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ABSTRACT

A simple ray-tracing model for the equatorward propagation of inertia–gravity waves in the lower stratosphere
is investigated. The model is based on a zonally symmetric wave source and incorporates radiative wave damping.
It is shown that steady extratropical wave sources are able to produce spectra of potential energy that exhibit
a conspicuous peak at the equator, which resembles the spectral peaks that are often observed in field data. This
reinforces the recent suggestion by other authors that such peaks are caused by the latitudinal variation of the
local Coriolis parameter, though these authors did not consider horizontal wave propagation. Notably, horizontal
wave propagation can produce equatorial peaks even with strictly extratropical wave sources.

Wave source intermittency is then investigated by allowing for a time-dependent wave source. The source is
treated statistically as a stationary random process and a number of general comments are made with respect
to the impact of intermittency on gravity wave parameterizations in general circulation models and on the
expected variance of observational estimates of energy spectra.

Finally, the possibility of an observational bias toward waves with lower group velocities (as recently suggested
by other authors) is examined using a simple example of topographic wave generation by time-varying surface
winds.

1. Introduction

In a recent paper by Alexander et al. (2002, hereafter
ATV) the observed latitudinal structure of potential en-
ergy spectra in the lower stratosphere is discussed.
These zonally averaged spectra show a conspicuous
peak at tropical latitudes, centered more or less at the
equator. Under the plausible assumption that the ob-
served spectra are due to low-frequency, inertia–gravity
waves, ATV make the original proposal that the ob-
served peak may in some way be caused by the van-
ishing of the Coriolis parameter at the equator. Specif-
ically, they discuss two separate mechanisms by which
the vanishing of the Coriolis parameter can lead to peaks
in the spectrum. The first is a straightforward assump-
tion about gravity wave sources in the troposphere or
at ground level: if one assumes that these sources are
present at all temporal frequencies, then near the equator
there are ‘‘more’’ gravity waves that can be excited
within the admissible intrinsic frequency band N . v̂
. f , where N is the buoyancy frequency, is the in-v̂
trinsic frequency of the gravity waves, and f is the local
Coriolis parameter. This leads to an energy peak at the
equator, where f goes to zero. The second mechanism
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discussed in ATV involves the intermittency of wave
sources, which ATV argue could also lead to an equa-
torial peak in the observed spectrum, though this mech-
anism is less straightforward than the first (cf. discussion
in section 3c). As in most gravity wave studies, only
vertical wave propagation was considered in detail by
ATV.

Now the aim of the present paper is twofold. First,
the discussion of the spectral peak in ATV is comple-
mented by demonstrating that it is in fact possible to
obtain potential energy spectra with a conspicuous peak
at the equator even in a situation in which there are no
equatorial gravity wave sources at all. This becomes
possible once the horizontal propagation of gravity
waves is taken into account, and this is studied in some
detail here by a simple toy model consisting of a zonally
symmetric wave source at various extratropical lati-
tudes. The meridional structure of the resultant wave
trains is first computed using ray tracing without dis-
sipation and then with dissipation due to radiative damp-
ing, which is significant near the equator. A robust and
conspicuous equatorial peak in potential energy is found
in all cases, and it is argued that similar peaks would
also occur in less idealized models.

Of course, none of these results imply that the ob-
served wave spectra are in fact predominantly due to
horizontally propagating waves. But presumably hori-
zontal propagation makes a contribution of some sort
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to the observed spectra, and it is useful to present an
initial study of it in the simplest possible idealized setup,
with all other effects absent purely in order to limit
distraction from the new effect. Overall, the present pa-
per reinforces the original suggestion made by ATV
about an eventual explanation of the observations in
terms of the variable f .

The second aim of this paper is a discussion of wave
source intermittency, which can be studied in detail in
the present toy model. Intermittency is well recognized
to be important for consistent gravity wave parameter-
izations in general circulation models and also for the
interpretation of observed data (e.g., the discussion and
references in Fritts and Alexander 2002; Alexander and
Dunkerton 1999; ATV). In the present paper, intermit-
tency is discussed in simple terms via time-dependent
wave sources that are modeled as stationary random
processes. This yields average wave energies that are
described by the expectation values of the corresponding
random wave field. The difficult question of how to
parameterize wave amplitudes for use in amplitude-de-
pendent, nonlinear wave saturation and dissipation
schemes (e.g., Alexander and Dunkerton 1999) is dis-
cussed for such random sources, and a simple approx-
imation for wave sources with known mean and variance
is proposed. It is argued that intermittent sources should
be treated statistically and that estimating statistical
source parameters such as the expected wave activity
flux and the source autocorrelation function may be a
useful objective of observational campaigns and nu-
merical investigations.

