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Midlatitude fluctuations of the atmospheric winds on scales of
thousands of kilometers, the most energetic such fluctuations, are
strongly constrained by the Earth’s rotation and the atmosphere’s
stratification. As a result of these constraints, the flow is quasi-
two-dimensional and energy is trapped at large scales—nonlinear
turbulent interactions transfer energy to larger scales, but not to
smaller scales. Aircraft observations of wind and temperature near
the tropopause indicate that fluctuations at horizontal scales smaller
than about 500 km are more energetic than expected from these
quasi-two-dimensional dynamics. We present an analysis of the ob-
servations that indicates that these smaller-scale motions are due to
approximately linear inertia–gravity waves, contrary to recent claims
that these scales are strongly turbulent. Specifically, the aircraft ve-
locity and temperature measurements are separated into two com-
ponents: one due to the quasi-two-dimensional dynamics and one
due to linear inertia–gravity waves. Quasi-two-dimensional dynamics
dominate at scales larger than 500 km; inertia–gravity waves domi-
nate at scales smaller than 500 km.

atmospheric dynamics | geostrophic turbulence | inertia–gravity waves

The mid-latitude high and low pressure systems visible in weather
maps are associated with winds and temperature fluctuations

that we experience as weather. These fluctuations arise from a baro-
clinic instability of the mean zonal winds at horizontal scales of
a few thousand kilometers, commonly referred to as the synoptic
scales [1, 2, 3]. The combined effects of rotation and stratification
constrain the synoptic-scale winds to be nearly horizontal and to sat-
isfy geostrophic balance, a balance between the force exerted by the
changes in pressure and the Coriolis force resulting from Earth’s ro-
tation. It is an open question whether the same constraints dominate
in the mesoscale range, i.e. at scales of 10–500 km, or whether quali-
tatively different dynamics govern flows at these scales.

The synoptic-scale flows are turbulent in the sense that nonlin-
ear scale interactions, which lie at the core of the difficulty to pre-
dict the weather, exchange energy between different scales of mo-
tion [4, 5, 6, 7]. Under the constraints of rotation and stratification, the
synoptic-scale winds are approximately two-dimensional and non-
divergent [8, 9]. In two-dimensional flows, nonlinear scale interac-
tions tend to transfer energy to larger scales, i.e. the synoptic-scale
pressure anomalies often merge and form larger ones, contrary to
nonlinear scale interactions in three-dimensional flows, which tend
to transfer energy to smaller scales [10]. Little energy is thus trans-
ferred to scales smaller than those at which the synoptic-scale fluc-
tuations are generated through instabilities. Theory and numerical
simulations predict that the energy per unit horizontal wavenumber k
decays as rapidly as k−3 at wavenumbers larger than the wavenumber
corresponding to the instability scale [9, 11]. This predicted kinetic
energy spectrum is roughly consistent with synoptic-scale observa-
tions [9, 12].

Long-range passenger aircraft have been instrumented to collect
velocity and temperature measurements as part of the Global At-
mospheric Sampling Program in the 1970s and the Measurement of
Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC)
project in the 1990s and 2000s. The resulting dataset, described in

the Materials and Methods section, consists of tens of thousand of
flights. Because aircraft travel at altitudes between 9 and 14 km, the
data largely reflect the upper troposphere and lower stratosphere, near
the tropopause. These measurements confirm that the kinetic energy
spectrum drops as k−3 in the synoptic wavenumber range, but there
is a transition in behavior at a scale of about 500 km [13] (cf. Fig. 1a).
In the mesoscale range, at scales smaller than 500 km, the kinetic en-
ergy spectrum decays more slowly, roughly like k−5/3 [13, 14, 15].

The measured kinetic energy spectrum is intriguing, because it
agrees so well with Charney’s theory of geostrophic turbulence at the
synoptic scales [9], but deviates from that prediction at the mesoscale.
The transition to the flatter k−5/3 mesoscale spectrum has been inter-
preted as the signature of small-scale geostrophic flows generated by
convective events [14, 16, 17], as the development of fronts at the
edge of synoptic-scale cyclones and anticyclones at the top of the
troposphere (equivalent to the warm and cold mesoscale fronts we
experience at the Earth’s surface) [18], or as the signature of strati-
fied turbulence at scales where the rotational constraints become less
important [19]. These explanations of the synoptic-to-mesoscale tran-
sition invoke turbulent dynamics and strong interactions between the
synoptic and mesoscale flows.

