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This is a theoretical study of wave–vortex interaction effects in the two-dimensional
nonlinear Schrödinger equation, which is a useful conceptual model for the limiting
dynamics of superfluid quantum condensates at zero temperature. The particular
wave–vortex interaction effects are associated with the scattering and refraction of
small-scale linear waves by the straining flows induced by quantized point vortices
and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that
these scattered waves exert on the vortices. Our detailed model is a narrow, slowly
varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak
interactions are studied using a suitable perturbation method in which the nonlinear
recoil force on the vortex then arises at second order in wave amplitude, and is
computed in terms of a Magnus-type force expression for both finite and infinite
wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for
the scattering angle is also derived and cross-checked against numerical ray tracing.
Finally, under suitable conditions a wavetrain can be so strongly refracted that it
collapses all the way onto a zero-size point vortex. This is a strong wave–vortex
interaction by definition. The conditions for such a collapse are derived and the
validity of ray tracing theory during the singular collapse is investigated. C© 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4865837]

I. INTRODUCTION

Wave–vortex interactions are a classical topic in fluid dynamics, with well-known applications
including vortices created by dissipating sound waves as in acoustic streaming and the so-called
“quartz wind,”1 longshore currents and rip currents created by breaking surface waves on beaches,2

or the micro-mixing of fluid droplets based on stirring by waves.3 Arguably, the field in which the
relevant interaction theory is most advanced is that of atmosphere ocean fluid dynamics, because
there it is well recognized that the nonlinear interactions between unresolved small-scale waves
and the resolved large-scale mean flow are crucial for the long-term dynamics of the system, and
therefore are crucial to climate prediction. This has led to a very detailed study of many wave–mean
interaction effects in this field, accounts of which can now be found in standard textbooks and
research monographs.4–6

Another physical scenario in which wave–vortex interactions are well known to be clearly
important is the quantum superfluid dynamics of dilute Bose–Einstein condensates, in which there are
lively interactions between various forms of dispersive waves and the peculiar quantum line vortices
that allow the superfluid fluid component to perform a kind of vortex dynamics that in many ways
is closely analogous to that of classical line vortices in incompressible fluid dynamics.7–9 Of course,
a detailed description of quantum superfluid dynamics at finite temperature is a complicated field-
theoretic affair, which goes significantly beyond fluid dynamics.10 Still, going back to the pioneering
work of Landau,26 there are practically useful two-fluid models, in which an intimate mixture of
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a “normal” and a “super” fluid component joined together through various coupling mechanisms
is considered. However, the complexity of these two-fluid models11, 12 makes it somewhat hard to
extract fundamental fluid-dynamical information from them, especially as the coupling mechanism
in them are themselves models for more microscopic, fundamental wave–vortex interactions.

A special conceptual place is therefore reserved for the very simple but powerful superfluid
models based on the (defocusing) nonlinear Schrödinger equation (NLS), also known as the Gross–
Pitaevskii equation in this field.13, 14 Whatever the context, the NLS equation has a well-known fluid-
dynamical interpretation via the Madelung transformation, which allows comparing and contrasting
classical and quantum fluid dynamics on an even footing.15 Strictly speaking, the NLS equation can
only model the Bose–Einstein condensate, which is closely related to superfluid behaviour16 at zero
temperature, but as a model for this limiting case it is of striking simplicity. Moreover, the NLS
equation appears as a model equation in many other fields, ranging from nonlinear fibre optics to
modulated surface waves, so fundamental studies of its intrinsic dynamical behaviour are valuable
in its own right. This motivated the present study.

The particular wave–vortex interactions considered here are two-dimensional problems in which
a slowly varying wavetrain of linear waves is scattered due to refraction by the straining flow induced
by point vortices, which are located at a large distance from the wavetrain. In particular, we compute
both the scattering of the linear waves as well as the concomitant nonlinear back-reaction onto
the vortices that arises at second order in wave amplitude, and which manifests itself as a certain
sideways advection of the vortex by a wave-induced mean flow. This builds on an earlier study in
two-dimensional classical compressible fluid dynamics reported in Bühler and McIntyre17(hereafter
referred to as BM03),17 in which this novel interaction effect was called the remote recoil. The
present setting with the NLS equation differs in several important aspects from this earlier study, in
which the wave dynamics was restricted to non-dispersive acoustic waves and in which the vortices
in question were compactly supported, but finite-sized patches of vorticity. In contrast, in the NLS
equation the waves are strongly dispersive and the vortices are necessarily point vortices of zero
size. This necessitates a significant adjustment of the tools required to study this process.

Our main theoretical result is a description of the detailed wavenumber-dependence of the
wave scattering process as well as of the concomitant recoil felt by the point vortices. Moreover,
there is a novel possibility of extremely strong wave refraction by the point vortex that leads to a
singular collapse of the wavetrain all the way into the location of the point vortex. The possibility
of such a wavetrain collapse in classical acoustic problem had been noted long ago,18 but only in
the NLS equation can the collapse proceed all the way to the zero-size vortex line. We investigate
approximately the linear wave dynamics of this fascinating wave collapse case in the NLS equation,
but we were not able to compute the nonlinear wave–vortex interaction in this singular case. Some
speculations as to what these interactions might be based on experience with classical fluid dynamics
are offered in Sec. VII.

The paper is organized as follows. In Sec. II, governing equations are derived and the standard
ray-tracing theory is summarized. Sec. III gives the setup for a finite wavetrain scattered by a single
vortex and Sec. IV extends this to the scattering of infinite wavetrains. Theoretical results are derived
and cross-checked by numerical integration of ray-tracing equations. Sec. V then expands the results
to situations with multiple vortices. Sec. VI contains a study of rays being trapped by a vortex and
Sec. VII offers concluding remarks.

II. GOVERNING EQUATIONS AND LINEAR WAVES

A. Nonlinear Schrödinger equation

The (defocusing) NLS, also called the Gross–Pitaevskii equation, is a well-known idealized
model for the dynamics of a quantum system of weakly interacting identical bosons near absolute zero
temperature, such as dilute Bose–Einstein condensates,9, 13 which are often realized experimentally
using alkali gases.

The equation governs the complex-valued wave function ψ defined such that |ψ |2 is the number
density of the particles. Our detailed analysis will be in two space dimensions, but the general
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equations hold in any number of spatial dimensions. In dimensional form, the NLS is

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + [U0|ψ |2 + V ]ψ, (1)

where � is Planck’s constant divided by 2π , U0 is a positive constant modeling particle repulsion, m is
the mass of a particle, and V (x, t) is an external potential, which we choose as V = −U0n0(1 + ϕ)
with n0 being the density |ψ |2 at infinity and ϕ being a forcing potential discussed later. The
dimensional healing or coherence length9 is defined by

ξ = �√
mn0U0

. (2)

It is the characteristic length over which the density relaxes from zero at solid walls or vortex
locations to its background value n0.

All the dimensional parameters can be eliminated by using non-dimensional variables. For
example, denoting non-dimensional variables with a prime we may choose

x = �√
mn0U0

x ′ = ξ x ′, t = �

n0U0
t ′, and ψ = √

n0ψ
′. (3)

Dropping the primes, the non-dimensional NLS equation is

i
∂ψ

∂t
= −1

2
∇2ψ + (|ψ |2 − 1)ψ − ψϕ. (4)

If ϕ = 0, then the following integrals for mass, momentum, and energy are conserved:

N =
∫

|ψ |2dx, P =
∫

Im(ψ∗∇ψ)dx, (5)

and E =
∫ {

1

2
|∇ψ |2 + 1

2
(|ψ |2 − 1)2

}
dx. (6)

Here, * denotes complex conjugation. If ϕ �= 0, then the mass is still conserved, but the momentum
and energy may change as described in (14) below.