The impact of intermittency on observed wave spectra
is also discussed, noting in particular the increased var-
iance of space-averaged estimates for intermittent waves
with higher group velocity. However, no general ob-
servational bias against waves with higher vertical
group velocity is found, in contrast with the ‘‘probability
of observation’’ argument proposed in ATV. This is
demonstrated here by a model example of topographic
wave generation due to intermittent, time-dependent
surface winds, in which such a bias is absent.

The plan for the paper is as follows. The next section
describes the toy model setup and the wave train struc-
ture under nondissipative and dissipative conditions.
Only steady, nonintermittent wave sources are consid-
ered there. Following this is a study of wave source
intermittency in section 3, which discusses parameter-
izations, observations, and group-velocity-related ef-
fects. Finally, some concluding remarks are given in
section 4.

2. Model wave source and wave train structure

A zonally symmetric wave source is considered at a
wave launch latitude f0 , 0 in the Southern Hemi-
sphere. The source generates inertia–gravity waves
propagating due north, that is, equatorward. No partic-
ular physical forcing mechanism is meant to correspond

to this hypothetical source, although convection could
certainly launch waves with significant meridional
group velocities. For convenience, the vertical propa-
gation of the waves is neglected, either because one
implicitly considers vertically integrated wave struc-
tures, or because one considers vertically trapped waves,
or because of a sufficiently deep source. However, con-
sidering the vertical propagation explicitly would not
change the main features discussed later.

Also for convenience, there are no background winds,
the buoyancy frequency N is constant, and the vertical
wavenumber of the waves is high enough to allow the
neglect of scale height effects and to allow the use of
slowly varying, Wentzel–Kramers–Brillouin (WKB)
theory and hence ray tracing. Furthermore, the gravity
wave dispersion relation is approximated by

2l
2 2 2v̂ 5 N 1 f , (1)

2m

where k 5 (0, l, m) is the wavenumber vector lying in
the local y–z plane and f 5 2V sinf is the local Coriolis
parameter in terms of the earth’s rotation rate V and
latitude f. Equation (1) is valid for waves with l2 K
m2, that is, for waves with a much shorter vertical than
horizontal wavelength. Without loss of generality, it is
assumed that l and are both positive and then (1) canv̂
be rewritten as

|m|
2 2l 5 Ïv̂ 2 f . (2)

N

The meridional group velocity y g . 0 is given by
2 22 2 Ïv̂ 2 f]v̂ v̂ 2 f N

y 5 5 5 (3)g ]l lv̂ |m| v̂

and the waves propagate in the meridional direction
according to the usual ray-tracing equations

ydf dv̂ dl f dfg
5 , 5 0, 5 2 ,

dt R dt dt v̂R df

dm
5 0, (4)

dt

where R is the earth’s radius. As and m are propagationv̂
invariants, the third factor in (4) expresses the rate of
change in l necessary in order to keep (2) satisfied as
f (f) changes along the ray. Both the meridional wave-
number l and the meridional group velocity y g increase
as the waves approach the equator and f 2 decreases.

All parameters and wave properties at the launch al-
titude f0 are denoted by a subscript zero, for example,
f 0 5 f (f0) and so on. Clearly, 5 0 and m 5 m0v̂ v̂
throughout in this paper, so subscripts on these quan-
tities are not strictly needed. All waves are launched
from f0 with a particular frequency given by the ratio

v̂ v̂0m 5 5 . 1, (5)
f f0 0
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FIG. 1. Normalized total and potential energy as a function of
latitude. The waves are launched at f0 5 2308 and propagate without
dissipation until they reach f0 5 1308, where they are terminated.
Potential energy, exhibiting maximum at equator (solid line); total
energy, exhibiting minimum at equator (dash–dot lines).

which will be kept the same throughout this paper. This
means that the wave source at f0 is monochromatic. A
numerical value for m will be given in (12) later.

a. Nondissipative wave train

The wave amplitudes are determined from the usual
WKB wave action conservation law (e.g., Andrews et
al. 1987), which for nondissipative conditions (radiative
damping is considered later in section 2b) away from
the wave source reads

](cosfy E /v̂)](E /v̂) 1 g
1 5 0, (6)

]t R cosf ]f

where E(f, t) is the standard wave disturbance energy
density per unit volume averaged over a wave cycle.
As horizontal background density variations are ne-
glected in this paper, one could equally well use the
energy density per unit mass in (6). Equation (6) con-
tains the cosf factors due to spherical geometry. This
is easily done here and makes the results more accurate.
However, a simpler tangent-plane approximation would
lead to qualitatively the same results below; that is, the
spherical geometry is not essential.

