consider only the dynamics of baroclinic
modes (n > 1) in this study. Note that in the absence of a background flow, the
dispersion relation for the linear waves based on (1.6) is

!n =
p

1 + Bun|k|2, (1.8)

thus low-n modes, with Bun ⇠ O(1), are more dispersive than higher modes, with
Bun ⌧ 1 (this will motivate terminology introduced in the next section).

For a given Rossby number ✏, the effect of the background flow on a particular
mode is decided crucially by Bun. To understand this, first consider the case of higher
baroclinic modes with Bun . ✏ (this is the limit considered by YBJ). For these modes,
the Bunrpn term in (1.6a) is asymptotically small so that it may be moved inside the
curly braces on the right-hand side, which implies that wave dispersion arising due to
the pressure gradient term is comparable to refraction and advection of the wave field
by the mean flow. The left-hand side then contains an exact inertial wave operator
of the form (@/@t + ẑ⇥). The inertial wave field, excited by the initial data, interacts
with the background flow via the terms on the right-hand side. Since the mean flow
is steady, the right-hand side terms have frequency 1 ( f in dimensional units), which
can resonantly force the left-hand side, allowing for O(1) modulations of the leading-
order inertial wave field on time scales t & 1/✏. Looked at another way, modes with
Bun . ✏ are excited by resonant wave–wave-geostrophic triads. It must however be
noted that this form of resonant interaction is different from conventional resonant
wave triads which satisfy resonance conditions between wavenumbers in addition to
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frequencies (see for example Craik 1985). This is the origin of the YBJ amplitude
equation, which will be derived for the shallow water system in § 3. Related examples
of similar dynamics can be found in, e.g. Falkovich (1992) and Falkovich, Kuznetsov
& Medvedev (1994).

Now consider the case of lower baroclinic modes, that satisfy Bun ⇠ 1. For these
modes, the pressure gradient term in (1.6a) remains in the leading-order equation.
The left-hand side of (1.6a) is not an exact inertial wave operator in this case,
and therefore even though homogeneous initial data excite inertial waves at leading
order, and inertial wave-mean flow terms of frequency 1 arise on the right-hand side,
these do not resonantly force the leading-order inertial wave field by the mechanism
described above. Therefore, the leading inertial wave fields of these modes are not
modulated by the eddies for time scales 1/✏ (although they are for times ⇠1/✏2, as
we shall demonstrate). This was pointed out by Klein & Treguier (1995) using the
linearized equations in a study of the interaction of a one-dimensional barotropic front
with NIWs. In a similar setting, but for a different problem – namely the emergence
of oscillations at 2f frequency in an initial value problem for a homogeneous wave
field in the presence of a front – Danioux & Klein (2008) also observed the lack of
NIW modulation by the eddy field in this regime.

We therefore expect the nature of the interaction to vary depending on the
relationship between the modal Burger number and Rossby number: modes with
Bun ⇠ O(1) are expected to behave very differently from modes that satisfy Bun ⌧ 1.
Because an inertial oscillation excited by winds will project onto a wide spectrum
of vertical modes, each with different modal Burger number, we expect both limits
to be relevant to the evolution of the wave field. We demonstrate this in § 2, first
showing the distribution of Bun expected for a typical surface-trapped wave field,
then analysing numerical solutions of the linear Bousinnesq equations, (1.4), for an
idealized background eddy field. To quantify the interactions, in § 3 we use multiscale
asymptotics to investigate a range of Burger–Rossby number scalings, deriving distinct
amplitude equations for each; these are tested against numerical integrations of
the shallow water equations for the particular mode under consideration. We also
show that all the regimes with Bun ⌧ 1 can be obtained by a next-order expansion
of the original YBJ amplitude equation, and this results in a set of ‘improved’
equations for the weak dispersion regimes. In § 4 we use conservation laws for each
asymptotic regime to explain the tendency toward increased concentration of NIWs in
anticyclones, and the production of increasingly small scales in the wave field as
the Burger number decreases. Finally, § 5 summarizes our findings and concludes the
present study.

2. The asymptotic regimes of NIW modulation
Our goal in this section is to motivate the existence of different asymptotic regimes

in which the modulation of the wave field by the mean flow can vary significantly.
As mentioned, Bun decreases from O(1) for low modes to asymptotically small values
for high modes, which means that wave energy and shear in real flows, which project
onto a broad spectrum of modes, are distributed across interaction regimes ranging in
dispersive strength. The cumulative effects of the background flow on NIWs depends
on the distribution of Bun with respect to the Rossby number.

Consider a hypothetical storm-generated inertial wave horizontal velocity field, in
complex form,

U = u + iv = A(z)e�it, with A(z) = exp
✓�z2

2h2

◆
, (2.1)
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FIGURE 1. (Colour online) Fractional energy en and fractional shear sn contained in the
first 50 baroclinic modes. The blue and red curves correspond to n0.125 ⇡ 11 and n0.0125 ⇡
36, respectively, calculated based on (2.5). These curves demarcate between modes with
stronger dispersion Bun � ✏ in (a) and weak dispersion modes with Bun 6 ✏ in (b). For
example, if ✏ = 0.0125 (red line) then most of the wave energy and almost all of the
wave shear is associated with strongly dispersive modes. Conversely, if ✏ = 0.125 (blue
line) only about half of the energy and less than 10 % of the shear are associated with
strongly dispersive modes. This illustrates the sensitivity of the relevant modal regimes to
the Rossby number ✏.

where z = �h is the depth at which the inertial shear, A0(z), is maximal and where
z=0 is the surface. This is an exact solution to the linear equations without a balanced
flow. Projecting (2.1) onto baroclinic modes one obtains (see appendix A for details)

A(z) = A0

2
+

1X

n=1

An cos
⇣npz

H

⌘
, An = 2

H
exp

✓
�p2n2h2

2H2

◆ Z 0

�H
exp

✓
� z2

2h2

◆
dz,

(2.2a,b)
and in the limit h ⌧ H, the coefficients are approximately

An ⇡
p

2ph
H

exp
✓

�p2n2h2

2H2

◆
. (2.3)

The fractions of total energy and total shear contained in the first n baroclinic modes
are

en =

nX

j=1

A2
j

1X

j=1

A2
j

and sn =

nX

j=1

B2
j

1X

j=1

B2
j

, (2.4a,b)

where Bj = ( jp/H)Aj corresponds to the Fourier coefficients of A0(z). Figure 1
shows en and sn, assuming an eddy length scale L = 40 km, ocean depth H = 5 km,
buoyancy frequency N = 100f = 10�2 s�1 and shear depth h = �75 m. Motivated by
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the observations of wind-excited NIWs discussed in D’Asaro et al. (1995), we also
chose the balanced flow velocity Vg = 0.05 m s�1 which gives ✏ = 0.0125. For the
numerical experiments that follow, we choose a second Rossby number, ✏= 0.125, an
order of magnitude larger than the previous one. As mentioned before, the strength
of modulation of the wave field by the mean flow is expected to depend on the
fraction of modes with Bun ⇠ ✏, where advection–refraction and dispersion coincide
in strength. We construct a critical mode number for a given Rossby number as

n✏ = N0H
pfL

p
✏

(2.5)

by equating modal Burger number (1.7) and Rossby number. The coloured vertical
lines in figure 1 indicate n0.125 and n0.0125. Notice that for the lower Rossby number
case, fewer modes satisfy Bun . ✏ and therefore less energy is associated with the
regime Bu ⇠ ✏, as discussed before.

We now turn to some idealized simulations to validate our qualitative predictions.
To illustrate that the modulation of the wave field depends strongly on the fraction
of modes that satisfy Bun ⇠ ✏ versus those that satisfy Bun ⇠ O(1), we numerically
integrate the linear Boussinesq equations (1.4) by projecting onto the first 150
baroclinic modes and using the initial data

u = exp
✓�z2

2h2

◆
, v = p = b = 0 at t = 0, (2.6a,b)

with h = �75 m. This initial condition in the absence of a mean flow will excite an
inertial wave field of the form (2.1). In order to make explicit the dependence on
Rossby number, we consider two experiments, with Rossby numbers ✏ = 0.0125 and
0.125. The background eddy flow streamfunction is

 = sin x sin y. (2.7)

We note that our experimental set-up is extremely idealized, imposing a constant value
for N and a surface intensified inertial wave of the form (2.1), which is supposed
to mimic an inertial wave field trapped in the mixed layer of the upper ocean.
Nevertheless, since our goal is to give a simple illustration of the dependence of the
resonant modulation of NIWs on the parameter regime, we persist with this simple
set-up. The simulation was performed with a pseudospectral code, using fourth-order
Runge–Kutta time stepping and 1282 Fourier modes. A hyperdiffusion operator of
the form �⌫14vn with ⌫ = 10�12 was added to the right-hand side of the momentum
equation for numerical stability.