B. Madelung transformation

The well-known Madelung transformation19 allows a fluid-dynamical interpretation of the NLS
equation, but the physical nature of the “fluid” of course depends on the specific application at hand.
In the present context, there is an actual fluid present, namely, the dilute Bose–Einstein condensate,
so here the interpretation is straightforward. The transform is based on the polar representation

ψ = √
h exp(iθ ), (7)

where h(x, t) ≥ 0 and θ (x, t) are real-valued functions describing the particle density and the phase
of the wave function, respectively. In terms of h = |ψ |2 and the velocity vector

u = ∇θ = Im(ψ∗∇ψ)

|ψ |2 , (8)

the three integrals in (6) become

N =
∫

h dx, P =
∫

hu dx,

and E =
∫ (

h

2
|u|2 + |∇h|2

8h
+ (h − 1)2

2

)
dx. (9)
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Substituting (7) into (4) and separating real and imaginary parts yields

∂h

∂t
+ ∇ · (hu) = 0 (continuity equation), (10)

∂θ

∂t
+ |u|2

2
+ (h − 1) − ϕ = ∇2

√
h

2
√

h
= −

( |∇h|2
8h2

− ∇2h

4h

)
. (11)

Taking the gradient of (11) one obtains the associated momentum equation

∂u
∂t

+ (u · ∇)u + ∇(h − 1) + ∇
( |∇h|2

8h2
− ∇2h

4h

)
= F (12)

with the body force F = ∇ϕ. The third term is similar to the pressure gradient term in shallow
water equation while the fourth term known as “quantum pressure” resembles the effect of surface
tension. However, it needs to be borne in mind that the definition of u as the gradient of θ implies
that the constraint

∇ × u = 0 (13)

holds in all regions where ψ �= 0. This constraint can be circumvented pointwise at vortex locations,
where ψ = 0. We will use the transformed equations (10), (12), and (13) as the governing equations
from now on.

Finally, we may also note the exact equations for momentum and energy in flux form as

∂(hu)

∂t
+ ∇ ·

{
huu + ∇h∇h

4h
+

(
h2

2
− ∇2h

4

)
I
}

= h F, (14)

∂e

∂t
+ ∇ ·

{
eu + h2 − 1

2
u − ∇2h

4
u + ∇ · (hu)

4h
∇h

}
= hu · F. (15)

Here, the energy density e = h|u|2/2 + |∇h|2/(8h) + (h − 1)2/2 is the integrand in (9).

C. Linear waves and ray tracing

The transformed equations will be studied with a regular perturbation expansion to second order
in a suitable small-wave-amplitude parameter a � 1, i.e., there will be a (steady) O(1) background
flow {U, H}, O(a) linear waves {u′, h′}, and an O(a2) nonlinear mean-flow response to the waves.
Eventually, we will assume that the waves form a slowly varying wavetrain, which allows averaging
and the use of ray-tracing theory. Of course, one could also perform the perturbation expansion in
terms of the wave function ψ in the original, untransformed NLS equation. For example, to O(a)
accuracy the asymptotic relations u ∼ U + u′ and h ∼ H + h′ are consistent with ψ ∼ � + ψ ′,
say, provided that � = √

H exp(iα) and ψ ′/� = h′/2H + iθ ′, where θ ∼ α + θ ′ such that U = ∇α

and u′ = ∇θ ′ hold. However, it is much easier to study the nonlinear interplay between waves and
vortices at O(a2) in the fluid variables, which is why we proceed in this manner.

Now, the full O(a) equations for u′ and h′ are

∂h′

∂t
+ ∇ · (H u′ + h′U) = 0, (16)

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U + ∇h′

−1

4
∇

[
∇2

(
h′

H

)]
− 1

4
∇

[∇H

H
· ∇

(
h′

H

)]
= F′. (17)

Here, the irrotational linear force F′ serves to represent wave emission and absorption. We will
only solve these equations using the standard ray-tracing approximation, which is valid for a slowly
varying wavetrain in a slowly varying background environment. Hence, we assume that the linear
fields are given by the real part of the product between a slowly varying amplitude function and the



027105-5 Y. Guo and O. Bühler Phys. Fluids 26, 027105 (2014)

rapidly varying oscillatory function exp (i
). Here, the rapidly varying wave phase 
 is not to be
confused with the phase θ of the original wave function ψ in (7)!

The derivatives of the wave phase define the local wavenumber vector and frequency in the
usual way and both must satisfy the standard dispersion relation based on a uniform background
with constant density H and constant velocity U

k = ∇
, ω = −
t , ω = ω̂ + U · k, ω̂ =
√

Hκ2 + κ4

4
. (18)

Here, k is the local wavenumber vector, ω is the absolute wave frequency, and the intrinsic frequency
ω̂ is given in terms of κ = |k| by the dispersion relation in (18). From now on we restrict to
two-dimensional dynamics such that x = (x, y) and k = (k, l). It then turns out that the dispersion
relation in (18) is identical to that of the shallow water equations with surface tension.20 Hence,
for small wave numbers or long wavelengths, ω̂ ≈ √

Hκ is a non-dispersive sound wave dispersion
relation, whereas for higher wave numbers or short waves, ω̂ ≈ κ2/2, which in quantum mechanics
is the dispersion relation for free particles. This wave-number-dependent asymptotic behavior will
be seen to give rise to the wave-number-dependence of the wave scattering angle due to vortices
(see Sec. IV), which is different from the simpler classical theory in BM03.17

The standard ray-tracing equations for x = (x, y) and k = (k, l) as functions of time along
group-velocity rays are given in terms of the absolute frequency function

(x, k, t) = ω̂ + U · k =
√

Hκ2 + κ4/4 + U · k (19)

by the standard Hamiltonian equations20

dx
dt

= +∂

∂k
and

dk
dt

= −∂

∂x
, (20)

where the time derivative along a ray is defined as

d

dt
= ∂

∂t
+ (cg ·∇) (21)

acting on slowly varying functions of (x, t). The group velocity cg is defined by

cg = (ug, vg) = dx
dt

= ĉg + U = 2H + κ2

2ω̂
k + U . (22)

For steady background fields, the ray-tracing equations imply that dω/dt = 0, i.e., the absolute
frequency is constant along any group-velocity ray. In addition, if the background flow has azimuthal
symmetry around the origin of the coordinate system, then there is another ray invariant, namely,

M = (r × k)z = lx − ky. (23)

This will be the case in Secs. III and VI below. The evolution of wave amplitude along a ray is
governed by the conservation law for the wave action A at O(a2)21

∂(H A)

∂t
+ ∇ · (H Acg) = H

ω̂
u′ · F′, (24)

where

A = E

ω̂
and E = u′2

2
+ h′2

2H
+ 1

8

∣∣∣∣∇
(

h′

H

)∣∣∣∣
2

(25)

is the wave energy per unit mass. The wave action is conserved in region where F′ = 0. For a steady
unforced wavetrain, (24) reduces to

∇ · (H Acg) = 0. (26)

A very important quantity in wave–mean interaction theory is the pseudomomentum vector6

p = kA = k
E

ω̂
(27)
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per unit mass. For irrotational velocity fields and a slowly varying wavetrain,6 we also have
p = h′u′/H. The pseudomomentum evolution can be shown to satisfy

∂(H p)

∂t
+ ∇ · (H pcg) = H A

dk
dt

+ h′ F′ = −H A
∂

∂x
+ h′ F′. (28)

Unlike wave action, pseudomomentum can be created or destroyed without forcing or dissipation
provided the background flow is inhomogeneous as measured by non-vanishing ∂/∂x. Physically,
this corresponds to wave refraction caused by non-uniform H or U: such refraction conserves wave
action but not pseudomomentum.