For the envisaged monochromatic wave source the
invariance of along group velocity rays implies thatv̂

has the same value everywhere and at all times andv̂
hence can be factored out of (6). This implies thev̂
global conservation of wave disturbance energy under
this condition. For a steady wave source (averaged over
a wave cycle, of course), Eq. (6) can be simplified fur-
ther by setting the time derivative to zero in order to
obtain

](cosfy E )g
5 0, (7)

]f

which describes the constancy of wave energy flux that
must be obtained after a steady wave train has estab-
lished itself. Equation (7) has solution

y (f )E(f) cosf g 005 , (8)
E cosf y (f)0 g

where E0 5 E(f0) is the prescribed wave energy density
at the source. Substituting for y g from (3) and using (5)
gives

2 2 2E(f) cosf v̂ 2 f cosf m 2 10 0 05 5 . (9)
2 2 2!E cosf v̂ 2 f cosf sin f0 2Îm 2

2sin f0

This shows how E(f) varies due to two unrelated phys-
ical effects, as follows. The first factor in (9) captures
the lengthening of latitude circles as the waves approach
the equator. This dilutes the wave energy and decreases
E. The second factor captures the increasing group ve-
locity, which also dilutes the wave energy and hence
also decreases E.

Now, many observational techniques only measure
EP, that is, the potential energy part of E that is visible
in temperature fluctuations. As is well known, inertia–
gravity waves do not obey equipartition between kinetic
and potential energy. Instead, the relations

21 f
E 5 E 1 E , E 5 E 1 2 ,P K P 21 22 v̂

21 f
E 5 E 1 1 (10)K 21 22 v̂

hold, where EK is the kinetic energy. Indeed, in the limit
of inertial oscillations with 5 f the potential energyv̂
is exactly zero. It is clear from combining (6) and (10)
that EP is not conserved globally, in contrast with the
conserved E.

The absence of equipartition has a profound impact
on the inferences that can be made from observations
of EP. This is especially true for varying f , as is the
case here. Explicitly, one obtains

2sin f
2m 2

2 2 2E (f) E v̂ 2 f cosf sin fP 0 0Î5 5 (11)
2 2 2E (f ) E v̂ 2 f cosf m 2 1P 0 0 0

in the present case. The second factor in (11) now leads
to an increase in EP toward the equator, contrary to the
trend in E. This can be seen most clearly in a situation
where f 2 f0 is small and hence a tangent-plane ap-
proximation is valid, because then (9) and (11) imply
that in fact EEP 5 constant. This means that energy and
potential energy vary inversely proportional to each oth-
er as a result of both the changes in group velocity and
the fact that the waves become less affected by f near
the equator.

The ratios (9) and (11) are plotted in Fig. 1 as a
function of f for a case with f0 5 2308 and



1 JUNE 2003 1413B Ü H L E R

m 5 2/Ï3 ø 1.15. (12)

This particular value of m is used throughout this paper.
It has been chosen purely for convenience because the
aim is to launch low-frequency inertia–gravity waves
with close to f 0 (and hence m close to unity), andv̂
because this value makes the second factor in (11) equal
to 2 at the equator (where f0 5 0). Figure 1 clearly
indicates the different behavior of EP and E: the former
peaks at the equator while the latter has a trough there.

The amplitudes are symmetric across the equator and
the wave train would actually continue to propagate
northward past f 5 1308, until it is reflected at a lat-
itude where sin2f 5 m2 sin2f0 and hence l goes through
zero. To avoid complications due to this reflection
(where WKB theory cannot be used to predict ampli-
tudes), the wave train is simply terminated at f 5 | f0 | .
This wave train termination has no physical basis in a
nondissipative theory, but will be seen to matter less
once damping has been introduced in the next section.
It can be noted in passing that a more complete linear
theory that takes reflection into account would have to
be based on meridional waveguides rather than on sim-
ple ray tracing.

b. Radiative damping

Linear dissipation due to radiative damping near the
equator alters the wave train appearance significantly,
as will be shown here. The temperature disturbance as-
sociated with the gravity waves upsets the radiative
transfer equilibrium of the stable background temper-
ature field and this induces radiative transfer processes
that seek to dampen the temperature disturbance on a
exponential time scale 1/ , which depends on both al-â
titude and on the vertical wavenumber of the waves (cf.
Andrews et al. 1987).

The wave energy dissipation density per unit volume
and unit time averaged over a wave period is 2 EP.â
This yields an amended wave action law (6) that reads

](cosfy E /v̂)](E /v̂) 1 Eg P1 5 22â
]t R cosf ]f v̂

E
5 2a , (13)

v̂

where the effective damping rate per unit time (Bühler
et al. 1999; Bühler and McIntyre 1999) is defined as

2E fPa 5 2â 5 â 1 2 . (14)
21 2E v̂

The definition of a shows the important fact that low-
frequency inertia–gravity waves are significantly less
visible to radiative damping than is suggested by the
bare damping rate . This is because of their low relativeâ
levels of potential energy compared to kinetic energy.
This fact needs to be borne in mind when using nu-
merical values for the bare damping rate , which typ-â

ically increases as in the lower stratosphere (e.g.,Ï | m |
Fels 1982, 1984). One can also note that the rate a
measures the wave-action decay per unit time, so that
the decay rate per unit distance is given by a/y g. This
will be used later.