A rotating and stratified atmosphere, however, supports an addi-
tional, much faster set of motions: inertia–gravity waves. These are
internal gravity waves, modified by the effect of rotation, that have
periods of several minutes to a few hours. In contrast to the strongly
nonlinear, turbulent synoptic-scale flow, these motions are wave-like
and at small amplitude they are approximately governed by linear dy-
namics [20]. It has been proposed that the mesoscale energy is dom-

Significance

High and low pressure systems, commonly referred to as syn-
optic systems, are the most energetic fluctuations of wind and
temperature in the midlatitude troposphere. Synoptic systems
are a few thousand kilometers in scale and are governed by a bal-
ance between the pressure gradient force and the Coriolis force.
Observations collected near the tropopause by commercial air-
craft indicate a change in dynamics at horizontal scales smaller
than about 500 km. Smaller-scale fluctuations are shown to be
dominated by inertia–gravity waves, waves that propagate on
vertical density gradients but are influenced by Earth’s rotation.
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inated by inertia–gravity waves [21, 22], which are easily excited by
any fast fluctuation of the atmospheric flows [23]. In this explana-
tion of the mesoscale part of the spectrum, linear inertia–gravity and
nonlinear synoptic-scale turbulence coexist with little interaction.

In this paper, we present an analysis of the MOZAIC data
that utilizes a decomposition method recently developed by Bühler
et al. [24]. For the first time, this new analysis provides compelling
evidence that linear inertia–gravity waves indeed dominate the obser-
vations in the mesoscale.

Theories for the synoptic-to-mesoscale transition
Dewan first suggested that the mesoscale energy is dominated by

a continuum of weakly nonlinear inertia–gravity waves [21]. Van-
Zandt showed that the mesoscale spectra of horizontal wind fluctua-
tions as a function of horizontal wavenumber, vertical wavenumber,
and frequency are related through the dispersion and polarization rela-
tions of inertia–gravity waves [22]. The dominance of inertia–gravity
waves at the mesoscale, however, appeared inconsistent with vertical
velocity frequency spectra measured from radar in light-wind con-
ditions [25]. More recently Vincent and Eckerman showed that the
signature of inertia–gravity waves is recovered after correcting for
Doppler-shift effects in radar observations [26].

In the last two decades, the interpretation of the synoptic-to-
mesoscale transition in terms of inertia–gravity wave dynamics has
received little attention. The k−5/3 power-law dependence of the
mesoscale spectrum has instead been interpreted as evidence that
the mesoscale is strongly turbulent. The strong nonlinear interac-
tions characteristic of turbulent flows continuously redistribute energy
across wavenumbers and are known to result in power-law energy dis-
tributions [4, 7]. A number of competing turbulent theories have been
proposed.

The earliest turbulent theory argues that the mesoscale spectrum is
due to an inverse cascade of energy injected at even smaller scales,
for example by convective activity [14, 16, 17]. The hypothesis is
that nonlinear mesoscale interactions, much like at synoptic scales,
transfer energy to larger scales because of the constraints of rota-
tion and stratification. The kinetic energy spectrum in such a quasi-
two-dimensional inverse cascade scales like k−5/3 at wavenumbers
smaller than the injection scale [11], in contrast to Charney’s k−3

spectrum, which develops at wavenumbers larger than the injection
scale. The theory does not predict at which scale the dynamics switch
from the synoptic to the mesoscale regime.

The second turbulent theory proposes that the flat mesoscale spec-
trum is the signature of sharp temperature fronts, which develop when
synoptic-scale flows intersect a rigid boundary, like the Earth’s sur-
face, or a strongly stratified layer, like the tropopause [18]. Im-
portantly, the winds associated with the temperature fronts are still
largely in geostrophic balance. In this view, the k−5/3 mesoscale
spectrum is a feature of measurements taken at the tropopause level,
the cruising altitude of long range commercial aircraft, but should not
appear in the mid troposphere. This prediction cannot be tested with
available data.