Figure 2(a–f ) shows the horizontal distribution of wave kinetic energy, integrated
vertically over the top 100 m for each of the two simulations, at times 2.5/✏, 5/✏
and 7.5/✏ (normalized by their respective Rossby numbers). One can immediately
see, especially in the larger Rossby number case (d–f ), an expulsion of wave energy
from cyclonic vorticity regions of the background flow and trapping of waves in
anticyclonic vorticity regions. The wave energy is redistributed both horizontally into
anticyclonic regions, and downward, as can be seen in panels (g,h), which show
time series of the horizontally averaged and vertically integrated kinetic energy in
the upper 100 m for each simulation. In the larger Rossby number case, after 80
days almost 93 % of the initial energy has left the top 100 m, whereas after an
order of magnitude longer time (800 days), only 29 % of the initial energy leaves
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FIGURE 2. (Colour online) (a–c) Kinetic energy of the first 150 baroclinic modes
integrated over the top 100 m of the model domain for the simulation with ✏= 0.0125 at
times 2.5/✏, 5/✏ and 7.5/✏. (d–f ) Same for simulation with ✏ = 0.125. Both cases show
an accumulation of wave energy in anticyclonic regions ([0, p] ⇥ [0, p] and [p, 2p] ⇥
[p, 2p] for the streamfunction (2.7)), with stronger accumulation in the case of larger ✏.
(g,h) Horizontally averaged and vertically integrated kinetic energy in the top 100 m of
the model domain for simulations with ✏ = 0.0125 (g) and ✏ = 0.125 (h).

the upper ocean for the case ✏ = 0.0125. This is the ‘inertial chimney effect’ (Lee &
Niiler 1998), the mechanism by which anticyclonic vorticity regions act as conduits
for inertial energy to reach the thermocline. We note that we were able to obtain
this phenomenon, consistently observed in numerical simulations using more complex
models (Zhai, Greatbatch & Zhao 2005; Zhai, Greatbatch & Eden 2007), in the most
basic set-up – using linearized interaction equations.

The stronger tendency for anticyclonic accumulation and downward wave energy
propagation for the case with ✏= 0.125 is consistent with the inference from figure 1
that with larger Rossby number, more modes satisfy Bun ⌧ 1, which suppresses the
dispersive pressure term in the leading-order dynamics, resulting in strong modulation
of NIWs by the background flow and rapid vertical propagation. For smaller Rossby
numbers, most of the wave energy is in modes that satisfy Bun ⇠ O(1) leading to less
modulation and thus weaker vertical propagation of NIWs.
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FIGURE 3. Dispersion regimes for rotating shallow water. The dark grey regions denote
the four subregimes developed in § 3; boundaries of each region are fuzzy, to emphasize
that the regions are not precisely defined. The region at the top is SDR, with Bu ⇠ O(1),
and the region along the diagonal is WDR: the YBJ regime, with Bu ⇠ ✏. The subregimes
IDR (Bu ⇠ ✏1/2) and vWDR (Bu ⇠ ✏2) are also shown. The WDR region is bound on the
right by ✏⇡ 10�1, as a canonical small value. The light grey region denotes the next-order
WDR equation (3.17), bounded by Bu ⇠ ✏2 and Bu ⇠ ✏1/2, capturing all possible balances
of terms in the equation. The right side boundary is ✏⇡ 10�1/2, so that the smallest terms,
which scale like ✏2 ⇡ 10�1, are still ‘small’. The vertical dotted lines represent values of
Bun for n = 1, . . . , 50, L = 40 km, f = 10�4 s�1, N = 100f and H = 5 km, at two different
values of ✏. The point is to show the range of regimes necessary to describe how the
problem changes with Rossby number.

To capture these dynamics, we consider two broad scalings: (i) the ‘strong
dispersion regime’ (SDR) with Bun ⇠ O(1) and (ii) the ‘weak dispersion regime’
(WDR) with Bun ⌧ 1, with names motivated by terminology introduced in Danioux &
Klein (2008) and discussed below (1.8). The latter regime, which Klein & Llewellyn
Smith (2001) also identify as the ‘trapping regime’, was investigated in detail by YBJ.

Notice that for very small Rossby numbers, there may also be modes with Bun that
are asymptotically small but still large compared to ✏. Moreover, for larger Rossby
numbers, there may be modes with Bun ⇠ O(✏2). This can be seen in figure 3, which
attempts to delineate the asymptotic regimes discussed above, as well as some new
subregimes. The vertical dotted lines represent Bun for n = 1–50, with the same
parameters used in the analysis above, for two different values of ✏. One can see
that in both cases, there are many modes that do not lie within the formal ranges
of validity of the SDR or WDR. However, we will show in the next section that a
next-order expansion about the distinguished limit Bun ⇠ ✏ provides correction terms
for the cases where Bun, while still small, is asymptotically large or small compared
to ✏, as denoted by the lighter grey region called ‘next order WDR’. At the edges
of this regime are subregimes defined by Bun ⇠ ✏1/2 and Bun ⇠ ✏2, which we refer to,
respectively, as the ‘intermediate dispersion regime’ (IDR) and ‘very weak dispersion
regime’ (vWDR). For larger ✏, most modes lie deep in the WDR, and span both its
subregimes, IDR and vWDR. For smaller ✏, more modes lie in the IDR. Details of
these limiting cases will be discussed in § 3.
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3. Amplitude equations for strong and weak dispersion regimes
Here we consider asymptotic approaches to understanding the range of behaviours

for different vertical modes seen in the last section. Keeping in mind that the
following analysis holds for specific baroclinic modes, we suppress the subscript n;
for instance we represent modal Burger number as Bu instead of Bun, wave amplitude
as A instead of An and so on. We rewrite (1.6) as

@v

@t
+ ẑ ⇥ v + Burp + ✏ {v · rV + V · rv} = 0, (3.1a)

@p
@t

+ r · v + ✏ V · rp = 0. (3.1b)

We impose periodic boundary conditions in the horizontal and set the initial conditions
to

u = constant, v = p = 0 at t = 0 (3.2a,b)
so that spatially homogeneous inertial oscillations are excited. Because the analysis
that follows assumes a single length scale for the background flow, we use the
idealized streamfunction (2.7), representing a single dominant mode of the background
flow.

Using the method of multiple time scales, in the coming subsections we derive
amplitude equations for NIW modes with different Bu–✏ scalings. We note that
although we assume a steady mean flow throughout, the derivation of the amplitude
equations requires only a time scale separation between the mean flow and NIWs and
therefore the derivations retain their validity if the mean flow is slowly evolving rather
than steady. These amplitude equations will be compared with numerical solutions to
the linear rotating shallow water equations, (3.1) (hereafter RSW). As with the linear
Boussinesq simulation discussed in § 2, the codes used to solve the linear shallow
water equations were pseudospectral with fourth-order Runge–Kutta time stepping. A
hyperdiffusion operator of the form �⌫14v was added to the momentum equations
in the shallow water equations, and to the amplitude equations in various regimes
for numerical stability. The resolution necessary for convergence of the numerical
solutions varied based on the asymptotic regime considered. For example 2562 or
5122 Fourier modes were necessary in order to capture the formation of small-scale
features in vWDR whereas 1282 Fourier modes were sufficient in other regimes.
Hyperviscosity was varied according to the resolution so as to obtain O(1) Reynolds
number at the grid scale, with ⌫ = 10�12 at lowest resolution. Convergence was
checked by doubling the resolution and decreasing the time steps.

3.1. The weak dispersion regime
‘Weak dispersion’ refers to the suppression of the pressure term (which leads to wave
dispersion) at leading order in (3.1a) when Bu ⌧ 1. This defines the broad set of
dynamics that, as argued above, characterizes higher baroclinic modes. For expository
reasons, we discuss this regime first, and the low-mode case of Bu ⇠ O(1) later.
To proceed asymptotically in the weak dispersion regime, one needs to assume a
particular scaling between Bu and the defining small parameter, ✏. YBJ exploited the
distinguished limit Bu ⇠ O(✏) to derive an amplitude equation for the evolution of
NIWs. We consider the same scaling to derive an improved equation for the weak
dispersion regime, noting that this distinguished scaling retains the largest number of
terms entering at asymptotically higher orders.