Near the equator f 2/ 2 will become small and thev̂
wave train will hence be significantly damped, as will
be shown now. For a steady wave train with uniform

the solution of (13) in terms of EP isv̂

2sin f
2m 2

2E (f) cosf sin fP 0 0Î5
2E (f ) cosf m 2 1P 0

f Ra(f9)
3 exp 2 df9 . (15)E[ ]y (f9)gf0

This differs from (11) by the exponential attenuation fac-
tor, which is less than unity if a . 0. Notably, the ef-
fective damping rate per unit distance a/yg is proportional
to yg in the present case, because a } . This means2â y âg

that the effective damping rate per unit distance is ac-
tually highest at the equator, where the wave is fastest.
Indeed, combining (3), (5), and (14), the integrand in the
exponential factor in (15) can be rewritten as

2Ra(f9) Râ|m| sin f9
5 1 2 , (16)

2 2!y (f9) N m sin fg 0

which yields an incomplete elliptical integral of the sec-
ond kind in (15). This can easily be evaluated numer-
ically. The parameters chosen for this purpose were

R 5 6300 km, |m| 5 2p/2 km,

â 5 0.1/day, N 5 2p/7 min. (17)

These were meant to be typical for the lower strato-
sphere and they produce a maximal damping rate per
unit distance at the equator of Ra/y g 5 0.027 per degree
latitude.

The results are plotted in Fig. 2 for three different
launch latitudes f0 ∈ {2608, 2308, 2158}. The solid
line gives EP without damping and the dashed line with
damping. The f0 5 2608 case is peculiar because for
the chosen value of m it just so happens that in this case
the undamped EP profile is exactly constant, as can be
readily verified from (11). As f0 moves closer to the
equator the peak in the undamped EP gets bigger and
eventually approaches an upper limit, which is equal to
2 for the chosen value of m. The damped curves are
clearly not symmetric across the equator. It is obvious
from Fig. 2 that the damping has a significant effect on
the latitudinal structure of EP and hence needs to be
taken into account if gravity waves are indeed allowed
to travel large horizontal distances. Figure 2 also shows
that once damping is considered the termination of the
wave train at f 5 | f0 | introduces only a small error,
as the wave amplitudes are quite small there anyway.
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FIG. 2. Normalized potential energy as a function of latitude. The
waves are launched at f0 5 {2608, 2308, 2158} and terminated at
f0 5 {1608, 1308, 1158}. Potential energy without dissipation (solid
lines); potential energy with dissipation due to radiative damping
(dashed lines).

FIG. 3. Normalized potential energy as a function of latitude. (left)
Multiple wave sources with uniform strength located symmetrically
across the equator at | f0 | ∈ [308, 608]. (right) The same as in (a)
with | f0 | ∈ [158, 608]. Nondissipative solution (solid lines); with
dissipation due to radiative damping (dashed lines).

c. Multiple wave sources

The previous computation can be repeated for mul-
tiple wave sources at different latitudes and the resulting
wave energy profiles can be added if one assumes that
the wave sources are mutually incoherent. With m kept
constant at all latitudes, each source actually generates
waves with a slightly different intrinsic frequency 5v̂
m f 0. The resultant cumulative energy density at a given
latitude hence consists of contributions from a range of
intrinsic frequencies.

Such cumulative densities are plotted in Fig. 3. The
solid line is again the undamped case and the dashed
line is the damped case. The left density results from
placing sources of equal strength [as measured by
EP(f0)] at all integer latitudes from 2608 to 2308. The
right density results from doing the same over the larger
range from 2608 to 2158. Finally, the resultant densities
have been symmetrized across the equator by the artifice
of putting equal sources at the corresponding positive
latitudes. (Such artifical symmetrization could presum-
ably be avoided in a modal approach, as all modes would
be symmetrical across the equator.) The dip in the center
of the left plot arises because of the radiative damping
suffered by the waves. Similar dips can sometimes be
seen in observed spectra (cf. references in ATV).

It is quite obvious that by varying the latitudinal
source strengths and the other wave parameters a mul-
titude of energy densities can be generated, which could
be tuned to agree closely with observations. As noted
before, this is no proof that meridional propagation of
inertia–gravity waves is relevant to these observations,
though it clearly could make a contribution of some
sort. The key point that has been illustrated here is that
even wave sources outside the equatorial region can
robustly produce EP spectra that peak at the equator.