The third turbulent theory proposes that the k−5/3 mesoscale spec-
trum emerges at the scales where the flows escape the rotational con-
straint and energy can be transferred to smaller scales [19]. Tur-
bulent flows constrained by stratification, but not rotation, are col-
lectively known as “stratified turbulence”. The forward energy cas-
cade is achieved by the overturning of layer-like structures. These
flows are not in geostrophic balance, and thus differ from the quasi-
two-dimensional dynamics of the previous two theories; and they are
strongly nonlinear, and thus differ from approximately linear inertia–
gravity waves.

Inertia–gravity waves and geostrophic flow
The understanding that atmospheric winds are composed of slow

flows in approximate geostrophic balance and fast inertia–gravity
waves has been the foundation for much progress in atmospheric sci-

ence. The first numerical weather predictions were based on quasi-
geostrophic dynamics, an approximation to the more complete prim-
itive equations that filters out inertia–gravity waves [27, 28, 29]. In
the troposphere and lower stratosphere, inertia–gravity waves typi-
cally have small amplitudes and therefore interact only weakly with
geostrophic flows. While there is a growing appreciation of rare in-
stances of inertia–gravity waves directly influencing sensitive weather
patterns [30], strong interactions between inertia–gravity waves and
the geostrophic flow are typically confined to the middle and upper
atmosphere, where the wave amplitude becomes large enough to al-
low for breaking of inertia–gravity waves and the concomitant drag
force on the geostrophic flow that is well known to be crucial for the
global angular momentum budget of the atmosphere [23].

In the deep ocean, breaking inertia–gravity waves mix heat and car-
bon. This leading-order effect has led to intensive study of the oceanic
inertia–gravity wave field. It is composed of a continuous spectrum
of linear waves together with isolated peaks at the inertial and tidal
frequencies [31]. Similar to the lower atmosphere, these linear waves
interact only weakly with the geostrophic flow. Only at small vertical
scales of a few tens of meters do the waves break.

Callies and collaborators have recently shown that the energy spec-
tra of oceanic flows are dominated by geostrophic flows at large scales
and by inertia–gravity waves at small scales [24, 32]. The transition
between the two classes of motion occurs at scales of 10–100 km,
depending on the relative strength of the geostrophic eddies and the
waves. In what follows, we show that the synoptic-to-mesoscale tran-
sition in the atmospheric kinetic energy spectrum is likely an equiva-
lent transition from geostrophic to inertia–gravity wave dynamics.

Decomposition
From the MOZAIC aircraft observations of wind near the mid-

latitude troposphere, we compute power spectra of the longitudi-
nal (along-track) velocity u and transverse (across-track) velocity v,
Su(k) = 〈|û(k)|2〉 and Sv(k) = 〈|v̂(k)|2〉, where the caret denotes
a Fourier transform and the angle brackets an average over flights.
From the temperature observations, we compute the potential energy
spectrum Sb(k) = 〈|b̂(k)|2〉/N2, where b = g(θ − θ0)/θ0 is buoy-
ancy, g = 9.81 m s−2 is the gravitational acceleration, θ0 = 340 K
is the reference potential temperature, and N is the average vertical
gradient of θ. Potential temperature is the temperature of an air par-
cel corrected for dynamically irrelevant compression effects. We use
a typical stratification of the lower stratosphere, N = 0.02 s−1, esti-
mated from the ERA-Interim reanalysis [33]. Fig. 1a shows that these
MOZAIC spectra display the transition from a steep synoptic range
to a flat mesoscale range at about 500 km.

If simultaneous wind and temperature observations were available
in space and time, one could directly test whether the dispersion and
polarization relations of inertia–gravity waves are satisfied by meso-
scale motions. One could further separate out inertia–gravity waves
and geostrophic flows, because inertia–gravity waves are restricted to
frequencies between the Coriolis frequency f (equal to twice the ro-
tation rate of the Earth multiplied by the sine of the latitude) and the
buoyancy frequency N (the frequency at which a vertically displaced
parcel of air will oscillate within the stably stratified atmosphere),
while geostrophic flows evolve on much longer time scales. But it
is extremely difficult to collect simultaneous measurements of meso-
scale fluctuations of winds and temperature in space and time.

Bühler et al. have recently shown that the decomposition can
be achieved from space-only measurements, provided that concur-
rent observations of horizontal velocities and temperature are avail-
able [24]. Applying this new decomposition to the MOZAIC data
(see Materials and Methods) produces two powerful arguments in
support of the hypothesis that the mesoscale spectrum is dominated
by inertia–gravity waves.