III. REMOTE RECOIL WITH A SINGLE VORTEX

We follow BM0317 and consider the refraction of a finite wavetrain passing a single vortex as
depicted in Fig. 1. The O(1) vortex is placed at the origin of the coordinate system and an O(a)
wavetrain of finite length 2L is passing it at a distance D, with a � 1 being the small wave amplitude.
We assume that L and D have comparable size and that both are large compared to the healing length,
which is unity, so the waves are passing the vortex remotely. The word remotely is used to emphasis
that there is no physical overlap between the vortex and waves. To make the wavetrain length finite,
we employ a suitably chosen linear force field F′ that generates and absorbs the waves in the
locations marked symbolically by the loudspeakers. There are two linked wave–vortex interaction
effects in this situation, as discussed in detail in BM03.17 First, the linear waves are refracted by
the non-uniform background vortex flow. Second, the vortex experiences a remote recoil, namely,
the vortex is expected to move slowly to the left due to advection by a nonlinear O(a2) mean flow
induced by the finite wavetrain. Both effects combine to balance the global momentum budget.

The present superfluid situation differs in several important aspects from the classical fluid
situation studied in BM03.17 First, the strength of the vortex circulation cannot be chosen arbitrarily
but is quantized.22 Also, in BM0317 the vortex had a finite size whereas here it is necessarily a point
vortex. Second, here the dynamics of the linear waves depends on their wavelength whereas they

FIG. 1. A background vortex with circulation � = 2π is passed at a distance D � 1 by a finite train of waves that are
generated and absorbed in the locations marked by the loudspeakers. The waves are refracted by the O(1) background vortex
flow (dashed curves) and at the same time the vortex is exposed to an O(a2) large-scale return flow induced by the waves
(solid curves). Specifically, the background velocity of the vortex pushes the waves toward decreasing y at the source and
pulls them toward increasing y at the sink. To keep y = constant along the rays, the phase lines have to tilt slightly as indicated.
This leads to tilted recoil forces RA and RB at the loudspeakers and to a compensating remote recoil RV at the vortex,
see (29).
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did not in BM03.17 Third, in BM0317 the vortex was held steady by a suitable holding force with
nonzero curl and the integral over that holding force then provided the definition of the total recoil
force RV , say, that is felt by the vortex. Here, this is not possible because only irrotational forces can
arise in the equations. However, we are free to imagine a thought experiment in which the vortex is
kept fixed by covering the vortex region with a small cylinder, say, and keeping the cylinder steady
by some external holding force, thereby allowing the background flow to remain steady. We identify
this holding force with (minus) the vortex recoil force RV , and we calculate it by integrating the
momentum-flux equation (14) over a suitable control volume, which we take to be the large circle
r = D/2. On this circle the flow is unforced and steady, the wave field is zero and the height field
is close to its undisturbed value, which is unity. The momentum flux across the circle must then
balance the holding force on the imagined cylinder. Specifically, we define the exact recoil force by

RV = −
∮

r=D/2

{
huu · n̂ + ∇h∇h

4h
· n̂ −

(
(h − 1)2

2
+ h

2
|u|2 + |∇h|2

8h

)
n̂
}

ds, (29)

where ds and n̂ are the line element and outward normal on the large circle. This follows from (14)
after eliminating a term containing ∇2h by using the steady unforced version of the Bernoulli theorem
in (11) and discarding an irrelevant constant. As we shall see, this extra step greatly simplifies the
perturbation expansion of the integral.

A. Background flow

The background vortex is a point vortex located at the coordinate origin and its associated
velocity field is axisymmetric with circumferential velocity Ũ (r ) = �/(2πr ), where � > 0 is the
circulation. Because U is the gradient of the phase of a single-valued wave function, the circulation
of the vortex is necessarily quantized as � = 2kπ, k ∈ Z. Higher-order vortices are unstable and are
likely to split into several first-order vortices. We will consider � = 2π in detail but retain a general
� in some of the expressions below. The background velocity field is

U = (U, V ) = �

2π

(−y

r2
,
+x

r2

)
=

(−y

r2
,
+x

r2

)
. (30)

The density field H(r) goes to zero at the vortex location r = 0 and it asymptotes toward unity for
large r. Specifically, in the far field r � 1 the density profile H is well approximated23 from the
Bernoulli equation by

H (r ) ∼ 1 − Ũ 2(r )

2
= 1 − 1

2r2
. (31)

For intermediate values of r, the shape of H(r) is easily found numerically and, if wanted, a uniformly
accurate expression for H(r) is readily provided by the Padé approximation24

H (r ) ≈
(

11
16 + 11

96r2
)

r2

1 + 2
3r2 + 11

96r4
. (32)

This is illustrated in Fig. 2. As in BM03,17 a suitable small parameter measuring the remoteness of
the wave–vortex interaction is

ε = |�|
2π D

= 1

D
� 1. (33)

Now there are two small parameters, a � 1 for wave amplitude and ε � 1 for vortex remoteness.
It is necessary that ε � a such that the O(ε) background vortex can still be considered as a large
background flow compared with the O(a) linear waves. Notably, the far-field approximation (31) is
correct to O(ε2) on the circle r = D/2 in (29), and ∇H = O(ε3) there.
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FIG. 2. Density field H(r) of a single vortex. The solid line is the numerical solution, the dashed line is the Padé approximation
in (32), and the dotted line is the far-field approximation in (31).

B. Linear waves

There is no general analytical method for solving the ray-tracing equations in the case of strong
background flow gradients. However, as in BM03,17 we will exploit the fact that these gradients are
weak, of O(ε), along rays if the waves pass the vortex remotely. For example, this allows using the
far-field approximation (31) to obtain the absolute frequency function up to O(ε2) in the form

ω = ω̂ + U · k ≈
√

κ2 + κ4

4
+ U · k − 1

4

Ũ 2√
1 + κ2/4

κ. (34)

Here, κ still needs to be computed along the ray, of course. The absolute group velocity function to
the same approximation is

cg = ĉg + U ≈ 2 + κ2

2
√

κ2 + κ4/4
k + U − Ũ 2

4

κ2(
κ2 + κ4/4

)3/2 k. (35)

We will assume that ω has the same value on all rays, which is consistent with a normal-mode
approach. Now, the ray-tracing equations are still difficult to solve even truncated to O(ε2). We will
again follow BM0317 and arrive at a useful wave solution by exploiting two important facts. First, it
will turn out that knowing the wave field to O(εn) is enough to find the recoil force to O(εn + 1). For
instance, ignoring the effect of the vortex for the wave structure is sufficient to compute the recoil
force to O(ε), and using a first-order, O(ε) approximation for the waves is sufficient to compute
the recoil force to O(ε2). We will therefore be content if we can compute the wave field correctly
only up to O(ε). At this level of approximation the far-field height field is simply H ∼ 1 and the
problem reduces to ray tracing through a weak irrotational incompressible mean flow. Here, we
exploit the second fact, namely, we use the extension to dispersive waves6, 25 of the classical26 result
that non-dispersive wave rays through an irrotational incompressible flow are straight lines to O(ε).
This result means that while k and hence the intrinsic group velocity ĉg are changed by refraction due
to U, the absolute group velocity cg remains pointing in the same direction. Hence, if the wavemaker
on the left is slightly tilted toward the vortex to make vg = 0 at the source, vg = 0 will continue
to be zero along the ray, i.e., the ray is just y = const. As in BM03,17 by combining this argument
with the general constraint ∇ × k = 0 and evaluating (35) to O(ε), the wavenumber vector to O(ε)
is easily computed to be

k = (k0, 0) − 2ω̂0

2 + k2
0

U, with ω̂0 =
√

k2
0 + k4

0

4
. (36)
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The corresponding absolute group velocity to O(ε) is

cg = U + 2H + κ2

2ω̂
k =

(
2 + k2

0

2ω̂0
k0 + 8

(2 + k2
0)(4 + k2

0)
U, 0

)
(37)

and then the corresponding wave action density A follows from (26) with H = 1, which reduces to
constant Aug along rays away from the wave source or sink. The result to order O(ε) is

A(x, y) = As(y)

(
1 + �

2πγ

y(L2 − x2)

(x2 + y2)(L2 + y2)

)
χx∈[−L ,L]. (38)

Here, χ is the characteristic function and As(y) is the wave action profile across the wave train at
the wave source or sink, which are equal by symmetry here. This wave action expression omits fine
details such as the smooth matching to zero underneath the wave source and sink, but these fine
details will not be relevant for the recoil computation. Finally, the parameter γ depends on k0 via