Following YBJ, it is convenient to switch to complex coordinates

U = u + iv and ⇠ = x + iy (3.3a,b)

�AA!#��DDD 1/�0"725�  "5�1 "��A�"�# ��AA!#���2 7  "5��� ���
��4� ���
 ���
� D�: /2�2�4" ���AA!#��DDD 1/�0"725�  "5�1 "� �,�D�. "����7C�"#7A(�� ���	��!"����
�/A�����������#%0��1A�A �A���
/�0"725��
 "��A�"�#� 4�%#���/C/7:/0:��/A



416 J. Thomas, K. S. Smith and O. Bühler

from which it follows that @/@x + i@/@y = 2@/@⇠ ⇤, U + iV = 2i @ /@⇠ ⇤, r · v =
@U /@⇠ + c.c. and v · r = U @/@⇠ + c.c. For convenience later, we also define the
operators

1⌘ @2

@x2
+ @2

@y2
= 4

@2

@⇠@⇠ ⇤ and 1? ⌘ @2

@x2
� @2

@y2
+ 2i

@2

@x@y
= 4

@2

@⇠ ⇤2 , (3.4a,b)

the first of which is just the horizontal Laplacian. For the second operator we note a
physical interpretation by observing that

|1? |2 =
✓
@2 

@x2
� @2 

@y2

◆2

+ 4
✓
@2 

@x@y

◆2

=
✓
@V
@x

+ @U
@y

◆2

+
✓
@U
@x

� @V
@y

◆2

= � 2,

(3.5)
where � is the total mean horizontal shear (containing normal and tangential
components). We also define the slow advection operator

D
DT

= @

@T
+ V · r = @

@T
+ J( , ). (3.6)

Letting T = ✏t be the slow time so that time derivatives become @/@t ! @/@t +
✏@/@T , we add the u equation to i times the v equation in (3.1a) to obtain

@U

@t
+ iU + ✏


DU

DT
+ i

2
�
1 U +1? U ⇤�+ 2

Bu
✏

@p
@⇠ ⇤

�
= 0, (3.7a)

@p
@t

+ @U

@⇠
+ @U ⇤

@⇠ ⇤ + ✏
Dp
DT

= 0. (3.7b)

Expanding variables as

(U , p) = (U0, p0) + ✏(U1, p1) + ✏2(U2, p2) + · · · (3.8)

the leading-order equations are

@U0

@t
+ iU0 = 0, (3.9a)

@p0

@t
+ @U0

@⇠
+ @U ⇤

0

@⇠ ⇤ = 0, (3.9b)

which have solutions

U0 = A0e�it, p0 = �i
@A0

@⇠
e�it + c.c. (3.10a,b)

where A0 = A0(⇠ , ⇠
⇤, T). Using the leading-order solutions (3.10a,b), the equations at

O(✏) are

@U1

@t
+ iU1 +


DA0

DT
+ i

2

✓
1 A0 � Bu

✏
1A0

◆�
e�it

+ i
2


1? A⇤

0 + Bu
✏
1?A⇤

0

�
eit = 0, (3.11a)

@p1

@t
+ @U1

@⇠
+ @U ⇤

1

@⇠ ⇤ + D
DT

✓
�i
@A0

@⇠
e�it + c.c.

◆
= 0. (3.11b)

�AA!#��DDD 1/�0"725�  "5�1 "��A�"�# ��AA!#���2 7  "5��� ���
��4� ���
 ���
� D�: /2�2�4" ���AA!#��DDD 1/�0"725�  "5�1 "� �,�D�. "����7C�"#7A(�� ���	��!"����
�/A�����������#%0��1A�A �A���
/�0"725��
 "��A�"�#� 4�%#���/C/7:/0:��/A



Near-inertial wave dispersion by geostrophic flows 417

0 2 4 6 0 2 4 6 10 2 3 4 5 6
1.00
1.05
 1.10
1.15
 1.20
1.25
1.30
1.35
1.40

2

4

6

2

4

6

0.5
0

1.0
1.5
2.0
2.5

0.5
0

1.0
1.5
2.0
2.5

y

(a) (b) (c)

x x

FIGURE 4. (Colour online) (a,b) |A| = p
u2 + v2 obtained from the YBJ equation (3.12)

and from RSW (3.1). (c)
ph|A|2ipart versus slow time, ✏t, for the YBJ amplitude equation

(red curve) and for RSW (black curve) where h�ipart refers to spatial average calculated
over the top right quarter of the domain. The simulations used the parameters ✏ = Bu =
0.0125.

Eliminating secular growth in (3.11a) by setting to zero the terms multiplied by e�it,
we obtain the shallow water version of the YBJ amplitude equation

@A0

@T
+ J( , A0) + i

2

✓
(1 )A0 � Bu

✏
1A0

◆
= 0. (3.12)

Note that in the slow time T , all terms in this expression are of the same asymptotic
order; when T = ✏t is used, all terms except the time derivative are of O(✏). Figure 4
compares the numerical solution of (3.12) with that of RSW for Bu = ✏= 0.0125. The
amplitude equation agrees quite well with the parent model in detail. Note also the
expected accumulation of wave activity in regions of anticyclonic vorticity.

3.2. Next-order weak dispersion regimes
Here we continue to the next order in ✏ to provide an amplitude equation that allows
for a wider range of scalings between the Burger and Rossby numbers, consistent
with the results in § 2. The usefulness of this exercise will be demonstrated after the
derivation.

We will first need the solution to (3.11), given A0 from (3.12). The result is

U1 = A1e�it + B1eit, p1 = �


i
✓
@A1

@⇠
+ @B⇤

1

@⇠ ⇤

◆
+ D

DT
@A0

@⇠

�
e�it + c.c. (3.12a,b)

where

B1 = �1
4

✓
1? A⇤

0 + Bu
✏
1?A⇤

0

◆
. (3.13)

To obtain a higher-order amplitude equation, we employ a ‘composite’ technique
that proceeds as follows. The solvability condition (3.12) is modified as

DA0

DT
+ i

2

✓
(1 )A0 � Bu

✏
1A0

◆
= ✏�, (3.14)
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where � = �(x, T) (or �(⇠ , ⇠ ⇤, T) in terms of complex coordinates) is a higher-
order correction term. This is analogous to the derivation of higher-order correction
terms for the nonlinear Schrödinger equation, which is the lower-order equation, to
capture the evolution of deep water waves to a higher level of accuracy (see Dysthe
1979; Trulsen & Dysthe 1996). The reader may refer to Ablowitz (2011) for similar
problems that take advantage of this composite method. An alternative approach is
to define a second slow time, ⌧ = ✏2t and derive an amplitude equation on time
scales ⌧ ⇠ O(1). Such a strategy, it can be shown, is equivalent to the above method
and would result in the same slow amplitude equation on 1/✏2 time scales (see, for
example, appendix A of Thomas (2016) for a comparison of these two alternative
methods). To obtain �, we need to prevent secular growth at the next order. At O(✏2),
(3.7a) gives

@U2

@t
+ iU2 +�e�it + DU1

DT
+ i

2
�
1 U1 +1? U ⇤

1

�+ 2
Bu
✏

@p1

@⇠ ⇤ = 0. (3.15)

Substituting the first-order solutions (3.12a,b) into the above and setting terms
proportional to e�it to zero, we obtain the solvability condition

� + DA1

DT
+ i

2
�
1 A1 + B⇤

11
? 

�� Bu
2✏


i1A1 + i1?B⇤

1 + 4
@

@⇠ ⇤

✓
D

DT
@A0

@⇠

◆�
= 0.

(3.16)
We then eliminate � by combining the two equations as (3.14) + ✏ (3.16), use
(3.13) to eliminate B1, (3.12) to eliminate the @2A0/@T@⇠ term and define a combined
amplitude as A = A0 + ✏A1 to obtain the composite amplitude equation

@A
@T

+ J( , A) + i
2
1 A � Bu

✏

i
2
1A � i

8
Bu2

✏
12A � i

8
✏|1? |2A + 2BuG = 0, (3.17)

where

G = @

@⇠ ⇤ J
✓
@ 

@⇠
, A

◆
+ i

@2

@⇠ ⇤2

✓
@2 

@⇠ 2
A
◆

� i
✓
@2 

@⇠ ⇤2

◆
@2A
@⇠ 2

+ i
8
1 (1 A) . (3.18)

We may further set T = ✏t in (3.17) resulting in a multiplication of every term besides
the time derivative by ✏ (likewise for (3.12)).