First, assuming that the flow is an uncorrelated superposition of a
geostrophic flow and inertia–gravity waves, we diagnose the inertia–
gravity wave component of the total energy, the sum of the kinetic

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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and potential energies, solely based on the observed horizontal ve-
locities. We then show that the thus predicted inertia–gravity wave
energy spectrum closely matches the observed total energy spectrum
in the mesoscale range. This indicates that the mesoscale potential
energy spectrum, predicted by this procedure, is consistent with lin-
ear wave theory.

Second, assuming that the geostrophic component of the flow
obeys Charney’s isotropy relation for geostrophic turbulence [9], we
decompose the three observed individual spectra of longitudinal ki-
netic energy, transverse kinetic energy, and potential energy into a
geostrophic component and an inertia–gravity wave component. The
diagnosed inertia–gravity wave spectra closely match the observed
spectra in the mesoscale range. This is another powerful test of the
mesoscale flow’s consistency with the dispersion and polarization re-
lations of inertia–gravity waves.

Helmholtz decomposition Fig. 1a shows that in the synoptic
range, the spectra approximately satisfy Charney’s prediction for geo-
strophic turbulence: Su(k) = Sb(k) and Sv(k) = 3Su(k) [9, 12].
At the transition to the mesoscale, all three spectra converge. As
shown by Lindborg and in the following, this convergence is evi-
dence that the flow is no more in geostrophic balance at leading or-
der [34, 35].

Any horizontal flow field can be decomposed into its rotational and
divergent components: u = −ψy+φx, v = ψx+φy , where ψ is the
streamfunction, φ is the velocity potential, x is the along-track coor-
dinate, and y is the across-track coordinate. If the flow is statistically
isotropic horizontally and ψ and φ are uncorrelated (as is the case for
a superposition of geostrophic flow and linear inertia–gravity waves),
the spectra Su(k) and Sv(k) can be written in terms of spectral func-
tions associated with ψ and φ (see Material and Methods):

Su(k) = Dψ(k)− k d

dk
Dφ(k), [1]

Sv(k) = −k d

dk
Dψ(k) +Dφ(k). [2]

The spectral functions Dψ(k) and Dφ(k) can easily be computed
from the observed Su(k) and Sv(k) by solving the system of or-
dinary differential equations [1] and [2] (see Materials and Meth-
ods). UsingDψ(k) andDφ(k), the observed kinetic energy spectrum
K(k) = 1

2
[Su(k) + Sv(k)] can be decomposed into its rotational

and divergent components,

Kψ(k) =
1

2

(
1− k d

dk

)
Dψ(k), [3]

Kφ(k) =
1

2

(
1− k d

dk

)
Dφ(k). [4]

The Helmholtz decomposition of the MOZAIC kinetic energy
spectrum in Fig. 1b shows that the rotational component dominates in
the synoptic range, whereas the divergent component becomes of the
same order at the transition to the mesoscale range. In the mesoscale
range, the divergent component slightly dominates over the rotational
component.

The dominance of the rotational component in the synoptic scales
is consistent with Charney’s geostrophic turbulence, because quasi-
geostrophic flow is to leading order horizontally nondivergent. The
significant divergent component in the mesoscale, on the other hand,
is inconsistent with the mesoscale theories that rely on a leading-order
geostrophic balance, namely the inverse-cascade theory and the fron-
togenesis theory. Instead, it points to the dominance of ageostrophic
dynamics.

Lindborg also found that the rotational and divergent components
of the flow are of the same order in the mesoscale range [35]. In his
analysis, based on curve fitting and selective Fourier transforming,
the rotational component slightly dominated the divergent compo-
nent in the mesoscale range. He argued that this was inconsistent with
inertia–gravity waves, for which he expected the divergent component

to be much larger than the rotational component. If the inertia–gravity
wave field is dominated by near-inertial waves, however, as suggested
by balloon measurements in the lower stratosphere [36], the rotational
component is expected to be of the same order as the divergent com-
ponent. In the following section, we show that the mesoscale signal is
indeed consistent with linear inertia–gravity wave dynamics, i.e. with
the dispersion and polarization relations of hydrostatic inertia–gravity
waves.