γ = (2 + k2
0)2(4 + k2

0)

16ω̂0
k0 =

(
1 + k2

0

2

)2
√

1 + k2
0

4
. (39)

Note that γ ∼ k5
0/8 if k0 is large and that γ ∼ 1 if k0 is small, which is the shallow-water limit of

BM03.17

C. Mean-flow response

We define the mean flow by averaging over the rapidly varying wave phase in the usual way
and denote the averaging process by an overbar, so, for example, u is the mean velocity and
u′ = 0. The background flow is part of the mean flow and the leading-order nonlinear mean-flow
response arises at O(a2). By the assumptions 1 � ε � a, it is convenient to introduce the following
notations to distinguish the contributions at different powers of a and ε. A single subscript denotes
the contribution at the corresponding power of a while a second subscript, if present, denotes the
contribution at corresponding power of ε, thus

h = H + h20 + h21 + h22 + · · · , (40)

u = U + u20 + u21 + u22 + · · · . (41)

This is also the relevant expansion of the complete flow field (h, u) needed for the integral in (29),
simply because the wave field is zero on r = D/2. It is now easy to verify by inspection that, as
said before, to obtain the recoil force RV from (29) at O(a2ε) requires only the wave fields and the
mean-flow response to zeroth order in ε. In fact, only u20 is needed in the integral because H ≈ 1
and therefore h20 does not contribute to (29) at O(a2). Two terms contribute at O(a2ε), which can be
combined using a vector identity to yield

RV = −
∮

r=D/2
u20 × (U × n̂) ds = − �

2π
ẑ ×

∫ 2π

0
u20|r= D

2
dθ. (42)

To find u20, we combine the constraint ∇ × u20 = 0 with the average of the continuity equation (10)
at O(a2), which for a steady mean flow is

U · ∇h2 + ∇ · (H u2) = −∇ · (h′u′). (43)

At zeroth order in ε, this implies

∇ · u20 = − 1

H
∇ · (h′u′) = −∇ · p20 = −k0

∂ A

∂x
, (44)

and now u20 can be computed. Before doing this we note an important simplification of (42)
that follows from the fact that the restriction of u20 to the disk r ≤ D/2 is both irrotational and
non-divergent, which means that the components of u20 are harmonic functions on this restriction:
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∇2u20 = 0. Therefore, we can apply the mean-value property of harmonic functions to (42) and get
the exact simplification

RV = −� ẑ × u20(0, 0). (45)

This shows that the effective recoil force RV at O(a2ε) is given by the usual Magnus force
expression27 based on the value of the mean-flow response velocity at the vortex location. Now, u20

is computed from ∇ × u20 = 0 and (44) using the standard Green’s function as

u20(x, y) = 1

2π

∫ ∫
(x − x ′, y − y′)

(x − x ′)2 + (y − y′)2

[
−k0

∂ A

∂x
(x ′, y′)

]
dx ′dy′. (46)

One can apply action density expression (38) to zeroth order in ε and approximate the slowly varying
pre-factor in the integrand by its value at the source (sink). With (x, y) = (0, 0) this yields

u20(0, 0) ≈ −k0

π

(L , 0)

L2 + D2

∫ +∞

−∞
As(y)dy. (47)

The recoil force at O(a2ε) is then given by

RV = ŷ
k0�

π

L

L2 + D2

∫ +∞

−∞
As(y)dy. (48)

This is precisely the same as the classical fluids result (4.24) in BM03.17 The reason for this is that
the wavenumber-dependent modulation of the action density A at O(ε) in (38) does not enter at this
level of approximation. This will be different in Sec. IV, where wave scattering and recoil forces at
O(a2ε2) are considered.

IV. SCATTERING WITH A SINGLE VORTEX

Again following BM03,17 we let L → ∞ to obtain the classical scattering problem, in which
waves approach from and recede to spatial infinity. The evolution of k to O(ε) along the ray is
governed by (36) implying that l → 0 as x → ±∞. Thus, k starts parallel to the x-axis at x =
−∞, goes toward the vortex as waves approach then away as they recede, before again becoming
parallel to the x-axis at x = +∞. As shown in (48), the magnitude of the vortex recoil force RV at
O(a2ε) goes to zero as 1/L when L → ∞, which implies that at O(a2ε) RV → 0 as L → ∞. Clearly,
to obtain a non-zero answer in the scattering limit L → ∞ we have to go to the next order in ε,
which is O(a2ε2). At this order, the outgoing and incoming wavenumber vectors differ by a finite
amount proportional to the scattering angle of the wave. Once more, the O(a2ε2) recoil force can be
computed using only the O(aε) wave field and the O(a2ε) mean-flow response. The wave solution
to this accuracy was already given in (36)–(39), so we can now focus on the mean-flow response.

A. Mean-flow response and recoil force

We use (40) and (41) with H ≈ 1 − |U |2/2 to evaluate RV in (29) at O(a2ε2). Because ∇H =
O(ε3), it turns out that (42) still holds with u21 in place of u20. Therefore, to calculate the recoil
force, our main task is to find u21. To do this, we combine ∇ × u21 = 0 with the O(a2ε) mean
continuity equation

∇ · ū21 = −∇ · p21 − U · ∇h20, (49)

where p21 is the O(a2ε) part of p = kA, which can be computed via (36) and (38) in the limit L → ∞,
which is A = As(y)(1 − U/γ ). We find h20 from the O(a2ε0) part of the Bernoulli theorem (11),
which yields the modified Helmholtz equation (see Appendix A)

(∇2 − 4)h20 = 2k2
0

ω̂0
A = 2k2

0

ω̂0
As(y) (50)

for the infinite wavetrain. In general, the Green’s function of (50) that is zero at infinity is proportional
to the modified Bessel function K0(2r), which decays as exp (−2r) at large distances r � 1 from the
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FIG. 3. (a) Numerical ray-tracing results for k0 = 1 and various y0 = −D. Rays are started from |y0| = {5, 10, 20} with
the corresponding values for ε are {0.2, 0.1, 0.05}. The y-axis is rescaled by y0 + (y(t) − y0)/0.05 to show the scattering;
(b) numerical ray-tracing results for ε = 0.1 (or |y0| = 10) and different k0. The initial wavenumber k0 are chosen to be {1,
2, 4}. The y-axis is rescaled by y0 + (y(t) − y0)/0.02 to show the scattering.

source. This makes obvious that h20 is nonzero only in the vicinity of the wavetrain. Moreover, by
assumption the action density A is slowly varying compared to the healing length, which is unity in
our scaled variables, and therefore the solution of (50) inside r = D/2 is well approximated by the
slowly varying expression

h20 = − k2
0

2ω̂0
A = − k2

0

2ω̂0
As(y) such that − U · ∇h20 = k2

0

2ω̂0
V

d As

dy
. (51)

The accuracy of (51) is discussed in more detail in Appendix B. We can now repeat the earlier
argument and conclude that the components of u21 are harmonic on the restriction r ≤ D/2, and
hence the recoil force at O(a2ε2) is again given by a Magnus formula, namely,

RV = −� ẑ × u21(0, 0). (52)

Inverting (49) with ∇ × u21 = 0 then provides the velocity at the vortex as

u21(0, 0) = 1

2π

∫ ∫
(−x,−y)

x2 + y2

[
k0

γ

∂U

∂x
As(y) +

(
2ω̂0

2 + k2
0

+ k2
0

2ω̂0

)
V

d As

dy

]
dxdy

= x̂
�k0sgn(D)

16π D2

(
1

γ
+ k0

ω̂0
+ (2 + k2

0)(4 + k2
0)

4γ

) ∫ +∞

−∞
As(y)dy (53)

with γ given in (39). Consequently, the recoil force at O(a2ε2) for scattered waves is

RV = − ŷ
�2sgn(D)

16π D2

(
1

γ
+ k0

ω̂0
+ (2 + k2

0)(4 + k2
0)

4γ

)
k0

∫ +∞

−∞
As(y)dy. (54)

The sign of the circulation does not matter for RV , but it does matter whether the waves pass to the
right or the left of the vortex. We use D > 0 if the waves pass to the right, as exemplified by the
lower rays in Fig. 3. Now, for small k0 the bracket in (54) goes to 4, which recovers the classical
shallow-water results in BM03.17 Moreover, in this limit k0 A = k0 E/ω̂0 → E and therefore at fixed
wave energy density the recoil force goes to a nonzero limit as k0 → 0. Conversely, for large k0 the
bracket goes to 4/k0, which means the recoil force becomes proportional to the action density A in
this limit. At fixed wave energy density E = ω̂0 A, this means the recoil force tends to zero as 1/k2

0
as k0 → ∞.