Notice that (3.17) contains all the terms from (3.12), in addition to new correction
terms of orders Bu2/✏, ✏ and Bu. While typically one would seek a higher-order
equation in order to extend the temporal range of validity of the model, or to improve
accuracy at large values of the small parameter, here, we argue the most useful aspect
of the extended model lies in it’s ‘off-axis’ improvements: Bu can stray further from ✏
at fixed ✏. Referring back to figure 3, the next-order WDR model captures more of the
dynamics sampled by a spectrum of waves (a range of Bun) at a given ✏. Consistent
with this goal, we want to keep some correction terms, but we see no reason to use the
full expression with the exact choice Bu = ✏, for which the YBJ equation (3.12) was
shown in the previous subsection to match the RSW solutions extremely well. Thus
rather than use this equation as derived, we now proceed to consider two subranges.
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Consider separately examples for the cases (i) 1 � Bu � ✏ (e.g. Bu ⇠ ✏1/2), (ii) Bu ⇠
✏ and (iii) ✏� Bu (e.g. Bu ⇠ ✏2). The terms with prefactors in (3.17) then scale as

(i) Bu ⇠ ✏1/2 : Bu
✏

⇠ ✏�1/2 � Bu2

✏
⇠ 1 � Bu ⇠ ✏1/2 � ✏,

(ii) Bu ⇠ ✏ : Bu
✏

⇠ 1 � Bu2

✏
⇠ Bu ⇠ ✏,

(iii) Bu ⇠ ✏2 : Bu
✏

⇠ ✏� Bu ⇠ ✏2 � Bu2

✏
⇠ ✏3.

9
>>>>>=

>>>>>;

(3.19)

In case (i), the new Bu2/✏ term is O(1) and the Bu/✏ term (part of the original YBJ
equation) is dominant. The other two terms, both new, are negligible. In case (ii), the
three new terms, including Bu G, are all O(✏) and small compared to the O(1) original
term Bu/✏. As mentioned above, there is little reason to retain these terms since the
original WDR equation was already shown to be accurate. Finally, in case (iii), all
terms are small, but the new term, with prefactor ✏ in (3.17), is of the same order as
the original term Bu/✏, and so should be retained. Below we consider cases (i) and
(iii) explicitly.

3.2.1. Intermediate dispersion regime: Bu ⇠ p
✏

Recall from figure 1 that the modal Burger number decreases monotonically as the
mode n increases. For sufficiently small ✏, some modal Burger numbers satisfy ✏ ⌧
Bun ⌧ 1, and the number of modes satisfying this scaling increases with decreasing
✏. This motivates the scaling Bu ⇠ p

✏, which we term the ‘intermediate dispersion
regime’. In this limit, the pressure gradient term in (1.6a) is small, and so does not
appear at leading order, but is larger than the mean flow interaction terms. We set
Bu ⇠ p

✏, set T = ✏t and retain terms up to O(✏) in (3.17) to get the ‘intermediate
dispersion regime’ (IDR) amplitude equation

@A
@t

+ ✏J( , A) + ✏
i
2
(1 )A � Bu

i
2
1A � Bu2 i

8
12A = 0. (3.20)

Alternatively, we could have obtained the above amplitude equation by beginning with
the scaling Bu ⇠ p

✏ in RSW and using multiscale asymptotic analysis as before withp
✏ as the small parameter. Note that the above equation has two dispersive terms:

the higher-order dispersive term, 12A, which is of the same order as the advection
and refraction terms (since Bu ⇠ p

✏), is asymptotically smaller than the lower-order
dispersive term, 1A, but is expected to be an important correction on 1/✏ time scales.

If we ignore the mean flow terms, the dispersion relationship for the above equation
has the form !idr = (Bu/2)|k|2 � (Bu2/8)|k|4. Further if we Taylor expand the
dispersion relationship of gravity waves assuming small Burger number, we obtain

p
1 + Bu|k|2 ⇠ 1 + Bu

2
|k|2 � Bu2

8
|k|4. (3.21)

Note that the ‘1’ above is associated with the pure inertial frequency part, which was
removed by deriving the slowly evolving amplitude equation. Therefore, the higher-
order dispersion term in (3.20) corresponds to the dispersive term expected according
to the gravity wave dispersion relationship.

To see the improvement obtained by the addition of the higher-order dispersion term
in IDR, we set ✏= 0.0125 and Bu = p

✏ and compute numerical solutions of the IDR
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amplitude equation (3.20), the YBJ equation (3.12) and RSW (3.1). We define the
error relative to RSW as

eidr =
⌦|Aidr � Arsw|2↵⌦|Arsw|2↵ , (3.22)

where h i denotes spatial averaging, Arsw = p
u2 + v2 is obtained from the numerical

solution of (3.1) and Aidr is the wave amplitude obtained from the numerical solution
of (3.20). Replacing ‘idr’ with ‘ybj’ indicates the equivalent error for the YBJ
equation (3.12) relative to RSW. The results are given in figure 5, panel (a) of which
shows the amplitude modulus |A| = p

u2 + v2 for IDR, YBJ and RSW at ✏t = 6.25.
Figure 5(b) shows the (root mean square) r.m.s. velocity in the top right quarter of

the domain while figure 5(c) shows the phase of the wave field calculated based on
the average velocities in the top right quarter of the domain. We find that although
the magnitudes of the velocity predicted by IDR and YBJ equations are comparable,
as can be inferred from figure 5(b), the YBJ solution becomes out of phase with
RSW solution, the difference increasing with time. This is clearly seen figure 5(c)
that shows the phase. Observe that for small times, all three models agree in phase
and are indistinguishable. However, on longer time scales the YBJ equation deviates
significantly from the RSW solution while the IDR solution diverges only slightly. At
slow time T = ✏t = 6.25, when YBJ and RSW are almost completely out of phase,
figure 5(a) shows the horizontal structure of the velocity field. Observe that while
RSW predicts a wave field with increased concentration in anticyclones and decreased
concentration in cyclones, a behaviour that is well captured by the IDR equation, the
YBJ equation predicts an almost homogeneous wave field at this time. Finally the last
panel shows the r.m.s. error between YBJ and IDR equations as compared with RSW.
As can be seen, the error of the YBJ equation increases at a much more rapid rate
than that for the IDR equation.

3.2.2. Very weak dispersion regime: Bu ⇠ ✏2

We now consider very high baroclinic modes, in a regime characterized by Bu ⇠ ✏2.
Wave dispersion in this regime is smaller than the mean flow interaction terms and
we therefore call this the ‘very weak dispersion regime’. Setting Bu ⇠ ✏2 and retaining
terms up to O(✏2) in (3.17), we obtain the vWDR amplitude equation

@A
@t

+ ✏J( , A) + ✏
i
2
(1 )A � Bu

i
2
1A � ✏2 i

8
|1? |2A = 0. (3.23)

As in IDR, we note that rather than considering a limiting form of (3.17) we could
have obtained the above equation starting from RSW by setting Bu ⇠ ✏2. If we ignore
the dispersive and advective terms, we observe that the solution of the amplitude
equation may be written as

A = A(t = 0) exp
⇢

�it
✓
✏

2
1 � ✏2

8
� 2

◆�
, (3.24)

which indicates that the geostrophic vorticity and shear, � (see (3.5)), shift the
frequency of the wave field. Previous works have identified this by simply ignoring
the pressure gradient term in RSW right from the start and calculating the frequency
shift produced by a mean flow, two notable ones being Fomin (1973) and Chavanne,
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FIGURE 5. (Colour online) (a) |A| = p
u2 + v2 for IDR, YBJ and RSW at ✏t = 6.25.

(b)
ph|A|2ipart (spatial average over top right quarter) obtained from RSW (black), YBJ

(blue) and IDR (red). (c) Phase (✓ , calculated as hAipart = Rei✓ ) of various models with
the same colour pattern as the second panel. (d) Errors eidr (red curve, see (3.22)) and
eybj (black curve). All the simulations used the parameters Bu = p

✏, ✏ = 0.0125.

Firing & Ascani (2012). Chavanne et al. (2012) finds an expression for effective
frequency due to the modulation by a mean flow as (equation (A 5) there):

feff

f
=
⇢

1 + ✏1 + ✏2

4
�
1 � � 2�

�1/2

⇠ 1 + ✏

2
1 � ✏2

8
� 2 + O(✏3), (3.25)
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which after removing the ‘1’ agrees with our expression in (3.24). The vWDR
amplitude equation (3.23) therefore captures the next-order refraction term due to
geostrophic shear in addition to the contribution from vorticity.