3. Intermittent wave sources

Real atmospheric gravity wave sources are usually
intermittent, that is, they are active only at certain times
and in certain places. Therefore, intermittency presents
an important issue both for the consistent parameteri-
zation of gravity wave sources in general circulation
models and for the interpretation of observational field
data (cf. Holton 1983; Dunkerton 1989; ATV; Alexander
and Dunkerton 1999).

The simple wave propagation problem studied in this
paper has the advantage that temporal intermittency can
be examined in it in full detail. This leads to a certain
clarification of the implications that intermittency has
for parameterization and observation, which makes this
worthwhile. Temporal intermittency is incorporated here
via time-dependent sources, that is, the constant E0 is
replaced by E0(t). As always in this context, this im-
plicitly presupposes a scale separation between the fre-
quency of the forced waves and the intermittency time-
scales present in E0(t). Similar implicit assumptions un-
derlie the spatial variability that may occur in E(f, t).
For instance, these assumptions impose well-known ob-
servational constraints (e.g., Alisse and Sidi 2000).

Now, it is straightforward to obtain the time-depen-
dent solution of (13), but the important points can al-
ready be examined much easier in a local tangent-plane
approximation, which gives (if damping is also neglect-
ed)

](y E )]E g
1 5 0, (18)

]t ]y

where y 5 Rf. For simplicity, the group velocity y g is
also taken to be constant over the y region of interest.
Notably, all the discussion that follows also applies di-
rectly to the case of vertical wave propagation and pseu-
domomentum transport after making the substitutions
y → z, y g → wg, and E → kE/ .v̂
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The elementary solution of (18) is

E(y, t) 5 E (t 2 y/y ),0 g (19)

provided the wave source is located at y0 5 0 and y g

. 0, as before. This means that source energy values
are simply advected to the right with constant speed y g.

Now, if the function E0(t) is treated as a stationary
random process (e.g., Yaglom 1962) in time, then (19)
defines the random process E(y, t) in time and space.
Clearly, the process E(y, t) is stationary in t and ho-
mogeneous in y. By using the tangent-plane approxi-
mation and by treating the source as a stationary random
process, we in essence focus on timescales and space
scales over which the statistical character of E0(t) can
be approximated as constant. This models the typical
behavior of an atmospheric wave source under slowly
varying external conditions, say during a certain month.

Some assumptions about the nonnegative random
process E0(t) are required now to make progress. Let
E0(t) have expected value

E [ E{E (t)},00 0 (20)

and temporal autocorrelation function

B(t 2 s) 5 B(s 2 t)

[ E{[E (t) 2 E ][E (s) 2 E ]}. (21)0 00 0 00

such that the variance of E0(t) is B(0). Here E{ · } de-
notes the probabilistic expectation operator. The wave
energy flux

F(y, t) [ y E(y, t) 5 y E (t 2 y/y )g g 0 g (22)

is used below, and it is trivially proportional to E(y, t)
in the present setting with fixed y g. Its expected value
is y gE00 and its autocorrelation function is B(t).2y g

a. Parameterization

Gravity wave parameterizations are usually formu-
lated based on wave theory with steady (i.e., noninter-
mittent) sources. That is to say, although the parame-
terized sources may change slowly at a given location
in response to changes in the overall conditions (pre-
vailing surface winds, strength of convective activity,
etc.), the (vertical) wave propagation is usually modeled
in terms of a steady wave train. This means that param-
eterizing an intermittent source requires a nontrivial
modeling of the intermittent physical source by a steady
parameterized source. How to do this consistently and
efficiently is subject to some current debate (e.g., ATV
and references therein; Fritts and Alexander 2002; Al-
exander and Dunkerton 1999).

In general the parameterized wave flux should be
equal to the expected value of the true flux E{F(y, t)},
which in the present case of a stationary source does
not depend on y or t. When this condition is satisfied,
then the steady model wave train will, on average, de-
liver the same wave flux as the true intermittent source.

This is the natural condition to use if one considers, for
instance, the vertical transport of zonal pseudomomen-
tum: delivering, on average, the correct amount of pseu-
domomentum to higher altitudes means that, on average,
the correct amount of zonal mean-flow forcing is exerted
on the middle and upper atmosphere.