B. Scattering angle and scale-selective refraction

From the recoil force at O(a2ε2), we can compute the global scattering angle θ∗ of the waves.
As described in BM03,17 this is based on a global momentum budget argument, which gives an
equality between −RV and the total rate of change of pseudomomentum. The starting point is the
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expression of RV in (29). We will investigate the O(a2) terms in the limit r → ∞ where r comes
from the line element ds = rdθ . It can be shown that (permitting H = 1 here)

RV = − lim
r→∞

∫ 2π

0

(
u′u′ + 1

4
∇h′∇h′

)
· n̂rdθ = − lim

r→∞

∫ 2π

0
pcg · n̂rdθ. (55)

This implies that the recoil force is equal to minus the difference between outgoing and incoming
pseudomomentum fluxes, i.e., the recoil force is equal to minus the rate of change of pseudomo-
mentum due to refraction by the vortex flow. The total wave action is conserved, hence the total rate
of change of pseudomomentum is equal to the change in wavenumber vector times the total flux of
conserved wave action along the wavetrain

RV = −(k− − k+)(total wave action flux along wavetrain), (56)

where k− and k+ are the incoming and outgoing wavenumber vectors, respectively. We use (56) to
compute the scattering angle at O(ε2) and since the wavenumber vector change is O(ε2), the wave
action flux need only to be computed at leading order O(a2ε0), which is

total wave action flux along wavetrain = 2 + k2
0

2ω̂0
k0

∫ +∞

−∞
As(y)dy. (57)

Because of ray-invariance of absolute frequency, we have |k−| = |k+| and therefore

k− − k+ = θ∗ ẑ × k− (58)

for small θ∗. Now using (54), (56), and (57) and k− = (k0, 0) we obtain the nice expression

θ∗ = πε2sgn(D)

{
2

(2 + k2
0)3

+ 1

(2 + k2
0)2

+ 1

2 + k2
0

}
. (59)

For small k0 this is consistent with the result θ∗ = πε2sgn(D) found in BM03.17 For larger k0 the
scattering angle decrease sharply, as illustrated in Fig. 3. This should have notable consequences even
in less idealized situations. For example, this suggests that if a broadband wave field were to pass
the vortex, then one should find that the small-wavenumber components have been preferentially
scattered into the lee of the vortex.

C. Numerical ray-tracing results

Numerical results are presented to test the theoretical predictions by integrating the ray-tracing
equations (20) numerically with a standard Runge–Kutta scheme. This is done without any explicit
expansion in ε � 1 although the density field is approximated by (31) such that ∇H = (x, y)/r4.
This yields

dx

dt
= 2H + κ2

2ω̂
k + U = 2H + κ2

2ω̂
k − �

2π

y

r2
,

dy

dt
= 2H + κ2

2ω̂
l + V = 2H + κ2

2ω̂
l + �

2π

x

r2
,

dk

dt
= − κ2

2ω̂

∂ H

∂x
− Ux k − Vxl = − κ2

2ω̂

x

r4
− �

2π

2xy

r4
k − �

2π

y2 − x2

r4
l,

dl

dt
= − κ2

2ω̂

∂ H

∂y
− Uyk − Vyl = − κ2

2ω̂

y

r4
− �

2π

y2 − x2

r4
k + �

2π

2xy

r4
l.

(60)

The first column holds for any H and U while the second column uses H and U in (30) and (31). The
initial conditions are x(0) = −∞ (or a large enough negative number), y(0) = −D, k(0) = k0 > 0,
and l(0) = 0. Fig. 3(a) shows the results of a number of runs with varying y(0) = −D and fixed
k0 = 1 with � = 2π . The figure is rescaled in the y-axis as described in the caption to highlight
the scattering angle. The symmetry between waves passing to the left or to the right of the vortex
can be observed. The scattering angle θ r was computed for various values of ε and compared with
the analytical predictions θ∗ from (59). The results are collected in Table I. The last column clearly
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TABLE I. Scattering results for k0 = 1, � = 2π , and y0 = −D = −1/ε
is varied between runs. The predicted scattering angle θ∗ is from (59), the
angle θ r comes from numerical integration of ray-tracing equations (60).
The relative error Rel is defined by (θ∗ − θ r)/θ r.

D ε θ∗ θ r (θ∗ − θ r)/θ r Rel/ε

5 0.20 0.065 0.046 0.42 2.1
10 0.10 0.016 0.013 0.21 2.1
20 0.05 0.0041 0.0037 0.11 2.1
50 0.02 0.00065 0.00063 0.043 2.1

shows that the relative error scales as ε, which suggests that the next term in the expansion of θ∗
would be ∝ε3. Such a term would break the symmetry between waves passing to the left or right of
the vortex that holds at O(ε2).

Of course, what is special in superfluids is that the dispersion relation in (18) has different
asymptotic behaviour for small and large wavenumber, so the important task is to vary k0. Fig. 3(b)
shows the results of a number of runs with varying k0 while ε is kept constant. Numerical results of
the scattering angle θ r for various values of k0 and comparison with analytical predictions θ∗ from
(59) are summarized in Table II. The last column suggests that the coefficient of the next term in the
ε-expansion of θ∗ might be proportional to 1/k0.

V. SCATTERING WITH MULTIPLE VORTICES

Our method also applies to scattering problem with multiple vortices. Similar to the single
vortex case, we can cover each vortex region with a small cylinder and keep the cylinder steady by
some external holding force. In this way, we can therefore assume n vortices are kept unmoved at
location (xi, yi) with circulation �i. As mentioned earlier, the vortex is quantized as �i = 2kπ, k ∈ Z
and is stable for k = ±1 only. In order to have similar small parameter as ε in the single vortex case,
we assume all vortices are far away from the wavetrain and define

1 � εi = |�i |
2π (yi + D)

= 1

yi + D
� a, (61)

where all εi are of the same size, which is comparable to ε.

A. Theoretical prediction

Previous results (36), (38), (49), and (50) are still valid, except that we need to change the
velocity field U to

(U, V ) = U =
n∑

i=1

U i =
n∑

i=1

(Ui , Vi ) =
n∑

i=1

�i

2π

(−(y − yi ), x − xi )

(x − xi )2 + (y − yi )2
, (62)

TABLE II. Results for ε = 0.05, � = 2π , and k0 vary between runs. The
predicted scattering angle θ∗ is from (59), the angle θ r comes from numerical
integration of ray-tracing equations (60). The relative error Rel is defined
via (θ∗ − θ r)/θ r.

k0 θ∗ θ r (θ∗ − θ r)/θ r Rel/ε

1 0.0041 0.0037 0.11 2.1
2 0.0016 0.0015 0.056 1.1
4 0.00046 0.00045 0.026 0.50
8 0.00012 0.00012 0.013 0.25
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the superposition of the velocity fields induced by each vortex. Applying the inversion formula to
(49) with the irrotational condition ∇ × u21 = 0 gives

u21(x j , y j ) = 1

2π

∫ ∫
(x j − x, y j − y)

(x j − x)2 + (y j − y)2

×
n∑

i=1

[
k0

γ

∂Ui

∂x
As(y) +

(
2ω̂0

2 + k2
0

+ k2
0

2ω̂0

)
Vi

d As

dy

]
dxdy (63)

with constants γ given in (39). Then following the Magnus force formula, total force felt by all
vortices is