Since the wave dispersion is very weak in this regime, evolution of the wave field
is even slower than for the other regimes. We therefore choose a higher Rossby
number, ✏ = 0.125, to facilitate long-time simulations. We now compare the vWDR
and YBJ amplitude equations with RSW. Figure 6(a) compares the spatial structure
of |A| obtained from these three models. Figure 6(b,c) shows the r.m.s. and phase
of the wave field in the top right quarter of the domain, while figure 6(d) shows
the r.m.s. error between the vWDR and YBJ equations relative to RSW. Overall we
find two important results. First, the vWDR is characterized by smaller wave field
features in comparison with the other two cases considered so far. The formation
of small-scale features in the wave field results in deviations between the reduced
models and RSW, the difference increasing with time. Although all three models
agree for an initial period, the magnitude and phase of the reduced models deviate
from the parent model. Second, we note that the higher-order refraction term that
forms a correction term to YBJ in this regime does not improve the features of
the YBJ model. While not apparent here, in the next section we show that, with or
without this term, the amplitude equation breaks down faster than expected; scaling
of the conservation law for the amplitude equation offers an explanation.

3.3. The strong dispersion regime
Recall that low baroclinic modes may have Bu ⇠ O(1), explicitly violating the initial
assumption of YBJ that the Burger and Rossby numbers are of the same order.
Because there can be no resonant forcing of the leading-order equation in this case,
low baroclinic modes remain unmodulated for time scales t ⇠ 1/✏. However, as we
show, resonant modulation of the NIWs is possible at time scales t ⇠ 1/✏2. We
therefore define a slow time scale T = ✏2t and set @/@t ! @/@t + ✏2@/@T to rewrite
(3.1) as

@v

@t
+ ẑ ⇥ v + Burp + ✏ {v · rV + V · rv} + ✏2 @v

@T
= 0, (3.26a)

@p
@t

+ r · v + ✏ V · rp + ✏2 @p
@T

= 0. (3.26b)

We now expand all variables as an asymptotic series in ✏, with the notation

(v, p) = (v0, p0) + ✏(v1, p1) + O(✏2). (3.27)

At O(1), (3.26) become

@v0

@t
+ ẑ ⇥ v0 + Burp0 = 0, (3.28a)

@p0

@t
+ r · v0 = 0. (3.28b)

These are the standard linear equations for inertia–gravity waves. For the initial
conditions (3.2a,b), consisting of a horizontally uniform inertial wave field, the
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FIGURE 6. (Colour online) (a) |A| = p
u2 + v2 for vWDR, YBJ and RSW at ✏t = 6.25.

(b)
ph|A|2ipart obtained from RSW (black), YBJ (blue) and vWDR (red). (c) Phase

(✓ , calculated as hAipart = Rei✓ ) of various models with the same colour pattern as (b).
(d) Errors evwdr (red curve) and eybj (black curve). All the simulations used the parameters
Bu = ✏2, ✏ = 0.125.

solution to (3.28) remains horizontally uniform and is given by

v0 = 1
2 A(T)(x̂ � iŷ)e�it + c.c. and p0 = 0. (3.29a,b)
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Notice that the wave amplitude A is expected to evolve in the slow time T .
At O(✏), equations (3.26) lead to

@v1

@t
+ ẑ ⇥ v1 + Burp1 = �v0 · rV, (3.30a)

@p1

@t
+ r · v1 = 0. (3.30b)

Using the result in appendix B, the above equations can be transformed to obtain

L v1 =1

⇢
� @v0

@t
+ Buv0 · rV

�
, (3.31a)

L p1 =1 {Buv0 · r } , (3.31b)

where

L = @

@t

✓
@2

@t2
+ 1 � Bu1

◆
. (3.32)

These equations may be considered a diagonalized form of (3.30). The solution of the
above system consists of a particular solution of inertial frequency and a homogeneous
solution consisting of gravity waves and a steady part (see for example Danioux &
Klein 2008). The particular solution of inertial frequency may be obtained from the
above equations by observing that v0 has no spatial dependence and satisfies (@2/@t2 +
1)v0 = 0. The solution of above system may be expressed as

v1 = 1
Bu
 v0 + @v0

@t
· rV + vh, (3.33a)

p1 = 1
Bu
@v0

@t
· r + ph, (3.33b)

where the superscript ‘h’ denotes homogeneous solution of (3.30). Reverting again to
complex velocity notation, U = u + iv, for the horizontal velocity modes, we use
(3.33a) to obtain U1 =U io

1 +U h
1 , where U io

1 and U h
1 represent the particular solution

(inertial waves) and the homogeneous solution at O(✏), respectively, with

U io
1 =

✓
1

Bu
 + 1

2
1 

◆
Ae�it + 1

2
�
1? 

�
A⇤eit. (3.34)

An expression for U h
1 for arbitrary  may be written in terms of a Green’s function

or Fourier modes. However, this is not attempted here since we require only the
general expression for the inertial wave part to calculate the modulation of the leading
inertial wave field in SDR for t ⇠ 1/✏2; the homogeneous part does not resonantly
force the inertial frequency and therefore cannot modulate the leading-order inertial
wave field. We note that although the leading-order inertial wave field is not affected
by the mean flow for time scales t ⇠ 1/✏, the interaction leads to the formation of
weak O(✏) inertial wave fields, as seen in (3.34).

To capture the modulation of inertial waves by the balanced flow in the long-time
limit, t ⇠ 1/✏2, we proceed to O(✏2). The momentum equation (3.26a) at this order is

@v2

@t
+ ẑ ⇥ v2 + Burp2 = �

✓
@v0

@T
+ v1 · rV + V · rv1

◆
(3.35)
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or, in terms of the complex velocity,

@U2

@t
+ iU2 + Bu

✓
@

@x
+ i

@

@y

◆
p2 = �

✓
@U0

@T
+ R

◆
, (3.36)

where

R = r · (U1V) + i
2
�
U1 1 + U ⇤

1 1
? 

�
. (3.37)

The left-hand side of equation (3.36) supports the whole spectrum of gravity waves.
To obtain the amplitude equation for NIWs using a solvability condition, we spatially
average (3.36) and use (3.34) to obtain

dhU2i
dt

+ ihU2i = �
✓

dU0

dT
+ hRi

◆
, (3.38)

where h i refers to spatial averaging over the whole domain and

hRi = i
4

⌧✓
2 
Bu

+1 

◆
1 �1? 1?⇤

 

�
Ae�it + NR (3.39)

= � i
2Bu

h(r )2iAe�it + NR. (3.40)

Non-resonant (NR) terms consist of factors multiplying eit and the homogeneous
solution. The second line follows from multiple applications of integration by parts
(for example, h 2

xyi = h xx yyi, with subscripts indicating partial derivatives) and some
simplification, which ensures that all the terms except h 1 i cancel.

The solvability condition now consists of setting the terms containing e�it on the
right-hand side of (3.38) to zero. This gives the amplitude equation

dA
dT

� i
2Bu

h(r )2i A = 0 (3.41)

whose solution may be written as

A(T) = A(0) exp
 h(r )2i

2Bu
iT
�

. (3.42)

Thus the horizontally averaged kinetic energy of the balanced flow lowers the
frequency of the NIWs from the initial inertial frequency, making them subinertial.
Since different baroclinic modes have different Bu, this can lead to vertical dispersion
of the modes in SDR in the long-time limit. We compare this asymptotic prediction
by numerically integrating (3.1) with Bu = 1 and ✏ = 0.125 (since in SDR, we
will need to numerically integrate for times of order t ⇠ 1/✏2, we chose the higher
Rossby number). Figure 7 shows comparisons between the asymptotic prediction and
numerical solution of RSW and it is seen that the difference is negligible for the
time scales considered.
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FIGURE 7. (Colour online) Comparison between asymptotic prediction for SDR (3.42)
(red curve) and numerical solution of RSW (3.1) (black curve) for ✏ = 0.125 and Bu = 1.
The straight line is hui2 + hvi2, the curve beginning at 1 is hui2 and the curve beginning at
0 is hvi2. Observe that the black curves lie over the red curves indicating the exceptional
agreement between the asymptotic predictions and numerical results.