Decomposition of the total energy spectrum into geostrophic
and inertia–gravity wave components Geostrophic flows are hor-
izontally nondivergent and therefore only have a rotational compo-
nent, while inertia–gravity waves have both a rotational and a diver-
gent component. To perform the decomposition into these two classes
of motion, we note that the component of the total energy spectrum
E(k) = 1

2
[Su(k)+Sv(k)+Sb(k)] that is due to hydrostatic inertia–

gravity waves can be diagnosed fromDφ(k) alone (see Materials and
Methods):

Ew(k) = 2Kφ(k) =

(
1− k d

dk

)
Dφ(k), [5]

where the subscript “w” designates the inertia–gravity wave compo-
nent. This somewhat surprising result follows directly from linear
inertia–gravity wave dynamics, if horizontal isotropy and vertical ho-
mogeneity are assumed. Provided there is no additional type of mo-
tion, the residual of the observed total energy spectrum can be at-
tributed to a geostrophic flow: Eg(k) = E(k) − Ew(k), where the
subscript “g” designates the geostrophic component.

The decomposition into geostrophic flow and inertia–gravity waves
of the MOZAIC data is shown in Fig. 1c. The mesoscale range is
dominated by inertia–gravity waves, which do not contribute much
energy at the synoptic scales. The residual spectrum, i.e. the total
spectrum minus the inertia–gravity wave component, dominates at
the synoptic scales. This component can be confidently attributed to
geostrophic flows, because we have shown that the spectrum in the
synoptic range is purely rotational and hence horizontally nondiver-
gent. At the transition scale, the geostrophic component of the to-
tal energy keeps falling off steeply—the transition appears to be due
to inertia–gravity waves becoming dominant in the mesoscale range.
This is the main result of this paper.

Notice that the geostrophic spectrum keeps falling off steeply past
the transition at 500 km, but eventually flattens out at smaller scales.
This flattening is likely an artifact, because at these scales the geo-
strophic component makes up a small fraction of the observed signal.
It is quite possible that the flattening is due to noise or biases intro-
duced by the interpolation procedure or by truncation errors in the
reported wind and temperature data.

Decomposition of kinetic and potential energy spectra We
have shown that the total energy spectrum can be decomposed into
its geostrophic and inertia–gravity wave components. To confirm that
the observed spectra are consistent with geostrophic dynamics at syn-
optic scales and with inertia–gravity wave dynamics at mesoscales,
we now decompose into its two components each of the atmospheric
spectra, the longitudinal and transverse kinetic energy spectra, Su(k)
and Sv(k), and the potential energy spectrum, Sb(k). This can
be done if one makes one further assumption. Following Charney
and results from numerical simulations of geostrophic turbulence,
the geostrophic streamfunction is assumed to be three-dimensionally
isotropic, with the vertical coordinate rescaled by f/N [9]. This im-
plies Sug (k) = Sbg(k), a relation that we noted is satisfied by the ob-
served spectra in the synoptic range (Fig. 1a).

This decomposition—obtained by applying [15]–[17] and [20]–
[22], given in the Materials and Methods section—confirms the main
conclusion that the observed synoptic-scale flow is consistent with
geostrophic dynamics and that the observed mesoscale flow is con-
sistent with inertia–gravity wave dynamics. In the synoptic range,

Footline Author PNAS Issue Date Volume Issue Number 3
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the observed spectra match the diagnosed geostrophic components
(Fig. 2a). At the transition scale, the diagnosed geostrophic spec-
tra start deviating from the observed spectra and keep falling off
steeply. At this scale, the diagnosed inertia–gravity wave spectra be-
come comparable to the observed spectra and start matching them in
the mesoscale range (Fig. 2b).

Discussion
Our analysis shows that the aircraft observations are consistent

with a geostrophic flow that dominates the synoptic range and with
inertia–gravity waves that dominate the mesoscale range. This con-
clusion is predicated on the assumption that the total observed flow is
a superposition of geostrophic flow and inertia–gravity waves and that
these two components are uncorrelated and horizontally isotropic.

In accord with Lindborg’s result [34], our analysis conclusively
shows that mesoscale flows are not in geostrophic balance, thus
falsifying previous suggestions that meoscsale spectra represent
geostrophic eddies generated by atmospheric convective events or
geostrophically balanced fronts at the tropopause. Our analysis then
further shows that the observed mesoscale spectra Su(k), Sv(k), and
Sb(k) are consistent with the dispersion and polarization relations of
linear hydrostatic inertia–gravity waves. Presumably, it would be very
surprising if the strongly nonlinear ageostrophic flows characteristic
of stratified turbulence were to yield the same relations between these
mesoscale spectra as the linear waves.