RV = −
n∑

j=1

� j ẑ × u21(x j , y j ), (64)

from which one can compute the scattering angle of the waves. To do this, we continue using the
global momentum budget argument, which says the recoil force is equal to minus the rate of change
of pseudomomentum. Then by (56)–(58) the total recoil force is

RV = −θ∗ ẑ × k−
2 + k2

0

2ω̂0
k0

∫ +∞

−∞
As(y′)dy′. (65)

Combine (63) and (64) we obtain the scattering angle of the wavetrain

θ∗ =
[

2

(2 + k2
0)3

+ 1

(2 + k2
0)2

+ 1

2 + k2
0

] {
n∑

i=1

πε2
i sgn(yi + D)

+
∑
i �= j

2�i� j

π2

∫
(yi + D)(x ′ − xi )(x ′ − x j )

[(x ′ − xi )2 + (D + yi )2]2[(x ′ − x j )2 + (D + y j )2]
dx ′

⎫⎬
⎭ . (66)

The integral in the formula can be explicitly calculated since the integrant is an integrable rational
function. Detailed calculation can be found in Appendix C. Compared with the scattering angle
for a single vortex in (59), the scattering angle in multiple vortices case contains two parts: one is
the simple addition of the effects of every vortex with ε replaced by εi and D by D + yi, while
remains to be the distance between each vortex and the wavetrain; the other is the interactive effect
between different vortices (the i-j term in the formula). Though a little weird, the interaction is not
difficult to understand: in (49) the mean-flow response u21 contains the contribution from all vortices
manifested by the total velocity field U. Therefore, in addition to feeling itself’s mean-flow as in the
single vortex case, each vortex is also in the responsive mean-flow induced by all other vortices.

B. Numerical results

As usual, we can numerically integrate the ray-tracing equations to double check our theoretical
prediction in (66). Since the wavetrain is far away from all vortices, we use the far-field approximate
background density H in (31) which is

H = 1 − |U |2
2

hence ∇H = −(U ·∇)U (67)

by chain rule with U given in (62). Then the ray-tracing equations are given by the first equality in
(60) with H and U following (62) and (67). To check the theoretical prediction θ∗, we focus on two
horizontal (vertical) vortices of equal distance from the origin with opposite (same) circulation. Or
more specifically, the vortex at (− xd, 0) or (0, xd) has circulation 2π in both cases while the one at
(xd, 0) or (0, −xd) has circulation −2π for opposite circulation and 2π for same circulation case.
The wavetrain starts from x(0) = −∞ (or a large enough negative number), y(0) = −D with initial
wavevector k(0) = (k0, 0). Fig. 4 shows the results of a number of runs with varying y(0) = −D with
all other parameters being kept constants. The figure magnifies the scattering angles by rescaling
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FIG. 4. Numerical ray-tracing results for (a) two vortices with opposite circulation ±2π are at (−5, 0) and (5, 0). (b) Two
vortices with positive circulation 2π are at (−5, 0) and (5, 0). (c) Two vortices with opposite circulation ±2π are at (0, 5)
and (0, −5). (d) Two vortices with positive circulation 2π are at (0, 5) and (0, −5). The initial wavenumber is k0 = 2. Waves
are started from |y0| = {10, 20, 40}. The y-axis is rescaled by y0 + (y(t) − y0)/0.02 to highlight the scattering.

the y-axis as described in the caption. The symmetry between the left and right passing waves can
be easily observed, which corresponds to being quadratic in terms of � in (66).

We can also calculate the relative error by comparing the numerical and analytic results. But
unlike the single vortex case where the relative error is proportional to ε, there is no simple prediction
of the next term in the asymptotic expansion because it also depends on the relative position of the
wavetrain and all vortices.

VI. RAY COLLAPSE ONTO A VORTEX

If the waves get close to a vortex, then the interaction parameter ε is obviously not small anymore
and the previous scattering analysis does not apply. The extreme case is where the wave ray actually
spirals into the vortex and collapses to its centre in finite time. Clearly, ray collapse is a drastic change
from the previous weak scattering and weak wave–vortex interaction situation. Its possibility was
apparently first pointed out by Salant18 in the context of two-dimensional acoustic waves outside a
point vortex, with a later extension to three-dimensional acoustic waves by others.28, 29

We will investigate the possibility for ray collapse in the nonlinear Schrödinger equation by
using the NLS dispersion relation (70) below, and while taking the detailed density structure of the
core into account. Using standard methods, we will find the criterion for ray collapse and investigate
the structure of the collapsing rays. This is an extension of the earlier studies, which in their explicit
results were restricted to acoustic waves and constant core density, so the underlying dispersion
relation was ω = κ + U · k. As κ grows without bound during collapse, this inevitably fails to be
a good approximation to the NLS dispersion relation (70), and this has significant consequences
for the ray structure. We then discuss a necessary condition for ray tracing to remain valid even as
the ray collapses onto a vortex and finally consider the inevitable wave amplitude growth during
collapse.

A. Ray collapse condition

We assume the stationary axially symmetric vortex flow introduced in (30) with � = 2π

U = Uφφ̂ = �

2π

1

r
φ̂ = 1

r
φ̂, H = H (r ). (68)

Since the ray can get arbitrarily close to the vortex, we use (32) or the numerical solution of the
NLS equation to approximate the density field H(r). Here, r̂ is the unit vector in the direction of
r = (x, y) while φ̂ is the unit azimuthal vector complying with the right-hand rule. By this choice,
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one can decompose the wavenumber vector locally into

k = κr r̂ + κφφ̂. (69)

The Hamiltonian ray-tracing system (20) is integrable because it has two pairs of variables and also
two independent invariants, which are here given by absolute frequency

ω =
√

Hκ2 + κ4/4 + U · k =
√

Hκ2 + κ4/4 + κφ/r, (70)

and the z-component of the aforementioned “angular momentum” invariant

M = (r × k)z = lx − ky = rκφ. (71)

The previously studied acoustic case is included by setting H = 1 and ignoring the κ4 term in (70).
Substituting (69) and (71) into (70) yields

ω =

√√√√H

(
κ2

r +
(

M

r

)2
)

+ 1

4

(
κ2

r +
(

M

r

)2
)2

+ M

r2
(72)

or in terms of κ2
r ,

κ2
r = 2

√
H 2 +

(
ω − M

r2

)2

− 2H − M2

r2
. (73)

Now, the standard argument for a collapse condition is based on the fact that r decreases along the
ray only if the intrinsic group velocity points inward, which means κr < 0. Hence, a wavepacket will
collapse onto the vortex if κr < 0 initially and if |κr| remains bounded away from zero for all values
of r ≥ 0. Conversely, if κr goes through zero and changes sign, then the ray is simply scattered and
escapes again to infinity. Therefore, the collapse condition is precisely the non-existence of a radius
r∗ ≥ 0 where κr = 0. Assuming κr = 0 in (72) yields

ω =
√

H
M2

r2∗
+ 1

4

M4

r4∗
+ M

r2∗
(74)

and hence the ray collapses precisely if this equation has no real positive solution for r∗. By
construction the frequency ω is positive, but M may have either sign. As detailed in Appendix D
it is easy to extract the necessary conditions −2 ≤ M ≤ 0 for collapse from (74). In other words,
collapsing rays must propagate intrinsically against the spinning direction of the vortex, and the
azimuthal progression of the wave phase, which is the physical interpretation of M, must be fairly
modest and less than that of a mode-2 wave. The remaining condition on ω is found numerically
and the full result is shown in Fig. 5, which depicts a convex-shaped parameter region of collapsing
rays in the Mω-plane. Fig. 6 illustrates the rays of several collapsing and non-collapsing wave rays,
which cross-checks the theory in Fig. 5.