A note on the ‘strong dispersion approximation’ of YBJ
Section 5 of YBJ introduces a further approximation to their amplitude equation

based on a spatial scale separation between NIWs and the background flow. Defining
µ as the ratio of eddy horizontal scales to wave horizontal scales (equation (5.2) in
YBJ), they refer to the limit µ ⌧ 1 as the ‘strong dispersion approximation’ (SDA).
Further, since SDA uses only the YBJ equation, ignoring the O(✏) corrections to
the leading-order wave field (expressed in equation (2.25) in YBJ), one requires
µ � ✏ and therefore one has the ordering of small parameters: ✏ ⌧ µ ⌧ 1.
The asymptotic expansion of the velocity field for example may be rewritten as
U = A00(t) + µA01(x, y, t) + O(max(µ2, ✏)), where A00 and A01 are asymptotic
expansions of the leading-order NIWs amplitude A0, as seen in (3.10a,b) (these are
expressed as A and A0, respectively, in YBJ – see their equation (5.6)). Asymptotic
expansions in µ may be used to obtain expressions for A01 (equation (5.12) in YBJ),
which is the leading-order spatially inhomogeneous wave field (since A00 is spatially
homogeneous). YBJ use this result to argue that NIWs in the SDA must concentrate
in anticyclones.

In contrast the leading-order wave field in SDR is homogeneous with infinite
horizontal scales, implying that µ ! 1, and the next-order inhomogeneities are O(✏)
with spatial scales of the order of the mean flow scales. These O(✏) inhomogeneous
fields consist of pure inertial oscillations and gravity waves of varying frequencies, as
indicated in (3.33a). Since the leading inhomogeneous field in SDA is different from
that in SDR, the predictions of anticyclonic trapping using the YBJ equation do not
apply in SDR. This is in spite of the fact that both SDA and SDR predict the same
equation for the leading-order homogeneous wave field: the SDR amplitude equation,
(3.41) is identical to the SDA leading-order amplitude equation for A00 (equation
(5.10) in YBJ), despite that the procedure followed in deriving them are completely
different.

Therefore in SDR there is no affinity of NIWs towards anticyclones, while SDA
predicts the opposite. Note that since SDA uses the YBJ equation as its parent model,
the solution of the YBJ equation captures all the asymptotic results obtained with µ
as the small parameter. To illustrate that SDA is not valid in SDR, we integrate RSW
and the YBJ equation by setting Bu = 1 in both models; the results are shown in
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FIGURE 8. (Colour online) (a–c) and (d–f ) show |A| from the RSW and YBJ simulations,
respectively. Both simulations used Bu = 1 and ✏ = 0.125. The solution of RSW in
SDR fluctuates on a fast time scale due to the excitation of non-inertial gravity waves,
as expressed in (3.33a). The RSW solution is in general therefore very different from
what may be obtained by integrating the YBJ in SDR, or based on the strong dispersion
approximation on the YBJ equation, the latter being a subset of the solution of the YBJ
equation. A noticeable difference is the trapping of waves in anticyclones in the YBJ case
(as predicted), a feature that is not seen in the parent model, RSW even after long times.

figure 8. The RSW solution consists of fast wave fields consisting of gravity waves
and inertial waves (see (3.33)) in addition to spatially homogeneous inertial waves and,
even after long times, shows no affinity towards anticyclones. In contrast, the YBJ
equation integrated with the same parameters shows a tendency for the wave field to
concentrate in anticyclones. This experiment indicates that the YBJ equation cannot
capture the features of the SDR; therefore SDA, which is a further reduction of the
YBJ equation, does not hold in the SDR.

4. Conservation laws, trapping of NIWs in anticyclones and small-scale formation
in the weak dispersion regimes

In this section, we identify conservation laws for the weak dispersion amplitude
equations, and in this context consider the trapping of NIWs in anticyclones and
scaling arguments for breakdown of the amplitude equations in vWDR. We first note
that the YBJ equation has two conservation laws (Danioux, Vanneste & Bühler 2015,
hereafter DVB). The first is

d
dt

h|A|2i = 0, (4.1)

where angle brackets denote spatial averaging; it follows from hA⇤(3.12) + c.c.i (where
the 0 subscript has been dropped). This conservation law is due to the symmetry
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associated with translational invariance of the phase of NIWs, i.e. A ! Aeis, and
therefore may be called the ‘action’ integral (Xie & Vanneste 2015). Note that action
is also proportional to the kinetic energy of the waves (|A|2 = u2 + v2) and therefore
NIWs cannot exchange kinetic energy with the mean flow. The second invariant is

d
dt

Eybj = 0, Eybj = Eadv + Edisp + Erefr, (4.2a,b)

Eadv = i✏ h J(A⇤, A)i , Edisp = Bu
2

⌦|rA|2↵ , Erefr = ✏

2
⌦
(1 )|A|2↵ . (4.3a�c)

This follows from computing hi@A⇤/@t (3.12) + c.c.i, and arises due to the time
translational symmetry (consistent with the requirement of a steady mean flow) and
thus may be interpreted as the ‘energy’ (however, note that this is not the physical
energy – kinetic, potential or sum – of the waves). While a steady mean flow is
required to obtain this conservation law, the asymptotic derivation of the amplitude
equation may be extended for the case of a mean flow that evolves on the slow time
scale, ✏t.

It then follows that the potential energy of the wave field (proportional to |rA|2)
is not conserved, unlike kinetic energy, and thus may be exchanged with the mean
flow. As was pointed out by Xie & Vanneste (2015), this is a mechanism by which
the waves can extract energy from the mean flow: modulation of the waves by the
mean flow leads to smaller wave scales, and hence an increase in the potential
energy of the waves, potentially providing a sink for the energy of mesoscale eddies.
Although Xie & Vanneste (2015) considered a parameter regime where the waves
are stronger than the mean flow, due to the absence of resonant nonlinear terms, the
wave evolution equation is exactly same as the basic YBJ equation (lack of nonlinear
wave interaction terms for NIWs is due to the absence of resonant wave triads
or quartics between pure inertial frequency components, see for example Wagner &
Young 2016 and Zeitlin, Reznik & Ben Jelloul 2003). In the regime studied here,
where the waves are weaker than the mean flow, the same mechanism is at play, but
the energy extracted by the waves from the mean flow is asymptotically smaller than
the total mean flow energy. This is also why the assumption of a steady mean flow
is consistent in this study.

The IDR and vWDR equations have similar conservation laws and can be derived
following the same procedure above. The first conservation law, action, remains the
same for IDR and vWDR equations. The ‘energy’ conservation laws for IDR and
vWDR equations are, respectively,

d
dt

Eidr = 0, Eidr = Eybj + Edisp2, Edisp2 = �Bu2

8
⌦|1A|2↵ (4.4a�c)

and

d
dt

Evwdr = 0, Evwdr = Eybj + Erefr2, Erefr2 = �✏
2

8
⌦|1? |2|A|2↵ . (4.5a�c)

Following DVB, one may use scaling arguments applied to these conservation laws to
understand why wave activity increases in anticyclones. Because the IDR and vWDR
equations are basically the YBJ equation with correction terms that matter at long
times, these arguments are a trivial extension of DVB and are not repeated here.
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FIGURE 9. (Colour online) (a) Streamfunction and (b) associated vorticity. (c–e)
Amplitude modulus |A| obtained from numerical solutions of RSW: (c) IDR (✏ = 0.0125
and Bu = p

✏); (d) YBJ (✏ = Bu = 0.0125); (e) vWDR (✏ = 0.125 and Bu = ✏2).

We instead consider these conservation terms in the context of additional numerical
simulations. For completeness we use a somewhat more natural mean flow field,
obtained by numerically integrating the two-dimensional vorticity equation initialized
with uniformly distributed random numbers in the interval (0, 10) on the grid points.
The size of the domain was increased to [0, 10p]⇥ [0, 10p] and the time integration
was stopped when the vortical fields that formed had spatial scales approximately
one-tenth of the domain size, so that in non-dimensional form the vortical structures
of the mean flow have O(1) length scales. We further scaled the r.m.s. vorticity such
that h(1 )2i = 1. The vorticity field and the corresponding streamfunction are shown
in figure 9(a,b).

Figure 9(c–e) shows the amplitude modulus |A| in three cases: IDR (✏ = 0.0125,
Bu = p

✏), YBJ (✏ = Bu = 0.0125) and vWDR (✏ = 0.125, Bu = ✏2), by integrating
the RSW equations using this non-evolving mean flow, and initialized with a
homogeneous wave field. Just as in the previous section, the solutions of each
amplitude equation provide faithful approximations to the RSW solutions (figures not
shown, but see figure 10), although we found that in the very weak dispersion regime,
on longer time scales, the solution of the vWDR amplitude equation deviates from
the RSW solution due to the formation of smaller spatial scales (discussed below).