A similar transition between a dominant geostrophic flow at large
scales and dominant inertia–gravity waves at small scales is well es-
tablished in the oceanic spectra [32], providing further support for
our interpretation of the synoptic-to-mesoscale transition. The ocean,
like the atmosphere, is a strongly rotating and stratified fluid. The
most energetic large-scale fluctuations are generated by baroclinic in-
stabilities in both fluids, while small-scale inertia–gravity waves are
triggered by any fast perturbation. A posteriori, it should not be sur-
prising that both fluids exhibit a transition from geostrophic dynamics
at large scales to inertia–gravity wave dynamics at small scales.

That inertia–gravity waves dominate the mesoscale spectrum does
not mean that the atmosphere is filled with a nearly uniform and sta-
tionary wave field, as appears to be the case in the ocean [31]. The
atmospheric wave field is likely highly intermittent in both space and
time [23]. Our result merely suggests that on average, inertia–gravity
waves dominate the mesoscale range. A good understanding of what
sets the shape of the average atmospheric inertia–gravity wave spec-
trum is lacking. The oceanic inertia–gravity wave spectrum, however,
has been shown to be an equilibrium solution of weakly interacting
inertia–gravity waves with slopes close to k−5/3 [37, 38]. While the
residence time of waves in the atmosphere is shorter and shears pro-
vided by jet streams stronger, weak turbulence theory may similarly
yield insight into the atmospheric inertia–gravity wave field.

The spatial patterns of mesoscale energy are also consistent with
the dominance of inertia–gravity waves at the mesoscales. The air-
craft spectra in the mesoscale range are up to six times larger in
mountainous regions than over flat terrain [39]. The inertia–gravity
wave activity is expected to be enhanced over mountains, where lee
waves are excited by large- and synoptic-scale flows impinging on to-
pography. Stratified turbulence, on the other hand, is fed directly by
synoptic-scale energy and therefore not expected to be enhanced over
mountainous regions.

High-resolution numerical models reproduce the synoptic-to-
mesoscale transition [40]. Model results are consistent with the obser-
vation that the synoptic range is dominated by rotational flow, while
the rotational and divergent components are of the same order in the
mesoscale range [41, 42]. Models also show a pattern of enhanced
mesoscale energies in regions of high topography [42]. The simu-
lations further show that the mesoscale spectrum is not the result of

stratified turbulence [43], in agreement with our conclusion that they
are the signature of inertia–gravity waves.

The emergent picture is relatively simple. Geostrophic synoptic-
scale baroclinic disturbances force a forward enstrophy cascade that
continues through the synoptic-to-mesoscale transition. The k−3 or
slightly steeper geostrophic spectrum is masked by inertia–gravity
waves at scales smaller than 500 km. This picture does not rule out the
possibility that some fraction of the energy in the mesoscale spectra
is associated with fronts and stratified turbulence, but these contribu-
tions must be small.

The result of this paper may also have some implications for the
theoretical predictability of atmospheric flows. Lorenz argued that a
turbulent flow with a k−5/3 kinetic energy spectrum has a finite pre-
dictability time, which is of the order of the eddy turnover time [6].
More and more accurate knowledge of the initial state cannot push
forecasts beyond that limit—even if we had a perfect model. In con-
trast, turbulent flows with a k−3 kinetic energy spectrum do not have
such a predictability limit and ever more accurate initial conditions
can lead to ever longer forecasts.

If the flat mesoscale spectrum were due to a turbulent cascade, that
would pose a limit on predictability of synoptic systems [7, 44]. Ob-
serving and modeling the atmosphere beyond the transition at 500 km
would yield rapidly diminishing returns in predictability. If this part
of the spectrum is due to inertia–gravity waves, however, improving
observational systems and forecast models may not prove as futile.
Inertia–gravity waves do not propagate errors in the same way as the
turbulent flows discussed by Lorenz. If the geostrophic component
of the mesoscale flow were to be observed, despite the dominance of
inertia–gravity waves, the forecast times of synoptic systems could
potentially be extended considerably.