B. Comparison with acoustic rays

The structure of the collapsing rays in the present Schrödinger equation differs significantly
from those in the previously studied acoustic equations. To begin with, as Fig. 6 illustrates, here
rays can collapse onto the vortex by winding around the vortex in either a prograde or retrograde
direction relative to the circulation sense of the vortex. This is in contrast with the acoustic case, in
which the rays always wind in a prograde direction around the vortex. This occurs in the acoustic
case because the azimuthal vortex velocity diverges as r → 0 and therefore the prograde vortex flow
must eventually dominate the intrinsic group velocity, which is bounded by the fixed acoustic wave
speed. Not so in the Schrödinger case, where the intrinsic group velocity for large κ is proportional
to κ , which by inspection of (70) and (72) obeys the scaling κ ∝ 1/r if M �= 0. Therefore, the intrinsic
retrograde group velocity (assuming M < 0) and the prograde vortex flow Uφ = 1/r are comparable
in the present case, which allows one or the other to dominate during the collapse. Specifically,
retrograde collapse occurs if M < −1 for the unit vortex with Uφ = 1/r.
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Another difference between the acoustic and the NLS case follows from the observation that
if M �= 0, then the intrinsic frequency ω̂ ∝ 1/r2 and kφ ∝ 1/r in both cases, but kr ∝ 1/r2 in the
acoustic case while kr ∝ 1/r in the NLS case. This means that in the acoustic case kr dominates
over kφ and hence the wavenumber vector always turns precisely into the vortex as r → 0, whereas
in the NLS case kr and kφ are comparable and hence the wave crests come into the vortex with a
finite angle of attack, which is a function of M. Finally, in both the acoustic and the NLS case the
rays make an infinite number of revolutions around the vortex before reaching r = 0, but only in
the acoustic case is the geometric length of the rays also infinite in any finite neighbourhood of the
vortex. This is another repercussion of the asymptotically much faster intrinsic group velocity, and
hence much more rapid collapse, in the NLS case compared to the acoustic case.

Of course, there are no true point vortices in any compressible fluid model such as the Navier-
Stokes equations, for example, and hence there the actual, finite-size vortex structure must eventually
be taken into account, which prohibits the strict collapse of acoustic rays onto a compressible vortex.
The situation is different in the NLS equations, where true point vortices are natural and essential
components of the dynamics. This warrants looking into the possible validity of ray tracing during
the collapse in the NLS equations.

C. Validity of ray tracing during wave collapse

Ray tracing approximates linear wave theory under the assumption that the waves form a slowly
varying wavetrain, so when ray tracing predicts a singular solution such as the formation of a wave
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FIG. 6. A positive unit vortex is placed at (0, 0) and the circle r = 1/
√

2 broadly marks the vortex core region, in which H ≤
0.07. Three different rays are shown, with initial conditions corresponding to the three points in Fig. 5. All rays are started at
(x, y) = (−5, 0). Left (point A): retrograde collapsing ray with M = −1.998, ω = 0.7373, and k = (0.6574, 0.3996). Middle
(point B): non-rotating ray with M = −1.000, ω = 0.2913, and k = (0.2626, 0.2). Right (point C): prograde collapsing ray
with M = 0, ω = 0.515, and k = (0.5, 0).
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caustic, where neighboring rays intersect, then this prediction may merely indicate that ray tracing
has broken down, but not linear theory. On the other hand, ray tracing may remain valid all the way
to the caustic, which then implies a singularity even in the full linear theory. This kind of situation is
probably most familiar from the study of critical layers for dispersive waves, where ray tracing may
or may not remain valid as the critical layer is approached, depending on the details of the dispersion
relation.6 Of course, this is a partial analogy at best. For example, experience with dispersive caustics
at critical layers shows that the travel time to reach those caustics is infinite, whereas the travel time
for collapsing waves to reach the vortex is decidedly finite.

In light of this difficult theoretical situation, we will simply consider here a necessary condition
for the validity of ray tracing during wave collapse, which is that the slowly varying criterion κr �
1 remains valid along the ray as r → 0. This criterion measures whether the distance to the vortex
appears “large” compared to the local wavelength; it is also easy to show that during one wave period
the fractional change along group-velocity rays of both ω̂ and κ is proportional to 1/(κr)2 as r → 0.

First off, we notice the simple bound

rκ = r
√

κ2
r + κ2

φ ≥ r |κφ| = |M |, (75)

but the equality holds only when κr = 0, i.e., when the ray does not collapse. For collapsing rays
(75) is not very sharp and we can improve on it. Specifically, near the vortex r � 1 and hence by
(73) and the approximation for H(r) in (32) one can get

κ2 = 2

√
H 2 +

(
ω − M

r2

)2

− 2H = 2ω − 2M

r2
+ O(r2) ⇒ κ2r2 ≥ −2M. (76)

This makes clear that ray tracing fails in the limiting case M = 0. As we know that for collapsing
rays −2 < M ≤ 0, these bounds suggest that ray tracing has the best chance of remaining valid for
rays with M close to the limiting case M = −2, in which case κr ≥ 2. Of course, this is merely a
finite-size bound, but ray tracing is often found to be surprisingly accurate in practice even if slowly
varying criterion is not strongly satisfied. Our tentative conclusion is therefore that for values of M
near M = −2, the collapse observed in ray tracing probably indicates a singular absorption of waves
even in full linear theory.

This does raise further questions about collapsing waves that we unfortunately cannot answer
here. For example, we ran some numerical experiments in which we followed neighbouring rays
into the vortex in order to find out whether these rays will touch at some finite r > 0 and thereby
form an external caustic, which would also invalidate ray tracing. Direct numerical integration of the
ray-tracing equations shows the distance between neighbouring rays decays linearly in r and does
not indicate any external caustic, but this is far from conclusive.

D. Asymptotic wave amplitude evolution during collapse

We can work out the wave amplitude predicted from ray tracing via the standard procedure
of assuming a steady wavetrain and considering an infinitesimal ray tube formed of neighbouring
rays such that the cross-sectional width of the tube is given by w, say. The (unforced) wave action
conservation law (24) applied to the ray tube then yields

∇ · (H Acg) = 0 ⇒ H A|cg|w = const (77)

along the tube. Now, in order to make progress, we assume that as r → 0 the cross-sectional width w

scales with r in the simplest self-similar way, which is w ∝ r . (This appears almost inevitable given
the azimuthal symmetry of the situation, where we could create a family of neighbouring collapsing
rays by the simple device of rotating a single collapsing ray around the origin.) However, we also
know that |cg| ∝ 1/r , so the tendencies in these two terms cancel each other asymptotically in (77).
This leads to the asymptotic structure of the action density as

H A = const ⇒ A ∝ 1/H ∝ 1/r2. (78)
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Similarly, using κ ∝ 1/r and ω̂ ≈ κ2/2, the pseudomomentum density p = kA and the wave energy
density E = ω̂A are found to diverge even faster as

| p| = κ A ∝ 1/(Hr ) ∝ 1/r3 and E ∝ κ2 A ∝ 1/(Hr2) ∝ 1/r4. (79)

The validity of linear theory depends on the smallness of a suitable non-dimensional wave amplitude
that measures the size of the ignored nonlinear terms against the size of the retained linear terms.
The amplitude of nearly plane waves is typically given by the square root of |u′|2κ2/ω̂2 or of the
relative depth disturbance h′2/H 2. Both lead to the same result in the present case, which using (25)
is

amp2 ∝ |u′|2 κ2

ω̂2
∝ E

ω̂

κ2

ω̂
∝ A ⇒ amp ∝

√
A ∝ 1/

√
H ∝ 1/r. (80)

This divergence of the amplitude implies the breakdown of linear theory in some neighbourhood of
the vortex location r = 0, which is quite consistent with the singular nature of the wave collapse.

VII. CONCLUDING REMARKS

Mutatis mutandis, our considerations of the remote recoil in the nonlinear Schrödinger equation
has followed closely the previous computations in classical acoustic fluid dynamics that were
described in BM03.17 For the refraction of the linear waves by isolated vortices, the most significant
difference was the wavenumber-dependence of the scattering process in the NLS system, which
distinguished between the low-wavenumber regime, in which the classical acoustic results were
recovered, and the high-wavenumber regime, in which the scattering behaviour was very different.
Using the NLS as a simple mean-field model for the quantum mechanics of a Bose–Einstein
condensate, the large-scale regime corresponds to collective particle motions while the small-scale
regime corresponds to individual particle motions.