Figure 10 shows time series of the energy terms in (4.2)–(4.5). Overall, the energy
terms from the amplitude equations and RSW are strikingly similar. A variable that
measures the correlation between anticyclonic vorticity and wave strength is Erefr in
(4.2); note that it is negative in all cases, consistent with anticyclonic trapping in
the limit Bu ⌧ 1. Figure 10(a,b) shows results from the IDR. One can see that the
refraction term balances the lower-order dispersion terms. Assuming the spatial scale
of waves to be l, we note that l � 1 and l ⌧ 1 means the wave field has larger
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FIGURE 10. (Colour online) Components of the energy terms in the conservation laws
for the amplitude equations (4.4) for IDR (a,b), (4.2) for YBJ (c,d) and (4.5) for vWDR
(e, f ). (a,c,e) Show results from the respective amplitude equations, and (b,d, f ) show the
same terms computed from the RSW solution. In (a,b) for IDR, the curves are Eadv (black
curve), Edisp (blue curve), Erefr (red curve), Edisp2 (magenta curve) and Eidr (discontinuous
black curve), as functions of the slow time ✏t, for ✏ = 0.0125 and Bu = p

✏. In (c,d)
for YBJ, the curves are Eadv (black curve), Edisp (blue curve), Erefr (red curve) and Eybj
(discontinuous black curve), as functions of the slow time ✏t for ✏= Bu = 0.0125. In (e, f )
for vWDR, the curves are Eadv (black curve), Edisp (blue curve), Erefr (red curve), Erefr2
(magenta curve) and Evwdr (discontinuous black curve), as functions of the slow time ✏t
for ✏ = 0.125 and Bu = ✏2.

or smaller spatial scales than the mean flow, respectively, since the mean flow has
O(1) spatial scales in non-dimensional form. If we equate the refraction and dispersion
terms, we obtain l ⇠p

Bu/✏� 1 as a scaling estimate for the wave field, implying that
the spatial scale of the wave field is larger than that of the mean flow in this regime,
as also seen in figure 9(c).

In the vWDR experiment shown in figure 10(e, f ), one sees that the total energy
Evwdr, although exactly conserved in the amplitude equation, increases with time when
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FIGURE 11. (Colour online) Bu
ph|rp|2i (red curve) and ✏

ph|V · rp|2i (black curve)
obtained by integrating RSW with the same parameters used for figure 10(e, f ).

calculated using the RSW solution, indicating a breakdown of the assumptions that led
to the vWDR amplitude equation. Note that both of the refraction terms are negligible
(consistent with results shown in § 3), with instead the advection term balancing the
dispersion term. This is a consequence of the small spatial scale formation in the wave
field, resulting in amplification of the spatial derivatives of the wave amplitude. These
two features are also obvious from figure 9(e).

To understand this, consider the following scaling argument. Balancing the
dispersive and advection terms, we find l ⇠ Bu/✏ and since Bu ⇠ ✏2 we obtain
an estimate for the scales of the wave field as l ⇠ ✏. Since the horizontal length
of the wave field scales as l ⇠ ✏ the advective nonlinearity U/fl, which resembles
Rossby number with wavelength scale l replacing mean flow scale L, can reach O(1)
values and pressure gradients can increase beyond the scaling assumptions of vWDR.
We plot the pressure gradient terms and the largest mean flow interaction terms in
figure 11. Observe that the mean flow interaction terms become O(1), invalidating our
asymptotic analysis which assumed these terms to be small. Similarly, the pressure
gradient term becomes O(✏), since Burp ⇠ ✏2/l ⇠ ✏, violating the initial scaling of
O(✏2). However, we note that the wave field is still near inertial, since the pressure
gradient term is asymptotically small. The breakdown of the asymptotic model
due to the increased magnitude of the mean flow interaction terms imply that the
conservation law for the vWDR amplitude equation need not be conserved when
calculated using RSW.

We observe that the refraction term is negative definite in IDR and takes very
small negative values in vWDR. This term is therefore expected to be negative in
the regime Bu ⇠ ✏, assuming a smooth change in variables. This is the crux of the
argument made in DVB to explain trapping of waves in anticyclones based on the
YBJ equation. Further, while IDR and vWDR have, respectively, larger and smaller
spatial scales than the mean flow, the Bu ⇠ ✏ regime has scales comparable to that of
the mean flow, as can be seen in figure 9(d). As a consequence, dispersion, refraction
and advection terms in the amplitude equation are all non-negligible, as may be
inferred from figure 10(c,d), a feature that is faithfully observed in RSW as well.

In summary, we note three important observations resulting from this section.
Scaling arguments applied to the conservation laws, as pointed out by DVB, can
be easily modified for the IDR and vWDR equations and therefore the increased
wave activity in anticyclones is a generic feature of the weak dispersion regime.
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Further, energy components when calculated using RSW solutions agree quite well
with the amplitude equation predictions, which again is not an obvious statement
for an arbitrary mean flow such as the one we considered. Finally, based on scaling
estimates, we find that the vWDR develops small-scale features as a generic property,
resulting in O(1) advective nonlinearity, U/fl, for the wave field. This restricts the
long-term validity of a reduced model in this regime.

5. Discussion

In this paper we have investigated the resonant modulation of small-amplitude
NIWs, initially confined to the mixed layer, by a steady barotropic mean flow.
Although this wave-mean flow interaction problem has been considered before,
a unified and comprehensive treatment of the different interaction regimes using
asymptotic analysis and numerical simulations is a novel feature of this work. As
we have shown, the key non-dimensional parameter that determines the nature of
the interaction is the Burger number for each baroclinic mode onto which the wave
field projects, Bun = (NH/�nfL)2, where H is the depth of the ocean and L represents
the eddy horizontal scale. Depending on the relationship between the modal Burger
number and the Rossby number of the balanced flow, ✏, we considered two broad
asymptotic regimes – strong and weak dispersion.

The weak dispersion regime characterized by Bu ⌧ 1 can contain significant number
of baroclinic modes and several previous works have used the YBJ equation to capture
the features of this regime. We derived a next-order YBJ equation to extend the range
of validity of the amplitude equation. The extended YBJ equation was applied to
two subregimes of WDR – intermediate and very weak dispersion regimes. The
intermediate dispersion regime is a stretch towards the limit where Burger number
becomes larger than the Rossby number, while remaining asymptotically small. A
higher-order dispersion term added to the YBJ equation was seen to be crucial to
capture the features of this regime.

The vWDR on the other hand considers the other extreme limit of Burger number
being asymptotically smaller than the Rossby number. A higher-order refraction term
arises as a correction term to YBJ equation in this regime, but this term is unimportant
in simulations. The vWDR equation is an example of an asymptotic model that leads
to its own demise: with increasing time the wave field acquires finer scales, leading
to the breakdown of the scaling assumptions used to derive it, and thus significant
deviations from the parent model. It must however be noted that the reduced model
works well in the regime ✏2 ⌧ Bu ⌧ ✏, while the failure associated with vWDR is
for Bu . ✏2. From an oceanographic perspective, vWDR can contain significant wave
shear and therefore could be important for wave breaking and shear-induced mixing.
Of course, a comprehensive modelling of this phenomenon would require taking into
account the complete nonlinear dynamics of the interaction problem, neglected in this
study.

The other major regime, SDR, is characterized by a homogeneous inertial wave field
at leading order, with mean flow kinetic energy modulating the wave field. As we
showed using numerical simulations, the wave field inhomogeneities are weak in this
regime and the wave does not develop significant features of the mean flow, justifying
the separation of this as a completely different regime like the WDR.

It was further seen that increased wave activity in anticyclones is a feature of the
WDR and follows directly based on scaling estimates using conservation laws as
shown by DVB. Numerical experiments reveal that as Burger number decreases from
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O(1) values, the wave field starts trapping in anticyclones and with decreasing Burger
number, the scales of the wave field keep decreasing. In IDR and vWDR the scales
of the wave field are larger and smaller than the mean flow scales, respectively, with
the wave and mean flow scales being comparable in the regime where Burger number
is of the same order as Rossby number, where the YBJ equation applies exactly.