It should be noted, however, that other processes not considered in
this theoretical argument may affect predictability. Moist convective
processes, for example, lead to rapid growth of errors that can leak
into the geostrophic flow [45]. Currently, the practical predictability
of the weather is likely limited by inadequate representation of such
processes.

Materials and Methods
Aircraft data. The spectra shown in Fig. 1a are calculated from wind and temper-

ature measurements obtained by the MOZAIC program, which equipped commercial

aircraft with instrumentation to measure trace gases, but also records wind speed and

direction from the board computer. The data used here were obtained in 2002–2010

and are restricted to the northern hemisphere midlatitudes (30 to 60 degrees latitude).

Great circles are fit to the flight paths and segments are discarded if they are shorter

than 6,000 km, the average sample spacing is coarser than 1.2 km, or the deviation

from the great circle is greater than 2 degrees. The data are then linearly interpo-

lated onto a regular grid with 1 km spacing. Data at pressures larger than 350 hPa

are discarded. Subsequently, for each flight, data deviating more than 1 km in alti-

tude from the mean altitude are also discarded. Temperature data are adjusted to

account for remaining variations in flight altitude, assuming a constant stratification

N = 0.02 s−1, but this correction is of no consequence for the results discussed in

the main paper. Nastrom and Gage [13] and Cho and Lindborg [15] showed that the

spectral shapes are qualitatively the same in the upper troposphere and lower strato-

sphere, thus we do not separate the data into vertical bins. Spectra are computed by

applying a Hann window, compensating for the variance loss, performing a discrete

Fourier transform, and averaging over all 458 segments. The windowing is necessary

to prevent spectral leakage of synoptic-scale energy into the mesoscale. Spectra at

wavelengths smaller than 20 km are discarded because they are potentially affected

by the interpolation procedure or by truncation errors in the reported data. Loca-

tions were reported in longitude/latitude with an accuracy of 0.01 degrees; zonal and

meridional winds were reported with an accuracy of 0.01 m s−1; temperatures were

reported with an accuracy of 0.01 K. These noise levels do not affect the spectra on

scales larger than 20 km. We also discard the largest resolved wavelength, because

the power at this wavelength is reduced artificially by the window.

Details of decomposition. We here give more detail on the decomposition tech-

niques used to analyze the aircraft spectra. Bühler et al. give a more comprehensive

description of these techniques and illustrate their skill to analyze oceanic spectra [24].

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Let u and v be horizontal velocity components defined in the xy-plane with x

aligned with the aircraft track, so u is the longitudinal (along-track) component and

v is the transverse (across-track) component. The time t and altitude z are considered

fixed during the measurement, so they will be ignored. Now, a general two-dimensional

flow has a Helmholtz decomposition into rotational and divergent components of the

form u = −ψy + φx and v = ψx + φy . The functions ψ and φ are uniquely

determined in terms of the velocity field with doubly periodic boundary conditions.

Progress with the statistical theory is possible if ψ(x, y) and φ(x, y) are uncor-

related. We can then write the two-dimensional power spectra of u and v as

S
u
(k, l) = l

2
S
ψ
(k, l) + k

2
S
φ
(k, l), [ 6 ]

S
v
(k, l) = k

2
S
ψ
(k, l) + l

2
S
φ
(k, l), [ 7 ]

where l is the across-track wavenumber. Integration over l and some manipulation

gives [ 1 ] and [ 2 ] with

D
ψ
(k) =

1

π

∫ ∞
k

√
kh2 − k2Sψ(kh) dkh, [ 8 ]

D
φ
(k) =

1

π

∫ ∞
k

√
kh2 − k2Sφ(kh) dkh, [ 9 ]

where Sψ(kh) and Sφ(kh) are the two-dimensional isotropic spectra of ψ and φ,

related to the two-dimensional spectra by S(kh) = 2πkhS(k, l), kh =
√
k2 + l2

is the magnitude of the horizontal wavenumber vector, and k ≥ 0 is the along-track

wavenumber.

The equations [ 1 ] and [ 2 ] can be solved explicitly, given the boundary conditions

Dψ(∞) = 0 and Dφ(∞) = 0,

D
ψ
(s) =

∫ ∞
s

[
S
u
(σ) sinh(s− σ) + S

v
(σ) cosh(s− σ)

]
dσ, [ 10 ]

D
φ
(s) =

∫ ∞
s

[
S
u
(σ) cosh(s− σ) + S

v
(σ) sinh(s− σ)

]
dσ, [ 11 ]

where for convenience the coordinate was transformed to s = ln k.