As a simple idealized example, consider the three
different wave fields depicted in Fig. 4. These are snap-
shots at a fixed time t, and the left panel shows the wave
field due to a steady, nonintermittent source at y0 5 0.
Disregarding amplitudes for a moment, the middle panel
shows the same wave but now due to an intermittent
source, which is switched off half of the time and
switched on during the other half. The right panel shows
the result of an even more intermittent source, which is
only switched on one-quarter of the time. Such on–off
sources are described by an intermittency parameter g
that is equal to the fraction of time that the source is
switched on. In the three presented cases

g 5 {100%, 50%, 25%}. (23)

Of course, there are many different random processes
that have the same intermittency parameter g. However,
knowledge of g is enough to determine E00 and the
variance B(0) [though not B(s) for nonzero s]. This is
possible because here E0(t) takes only two values: zero
and Es, say, with corresponding fractions of time (1 2
g) and g. This means that Es is the source energy spec-
trum in the present context, corresponding to the ‘‘on’’
phase of the physical wave source. (One can note in
passing that in the parameterization literature the term
‘‘source spectrum’’ often refers to something different,
namely, to the prescribed steady values of E at a certain
lower level in the vertical.)

The expectation E00 is then given by

E 5 E{E (t)} 5 (1 2 g)0 1 gE00 0 s

5 gE and (24)s

2B(0) 5 E{[E (t) 2 E ] }0 00

2 25 (1 2 g)(2gE ) 1 g(E 2 gE )s s s

25 gE (1 2 g). (25)s

The nonintermittent g 5 1 case has zero variance, as
it should. Now, the values of the expected spectra for
the wave trains in Fig. 4 are given by

E{E} 5 gE and E{F} 5 y gE . (26)s g s

However, the wave amplitudes in Fig. 4 have in fact
been adjusted such that the second wave has an ampli-
tude that is larger than the first by a factor of , andÏ2
the third amplitude has been increased by another factor
of . This means that the value of Es (which is pro-Ï2
portional to the wave amplitude squared) increases by
a factor of 2 from wave to wave. This means that the
product gEs is in fact the same in all three cases. In
other words, all three cases gives rise to the same pa-
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FIG. 4. Wave packets due to hypothetical intermittent wave source at y0 5 0. (left) Steady, nonintermittent
source. (middle) Intermittent source with g 5 50%. (right) Intermittent source with g 5 25%. The wave
amplitude increases by a factor of from wave to wave, keeping the expected wave energy flux the sameÏ2
in all three cases.

rameterized flux E{F}. So all three wave trains are
mapped onto the first wave train for the purpose of
parameterization with equal expected flux.

This is despite the fact that the wave amplitudes are
markedly different in the different cases. This is im-
portant for nonlinear effects, such as the amplitude-de-
pendent dissipative processes to do with wave saturation
by instability or breaking. Clearly, the individual wave
packets in the second and third cases are more likely to
break earlier because of their larger amplitudes. This
means that the likely profiles of flux convergence due
to dissipation are going to be different, which is im-
portant for applications such as vertical transport of mo-
mentum (Alexander and Dunkerton 1999).

A more general random process E0(t) may take many
different values, and it is not obvious how to choose
‘‘the’’ source spectrum value that characterizes the ac-
tive source and hence the wave packet amplitudes. Bas-
ing a probability distribution for E0(t) on the expected
value and the variance of E0(t) could be a useful inter-
mediate step in this context. For instance, knowing the
values of E00 and B(0) allows computing an intermit-
tency parameter g now defined via (24)–(25) as

2E00g 5 . (27)
2E 1 B(0)00

So this equation could be used for an arbitrary source
E0(t) in order to define an intermittency parameter g
that approximates the source with an on–off source hav-

ing the same expected value and variance. This corre-
sponds to a source spectrum defined as

1 B(0)
E 5 E 5 E 1 1 . (28)s 00 00 21 2g E00

Modeling of wave amplitudes and of nonlinear wave
saturation could then follow based on this approxima-
tion as if the source were of the simple on–off type.

b. Observation

Determining the statistics of E0(t) requires suitable
observations to be made either in field data or, if fea-
sible, in high-resolution numerical simulations of the
physical source processes. Because of wave propaga-
tion, there are some interesting answers to the question
of how quickly averaged measurements converge to
their expected value. By definition, a single observation
of E(y, t) 5 E0(t 2 y/y g) at some y and t has expected
value E00 and variance B(0). Dividing B(0) by gives2E 00

the normalized variance. Now, repeating such an ob-
servation M times (and averaging the results) under the
assumption that all observations are mutually uncorre-
lated reduces the variance to B(0)/M. For example, this
means that for the on–off model described earlier the
normalized root-mean-square error after M such obser-
vations is equal to
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B(0) 1 2 g
5 . (29)

2! !ME Mg00

For substantially intermittent sources this shows that a
large number of measurements M are needed to bring
the expected error below a reasonable threshold. For
instance, to estimate E00 to within 30% error requires
about M 5 10 measurements for a source with g 5 0.5,
but M 5 30 if g 5 0.25. To achieve 10% accuracy
requires roughly 10 times more measurements in either
case.