Based on our discussion in WDR, we found that the higher-order dispersion
term could significantly improve the features of the YBJ equation in IDR while
the additional refraction term was seen not to improve the vWDR features. One
might therefore consider using the IDR equation, which is essentially YBJ with
a higher-order correction term, as an ‘improved’ YBJ equation to cover a wider
range of the weak dispersion regimes. However, this additional correction term,
while apparently asymptotically small in the range Bu & O(✏), causes problems in
the vWDR. As seen in the last section, the small-scale formation that bedevils the
vWDR is due to the dispersive term (corresponding to the ‘energy’ term Edisp in
(4.2)). The higher-order dispersive term that arises in IDR produces an even faster
breakdown of the amplitude equation in the vWDR (we checked this numerically, but
omit the relevant figure). This is easily seen based on the scaling estimates presented
for vWDR previously. Observe that for Bu ⇠ ✏2 and l ⇠ ✏ both dispersive terms in
(3.20) becomes comparable, resulting in larger errors on incorporating the higher
dispersion term in vWDR.

To summarize, for practical applications, the relevant modal amplitude equations
are

Bun ⇠ 1 : @An

@t
� i✏2

2Bun
h(r )2iAn = 0, (5.1)

Bun ⌧ 1 : @An

@t
+ ✏J( , An) + ✏

i
2
(1 )An � i

2
Bun 1An � i

8
Bu2

n 1
2An

| {z }
remove for Bun.✏2

= 0. (5.2)

The modulation of storm-excited inertial waves by an eddy field is a three-
dimensional problem, an idealized example of which is represented by the numerical
simulations presented in § 2. Through projection onto vertical modes, we have
deconstructed this interaction into a set of two-dimensional problems, which, for
reasonable dimensional values, may fall into different asymptotic regimes. The
complete description of the three-dimensional problem requires a final summation
over all of these modes and regimes. If a significant amount of the energy resides
in one asymptotic regime, the overall behaviour of NIWs will be well described
by the features of this regime (recall figure 2). We also note that although the
two-dimensional problems reveal clear mechanisms for anticyclonic accumulation
and the formation of small scales, no equivalently precise explanation for the
increased vertical propagation speed of wave energy into the deep ocean is apparent.
Nevertheless, it is broadly consistent with internal wave dynamics to say that smaller
horizontal scale wave modes, produced through modulation, propagate faster, as may
be inferred from (1.1). Thus for a given initial state, more energy in higher modes,
with small Burger numbers, implies faster vertical propagation of wave energy.

Lastly, we note one speculation. We have shown that the nature of the wave-mean
flow interaction depends on the ratio of the modal Burger and mean flow Rossby
numbers. Taking the horizontal mean flow scale as the deformation scale, L = NH/f ,
this ratio is

Bun

✏
= NH

n2p2Vg
. (5.3)
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Because N decreases from mid-latitudes to the poles, one may expect to find more
modes in the weak dispersion limit at higher latitudes, leading to more small-scale
wave production and hence faster vertical propagation of wave energy.
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Appendix A. Projecting (1.4) on baroclinic modes
We expand variables in (1.4) as

v(x, z, t) = v0(x, t) +
1X

n=1

vn(x, t)�0
n(z), w(x, z, t) =

1X

n=1

wn(x, t)�n(z), (A 1a,b)

p(x, z, t) = p0(x, t) +
1X

n=1

��2
n pn(x, t)�0

n(z), b(x, z, t) =
1X

n=1

�pn(x, t)Ñ2(z)�n(z),

(A 2a,b)

where �n(z), solves the Sturm–Liouville problem with �n as the eigenvalues

�00
n + �2

nÑ2(z)�n = 0, �n(0) = �n(�1) = 0. (A 3a,b)

In the case of constant stratification, which is the case we consider in this paper,
Ñ(z) = 1, the solutions are �0(z) = 1 and �n>0(z) = sin(npz), with eigenvalues �0 = 0
and �n>0 = np

Substitution into (1.4) and use of the orthogonality relation between the modes
results in shallow water equations (1.6) for each baroclinic mode, n > 1.

Derivation of the Fourier cosine series, (2.2)
From the Fourier cosine series in (2.2), it immediately follows that

An = 2
H

Z 0

�H
exp

✓
� z2

2h2

◆
cos

⇣npz
H

⌘
dz and A0 = 2

H

Z 0

�H
exp

✓
� z2

2h2

◆
dz. (A 4a,b)

From the above expression, observe that the integrand involved in the calculation of
An depends on n so that for each n an integral needs to be evaluated. Our goal is
to derive an expression for An so that the n dependence can be removed from the
integrand. We differentiate An with respect to n to obtain

dAn

dn
= 2ph2

H2

Z 0

�H


� z

2h2
exp

✓
� z2

2h2

◆�
sin

⇣npz
H

⌘
dz

= 2ph2

H2


exp

✓
� z2

2h2

◆
sin

⇣npz
H

⌘�0

�H
� 2np2h2

H3

Z 0

�H
exp

✓
� z2

2h2

◆
cos

⇣npz
H

⌘
dz

= �np2h2

H2
An. (A 5)
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Thus we obtain

An = A0 exp
✓

�n2p2h2

2H2

◆
(A 6)

and substituting the expression for A0 from (A 4) we find the expression for An in
(2.2). Observe that in this new expression for An, the integrand does not depend on
n, as in (A 4).

Appendix B. Diagonalizing the RSW equations

Consider a forced linear RSW system, i.e. a generalized form of (1.6) as

@v

@t
+ ẑ ⇥ v + ↵rh + F

v = 0, (B 1a)

@h
@t

+ r · v + Fh = 0. (B 1b)

Then the above set of equations can be transformed to obtain:

L h = r · @F

v

@t
+ ẑ · (r ⇥ F

v) �
✓
@2Fh

@t2
+ Fh

◆
, (B 2a)

L v = ẑ ⇥ @F

v

@t
� @2

F

v

@t2
� ↵r ⇥ (r ⇥ F

v) + ↵

✓
r @Fh

@t
� ẑ ⇥ rFh

◆
, (B 2b)

where L = (@/@t)((@2/@t2) + 1 � ↵1). This can be seen as follows.

Equation for h. Introducing ⇣ = ẑ · r ⇥ v, the curl of (B 1a) gives

@⇣

@t
+ r · v + ẑ · (r ⇥ F

v) = 0 (B 3)

and the time derivative of the divergence of (B 1a) gives

@2

@t2
(r · v) � @⇣

@t
+ ↵1

@h
@t

+ r · @F

v

@t
= 0. (B 4)

Adding (B 4) + (B 3) gives

@2

@t2
(r · v) + r · v + ↵1

@h
@t

+ ẑ · (r ⇥ F

v) + r · @F

v

@t
= 0. (B 5)

From (B 1b) we have

r · v = �@h
@t

� Fh (B 6)

and finally using (B 6) in (B 5), we obtain (B 2a).

Equation for v. The curl of (B 1a) gives

r ⇥ @v

@t
+ (r · v)ẑ + r ⇥ F

v = 0 (B 7)
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and using (B 6) gives

r ⇥ @v

@t
� @h
@t

ẑ � Fh
ẑ + r ⇥ F

v = 0. (B 8)

Taking the curl again and rearranging gives

r ⇥
✓

r ⇥ @v

@t

◆
+ ẑ ⇥ r @h

@t
= rFh ⇥ ẑ � r ⇥ (r ⇥ F

v). (B 9)

From (B 1a) we have
@v

@t
= �ẑ ⇥ v � ↵rh � F

v. (B 10)

Using this in the time derivative of (B 1a) gives

@2v

@t2
= ẑ ⇥ �

ẑ ⇥ v + ↵rh + F

v
�� ↵r @h

@t
� @F

v

@t
. (B 11)

Rearranging after one more time differentiation gives

@

@t

✓
@2v

@t2
+ v

◆
+ ↵

✓
r @

2h
@t2

� ẑ ⇥ r @h
@t

◆
= ẑ ⇥ @F

v

@t
� @2

F

v

@t2
. (B 12)

From (B 1b) one has

r @
2h
@t2

= �r
✓

r · @v
@t

◆
� r @Fh

@t
, (B 13)

which on using r ⇥ (r ⇥ @v/@t) = r(r · @v/@t) �1@v/@t becomes

r @
2h
@t2

= �

1
@v

@t
+ r ⇥

✓
r ⇥ @v

@t

◆�
� r @Fh

@t
. (B 14)

Thus

r @
2h
@t2

� ẑ ⇥ r @h
@t

= �
✓
1
@v

@t
+ r ⇥

✓
r ⇥ @v

@t

◆
+ ẑ ⇥ r @h

@t

◆
� r @Fh

@t
. (B 15)

Using (B 9) in the above equation, we obtain

r @
2h
@t2

� ẑ ⇥ r @h
@t

= �1@v
@t

� r @Fh

@t
� rFh ⇥ ẑ + r ⇥ (r ⇥ F

v). (B 16)

Finally, using (B 16) in (B 12) gives (B 2b).
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