Relation [ 5 ] follows from the dispersion and polarization relations of hydrostatic

inertia–gravity waves. Combining the vorticity and continuity equations of the lin-

earized primitive equations yields ∇2ψt = f∇2φ [20], which implies that

S
ψ
(k, l, ω) =

f2

ω2
S
φ
(k, l, ω) [ 12 ]

and thus, with the use of [ 6 ] and [ 7 ],

S
u
(k, l, ω) + S

v
(k, l, ω) =

(
1 +

f2

ω2

)(
k
2
+ l

2
)
S
φ
(k, l, ω). [ 13 ]

The linear buoyancy equation is bt + N2w = 0 and the potential energy spectrum

Sb(k) = 〈|b̂(k)|2〉/N2 can also be related to the spectrum of the velocity potential,

S
b
(k, l, ω) =

(
1− f2

ω2

)(
k
2
+ l

2
)
S
φ
(k, l, ω), [ 14 ]

if uncorrelated plane waves or equivalently vertical homogeneity is assumed. A slowly

varying background is allowed. Adding [ 13 ] and [ 14 ] then eliminates the dependence

on ω, so that [ 5 ] follows by integrating over l and ω.

The decomposition of the three individual spectra can be achieved by decomposing

Dψ(k) = Dψg (k) +Dψw(k). The divergent part Dφ(k) needs no such decompo-

sition, because the geostrophic component of the flow is divergence-free. Using

S
u
g (k) = D

ψ
g (k), [ 15 ]

S
v
g (k) = −k d

dk
D
ψ
g (k), [ 16 ]

S
b
g(k) = D

ψ
g (k), [ 17 ]

where Charney’s assumption Sbg(k) = Sug (k) was applied, we can write the total en-

ergy spectrum of the geostrophic componentEg(k) = 1
2 [S

u
g (k) + Svg (k) + Sbg(k)]

as

Eg(k) =

(
1− k

2

d

dk

)
D
ψ
g (k). [ 18 ]

Since Eg(k) = E(k) − Ew(k) can be diagnosed from the observations and [ 5 ],
this can be solved for Dψg (k):

D
ψ
g (s) = 2

∫ ∞
s

Eg(σ)e
2(s−σ)

dσ, [ 19 ]

where the boundary condition Dψg (∞) = 0 was used and the coordinate was again

transformed to s = ln k for convenience. The decomposition is now complete. The

wave spectra are

S
u
w(k) = D

ψ
w(k)− k d

dk
D
φ
w(k), [ 20 ]

S
v
w(k) = −k d

dk
D
ψ
w(k) +D

φ
w(k), [ 21 ]

S
b
w(k) =

(
1− k d

dk

)[
D
φ
w(k)−Dψw(k)

]
, [ 22 ]

where Dψw(k) = Dψ(k)−Dψg (k), Dφw(k) = Dφ(k), and [5] was used to deduce

the last equation.
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Fig. 1. Observed wavenumber spectra of near-tropopause midlatitude winds and decom-

position into geostrophic component and inertia–gravity wave component. (a) Observed spec-

tra of longitudinal kinetic energy Su(k), transverse kinetic energy Sv(k), and potential en-

ergy Sb(k). (b) Helmholtz decomposition of the observed kinetic energy spectrum K(k) into

its rotational and divergent components Kψ(k) and Kφ(k). (c) Partitioning of the total

energy spectrum E(k) into the diagnosed inertia–gravity wave component Ew(k) and the

residual geostrophic component Eg(k).
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Fig. 2. Decomposition of observed wavenumber spectra into the geostrophic and inertia–

gravity wave components. (a) Diagnosed geostrophic component of the spectra of longitudinal

kinetic energy Sug (k), transverse kinetic energy Svg (k), and potential energy Sbg(k) (heavy

lines) and observed spectra for reference (faint lines). Note that by construction Sug (k) =

Sbg(k), so that the red and black heavy lines are on top of each other. (b) Diagnosed inertia–

gravity wave component of the spectra of longitudinal kinetic energy Suw(k), transverse kinetic

energy Svw(k), and potential energy Sbw(k) (heavy lines) and observed spectra for reference

(faint lines). A blowup of the mesoscale range of this panel can be found in the Supporting

Information.
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