Time-averaged observations of E(y, t) have substan-
tially reduced variance once the averaging time T is
substantially larger than the integral timescale of the
source

` B(t)
t 5 dt. (30)E B(0)0

Specifically, an observational time average

t1T t1T1 1 y
E(y, t9) dt9 5 E t9 2 dt9 (31)E E 01 2T T y gt t

has expectation E00 and variance
T T1

B(t 2 s) dt ds, (32)E ET2 0 0

which for T k t is øB(0)2t/T. So, in terms of variance
a single time-averaged observation with averaging time
T is equivalent to averaging over M 5 T/(2t) uncor-
related observations of E(y, t).

Space-averaged observations of E(y, t) using an av-
eraging length L are essentially identical to time-aver-
aged observation, after an important scaling. This is
because the statistics of

y1L y1L1 1 y9
E(y9, t) dy9 5 E t 2 dy9 (33)E E 01 2L L y gy y

are identical to the statistics of a time average with
averaging time T 5 L/y g. This means that the normal-
ized variance of (33) for sufficiently large L will be
øB(0)2y gt/L. There is now an explicit dependence on
y g, which will be discussed next.

c. Group-velocity effects

For intermittent wave sources there is a need to be
vigilant with regard to errors that may result from ob-
servational biases, such as regarding group-velocity ef-
fects (ATV). For instance, as the normalized variance
of (33) is proportional to y g, it is clear that space-av-
eraged observations of fast waves are less accurate than
those of slow waves. This is simply because if one con-
siders estimating the expected energy spectra of two
different waves with y g1 . y g2 by using a space average
with fixed L, then the estimate of the expected spectrum
of the first kind of wave will be less accurate, because

the effective source observation time T 5 L/y g will be
less. (Of course, for a time average with fixed T the
variances in the two cases would be equal.) Reduction
of variance requires observing the source for longer
times, which is why lower values of y g give lower var-
iance and hence more accuracy.

However, in the present context there appears to be
no observational bias against waves with large group
velocity, that is, large values of y g do not bias obser-
vational estimates of E00 from (31) or (33).

For instance, consider the particular atmospheric ex-
ample of a time-varying surface wind U(t) over topog-
raphy and the resultant gravity wave generation. Clearly,
all of the earlier comments apply directly to a vertical
space average over the topography, with the relevant
group-velocity component now being wg. Now, the
wave source statistics are all determined by the statistics
of the random process U(t), which one can idealize as
an on–off process with an intermittency parameter g
and an integral timescale t. Depending on the shape of
the topography, a more or less broad spectrum of gravity
waves will be generated, with a corresponding broad
range of wg values. Then it is clear that space-averaged
estimates of E00 for fast waves (in wg) will be less ac-
curate than those for slow waves. However, once the
relevant E00 has been determined to required accuracy
for any particular kind of wave, one can then compute
the source spectra Es (which corresponds to the ‘‘on’’
phase of the surface wind) simply from (24); that is,

1
E 5 E . (34)s 00g

This holds for all waves, that is, regardless of wg. In
other words, in the present example wg affects only the
accuracy of space averages used to estimate E00, but it
does not affect time averages or the link between the
observed mean spectrum E00 and Es.

Notably, this disagrees with the probability of ob-
servation scaling between observed and source spectra
that has been proposed by ATV. These authors started
from the premise that waves with higher group velocity
traverse a given observation region of length L faster
than waves with slower group velocity. Hence they ar-
gue that, for intermittent sources, observable spectra
(corresponding to E00 here and denoted by Eo in ATV)
should be biased toward waves with slower group ve-
locity, as these are more likely to have been observed.
Overall, for fixed intermittency parameter g, ATV pro-
pose an additional rescaling Es } wgE00. As they make
clear, such a scaling would have important consequences
for gravity wave parameterizations and the interpreta-
tion of field data.

However, that their proposed scaling cannot be valid
for all types of wave sources is borne out by the above
counterexample of topographic wave generation. Phys-
ically, the reason why ATV’s argument is circumvented
here lies in the fact that during an ‘‘on’’ phase of the
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surface wind, say of duration t1, wave trains of vertical
depth t1wg are generated. This means faster waves leave
longer trails in this phase. This factor of wg then neatly
cancels the probability of observation effect of shorter
transversal time. The upshot is that waves with different
wg are just as likely to be observed in any random ob-
servation in this problem.

Finally, one should note the caveat that these con-
siderations (as were ATV’s) are essentially one-dimen-
sional in nature. For instance, two-dimensional propa-
gation may lead to other observational biasing effects,
such as the effect that nearly horizontal rays (i.e., m2

k l2) may be more likely to be observed by a network
of stations or soundings (T. Dunkerton 2002, personal
communication). This remains to be investigated.