As far as the concomitant nonlinear back-reaction on the vortices is concerned, the main
difference was that the use in BM0317 of a vortical holding force could not be transferred to the
NLS equation, where external forces are necessarily irrotational. Instead, we employed the standard
method of computing the momentum budget for a large control volume r = D/2 surrounding
the vortex, together with the observation that the O(a2) mean-flow response was harmonic on
the restriction to this control volume, which allowed the use of the averaging theorem for harmonic
functions. This construction again facilitated computing the wave scattering angle from a momentum
budget, with results similar to the classical acoustic results in BM03.17

This contrasts with the phenomenon of collapsing rays onto a point vortex, which does not occur
in classical acoustic fluids because there the vortex size is necessarily finite. Of course, the opposite
restriction is true in the NLS system, in which all vortices are line vortices, or point vortices in the
present two-dimensional situation. As shown in Sec. VI D, such a wave collapse must inevitably
be accompanied by the divergence of the wave amplitude and therefore by a breakdown of linear
theory near the vortex. It is fascinating to speculate about the nonlinear wave–vortex interactions
that might take place in this case. For example, it is well understood that a divergent wave amplitude
in classical fluid dynamics would lead to wave dissipation via nonlinear wave breaking and the
concomitant generation of a dipolar mean-flow vorticity pattern at the edges of the breaking zone.30

In this process, the pseudomomentum of the waves is converted into the hydrodynamical impulse
of the freshly created dipolar vorticity field.15 This kind of process is not exactly possible in the
NLS equation because of its inherent restriction to point vortices, but it seems reasonable to expect
that bundles of point vortices can be formed by breaking waves in the NLS equation, mimicking
the analogous process in classical fluids and recovering the aforementioned conversion of wave
pseudomomentum into vortical impulse. If this speculation is correct, then a collapsing wave ray
would shower the original vortex with newly created vortex dipoles within a small wave breaking
zone surrounding the original vortex! Investigating these strongly nonlinear aspects of the wave–
vortex interactions in the NLS equation is of course outside the kind of theory we have available
here.
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Finally, we reiterate that real superfluid dynamics at finite temperature goes far beyond the
NLS equation, even in the case of a dilute Bose–Einstein condensate. So from this point of view
it is questionable whether the effects we have described here have observable counterparts in such
superfluid systems. On the other hand, the NLS equation is a self-consistent and self-contained model
paradigm for many physical systems, ranging from classical wave envelope dynamics to quantum
mechanics, and therefore seeking to further our understanding of the intrinsic NLS dynamics is
important in its own right.
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APPENDIX A: DEVIATION OF EQ. (50)

The Bernoulli equation (11) at O(a2) reads (let ϕ = 0)

(∇2 − 4)h20 = 2u′ · u′ + h′∇2h′ + |∇h′|2
2

. (A1)

We can write the linear fields explicitly by ψ ′/� = C1ei
 + C2e−i
. Since we are only interested in
the O(a) waves, we can use the approximation H = 1. Therefore, the RHS of (A1) is

− 2κ2(C1C2 + C∗
1 C∗

2 ) = 4κ2

(
ω̂ + κ2

2
+ 1

)
|C2|2, (A2)

and the O(a2) energy is

E = u′2

2
+ h′2

2H
+ 1

8

∣∣∣∣∇
(

h′

H

)∣∣∣∣
2

= 2ω̂2

(
ω̂ + κ2

2
+ 1

)
|C2|2. (A3)

With the definition of wave action A = E/ω̂, we can get Eq. (50), which is

(∇2 − 4)h20 = 2κ2

ω̂2
E = 2κ2

ω̂
A ≈ 2κ2

0

ω̂0
As(y). (A4)

APPENDIX B: ACCURACY OF (51) IN DETERMINING u21

The exact solution of (50) is

h20 = − k2
0

2ω̂0

{∫ ∞

y
e2(y−ξ ) As(ξ )dξ +

∫ y

−∞
e−2(y−ξ ) As(ξ )dξ

}
. (B1)

The difference between this exact solution and the approximate one in (51) will decay as
−exp (−2|y + D|) away from the wavetrain y = −D, which is a very small number inside r ≤
D/2. Moreover, the difference integrates to 0 when calculating u21.

APPENDIX C: INTEGRATION FOR MULTIPLE VORTICES

In (66), we need to calculate an integral of the form∫
(x ′ − xi )(x ′ − x j )

[(x ′ − xi )2 + (D + yi )2]2[(x ′ − x j )2 + (D + y j )2]
dx ′. (C1)
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In order to simplify notation, let a = xi − xj, b = D + yi, and c = D + yj. Change variable using x
= x′ − xi, (C1) reads ∫

x(x + a)

(x2 + b2)2[(x + a)2 + c2]
dx . (C2)

According to partial fraction decomposition, the integrant can be written as

αx + β

(x2 + b2)2
+ Ax + B

x2 + b2
+ −Ax + C

(x + a) + c2
(C3)

while each part can be integrated explicitly, giving the results

βπ

2b3
sgn(b) + Bπ

b
sgn(b) + (C + a A)π

c
sgn(c), (C4)

with the following constants:

F = a4 + 2a2b2 + b4 + 2a2c2 − 2b2c2 + c4,

α = (a3 + ab2 + ac2)/F, β = (a2b2 − b2c2 + b4)/F,

A = (a5 − 2a3c2 − 3ac4 + 2a3b2 + 2ab2c2 + ab4)/F2,

B = (−a6 − a4c2 + a2c4 + c6 − 2a4b2 − 4a2b2c2 − 2c4b2 − a2b4 − c2b4)/F2,

C = (−a6 + 5a4c2 + 5a2c4 − c6 − 2a4b2 + 2b2c4 − a2b4 − b4c2)/F2.

APPENDIX D: COLLAPSING CONDITION IN (M, ω) PLANE

We seek to find under what condition the equation

f (r ) =
√

H
M2

r2
+ 1

4

M4

r4
+ M

r2
= ω (D1)

has a finite positive solution 0 < r < ∞ or not, the latter being the criterion for wave collapse. If M
> 0, then

f (r ) → 0 as r → ∞ and f (r ) → ∞ as r → 0. (D2)

Therefore, by the intermediate value theorem, there is at least one finite r that satisfies (D1), so M ≤
0 is a necessary condition for collapse. Similarly, if M < −2, then

f (r ) → 0 as r → ∞ and f (r ) >
M2 + 2M

2r2
→ ∞ as r → 0, (D3)

since the numerator is bigger than zero for M < −2. Hence, the necessary condition for collapse is
−2 ≤ M ≤ 0. If M = 0, then f(r) ≡ 0 and therefore (D1) does not have a solution for any ω > 0, so
these rays will collapse. For −2 ≤ M < 0, let M = −αω so that (D1) reads

α

(√
H

r2
+ M2

4r4
− 1

r2

)
= 1. (D4)

We call the function inside the brackets g(r; M) and denote it maximum value over r by G(M) =
max g(r; M), obtained at r = r*. To have the equality in (D4), the minimum value of α can take is

α∗(M) = 1

G(M)
. (D5)

This means, if α < α*, for any r > 0 the left-hand side in (D4) is always smaller than 1, i.e., there is
no positive r satisfies (D4) or equivalently (D1). The wave packet will spiral in and finally collapse
onto the vortex. For α > α*, there is some r̃ > 0 satisfies (D4) and the wave packet will travel
toward the vortex till r = r̃ and then begin leaving the vortex region — it would not collapse onto
the vortex. The maximum value G can be easily found numerically using the numerical density H(r)
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and once known, using M = −αω, one arrives at the collapse condition in the Mω-plane shown in
Fig. 5.
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