4. Concluding remarks

In essence, the main point about nonuniform potential
energy spectra that is made in this paper is already con-
tained in (10), which quantifies the increasing share of
potential energy in an inertia–gravity wave as f 2/ 2v̂
decreases. This shows that all wave sources with fixed

‘‘produce’’ more potential energy (per total energy)v̂
as | f | decreases. The horizontally propagating waves
described in the present paper are just one example of
such sources, in which this tendency overwhelms the
opposing energy-reducing tendencies due to latitude-
circle widening and group-velocity increase. Even if
only vertical wave propagation is considered, one might
still find more examples of this effect. For instance,
convection might be active over a range of latitudes
with roughly the same emission spectrum in . That isv̂
to say, roughly the same amount of wave energy is
produced by convection at a certain , regardless atv̂
which latitude the convection takes place. Then the lat-
itudinal footprint of these waves would again show a
peak in potential energy at the equator, because the same

corresponds to a higher share of potential energy therev̂
than at higher latitudes. Another possible effect was
pointed out by an anonymous referee: the poleward
propagation of waves generated by equatorial wave
sources could also lead to a potential energy maximum
near the equator. This is basically the thought experi-
ment of this paper in reverse.

This ubiquity of effects that can contribute to poten-
tial energy peaks raises the question of how to distin-
guish between them in extended observations that go
beyond EP(f). In horizontal propagation, for instance,
relative peaks in potential energy should be accompa-
nied by relative troughs in kinetic energy, according to
(10). In vertical propagation, on the other hand, pre-
sumably peaks would occur in both spectra. Also, ob-
servations of EP(f, ) would be useful: horizontal prop-v̂
agation of waves generated at higher latitudes would
correspond to a thinning out of the spectrum at valuesv̂
near the local Coriolis parameter f (f). Other wave
sources might leave a different footprint in such spectra.

It is again stressed how surprisingly weakly radiative
damping acts on low-frequency inertia–gravity waves
[cf. (14) above, Bühler and McIntyre 1999]. Otherwise,
waves forced say at f0 5 2308 would have been oblit-
erated before they reach the equator. This is because
their travel time to the equator can be roughly estimated
[based on the values in (17)] to be about 15 days, which
is long compared to the ‘‘bare’’ radiative damping time
scale 1/ but much shorter compared to the effectiveâ
damping timescale 1/a encountered along the way. This
is the key to the longevity of inertia–gravity waves in
the lower stratosphere.

It seems that the predictions of the simple model pre-
sented here should carry over to more complicated mod-
els. For instance, a less simple model would have waves
propagating zonally as well as meridionally, that is, the
wavenumber vector would be k 5 (k, l, m) with nonzero
k. However, fundamentally the same behavior would
still be observed, as long as l ± 0. For instance, under
ray tracing as in section 2 the zonal wavenumber k
would be invariant, l2/k2 would increase toward the
equator, and hence the wave’s path would be attracted
to the equator, producing a latitudinal ray path much as
the ones considered here. Other model improvements
would remove the ray-tracing restriction in the merid-
ional direction by developing the wave field in terms of
meridional waveguide modes, which are bounded in lat-
itude by the turning points where the wave rays are
reflected. This would allow wave amplitudes to be com-
puted everywhere, that is, including the turning point
regions. On the downside, this approach would presum-
ably necessitate taking vertical wave propagation into
account explicitly.

For time-dependent sources a less simple model of
wave packets would take the wavenumber and concom-
itant y g spread across the wave packet into account,
which leads to wave packet dilation or focusing effects
that affect the local wave amplitudes. This again shows
how delicate the whole question of predicting local
wave amplitudes is: even packet-integrated wave activ-
ity might be a poor guide to local amplitudes. In ad-
dition, local amplitudes may or may not be significantly
affected by wave superposition and nonlinear interac-
tion effects. Expected pseudomomentum fluxes that are
summed over all waves, on the other hand, are unaf-
fected by such events, unless they lead to wave breaking.
This follows from the well-known nonlinear extensions
of wave activity conservation laws. It appears that local
wave amplitudes will always be less predictable than
mean wave fluxes.

It is quite clear from the discussion in section 3 that
intermittent wave sources cannot be properly charac-
terized nor reliably modeled in parameterization
schemes based only on a single amplitude parameter.
At some extreme, the full probability distribution of the
source could be used. On the other hand, in section 3a
the simple procedure of approximating an intermittent
source with known mean energy and variance by an
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equivalent on–off source sharing those values was not-
ed. Estimating statistical source parameters [e.g., the
probability density function for a wave source spectrum
E0(t), and its autocorrelation] and their dependence on
seasonal conditions, etc., is clearly a worthwhile aim
for observational campaigns, whether they use field data
or numerical simulations.
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