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Abstract

This survey covers the recent research area of statistical-computational gaps through the
lens of the planted clique problem. Statistical problems are said to exhibit such a gap if there
is a complexity threshold where the problem is statistically possible to solve, but no efficient
algorithm can solve the problem. We first introduce statistical-computational gaps through
the canonical example of the well-studied planted clique problem. We review the analysis of
when the problem is statistically possible to solve. We next discuss efficient algorithms that
solve the problem for lower-complexity instances, motivating the conjecture that planted
clique exhibits a statistical-computational gap. We then turn towards recent work aiming to
establish and predict the gap for planted clique, first for low-degree polynomial algorithms,
and then for statistical query algorithms. Overall, our review presents a cohesive treatment
of the planted clique problem as a case study for understanding statistical-computational
gaps, and covers recent work analyzing planted clique that may lead towards a broader
theory for predicting statistical-computational in other problems as well.

Keywords: Statistical-computational gaps, planted clique, statistical queries, low-degree
polynomials

1. Introduction

Unconventionally, this survey includes two introductions, one from the perspective of statis-
tics and one from the angle of computer science.

In 1935, Ronald Fisher, provoked by the claims of Muriel Bristol that she could tell by
tasting warm beverages whether the milk has been added to the cup before or after the tea,
came up with the concept of hypothesis testing. Observations are collected from the world
(which is believed to be governed by some randomness) and the task of a statistician is to
design a decision rule that decides between two possible hypotheses, or as stated originally,
that “possibly disproves the null hypothesis”. The null hypothesis is the one of the two
that is the most “likely” to occur from chance alone. The main statistical question that
arises here is: how many cups of tea do we need to provide to Mrs. Bristol to determine
with high confidence whether she has indeed tea-tasting super capabilities or not, that is

how much information do we need for solving a statistical problem?

©2000 Merrill and Tsilivis.
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Figure 1: The power of signal in the data is conjectured to induce 3 different regimes
in statistical inference tasks: (a) An Impossible one, where there is simply not enough
information to statistically solve a problem, (b) An Easy one, where the power of the signal
is sufficient to do inference with an efficient (polynomial time) algorithm, and (conjecturally)
(c) A Hard one, where the problem is statistically possible to be solved, but there is no
polynomial time algorithm that does so.

A following question is what is this decision rule that solves the problem and, perhaps more
crucially in the recent era of automated computation,

what is the computational complexity of the decision rule that solves a statistical problem?

The phenomenon of computational-statistical gaps, which is by no means limited to hy-
pothesis testing problems1, but can be observed in many statistical inference tasks, is the
fascinating observation that optimal answers to the previous two questions might be at ten-
sion with each other; a procedure that is time efficient (takes polynomial time to terminate)
might require much more statistical information than what is required for solving it with
any algorithm (see Figure 1).

In the early 1970’s, Richard Karp organised the blooming field of computational com-
plexity by showing that there exist a number (21) of different problems which are at least as
hard as the one of satisfying boolean formulae. These problems are believed to be compu-
tationally hard, in the sense that there exist worst-case instances for which any algorithm
that solves the problems on these instances must pay superpolynomial time. Famously,
this consideration has limitations as a worst case analysis might be too pessimistic for the
real world (Roughgarden, 2021), and one approach that attempts to go beyond this is the
average case approach, where instances are assumed to be random variables that come from
specific distributions. While this area is far from developed in the level of traditional Com-
putational Complexity, there is gradual progress on which problems are hard here, and,
interestingly, in what regimes. At the heart of this endeavor for an average case Compu-
tational Complexity theory seems to lie the phenomenon of statistical-computational gaps,
which informally demonstrates that certain problems might be either easy or hard, depend-
ing on the “size” of the pattern that we are searching for inside a random input (see Figure
1).

The rest of this survey is organised as follows. Section 2 fixes some notation. Section
3 introduces the phenomenon of statistical-computational gaps through a problem that
is considered to be canonical in this area, the planted clique problem. Sections 4 and 5

1. however, this survey will focus on one such problem, the planted clique problem.
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cover different classes of efficient algorithms, for which there exist lower bounds on the
statistical information needed for them to succeed in inferring the statistical truth; that is,
the conjectured gaps hold for these special classes of algorithms. In particular, Section 4
covers statistical query algorithms and Section 5 covers low degree polynomials.

Perspective and Prior Work. The purpose of this survey is to give a short, ped-
agogical introduction to the area of statistical-computational gaps, particularly aimed at
young researchers/graduate students in the fields of Computer Science, Data Science and
Statistics, through the problem of Planted Clique. There is a number of excellent different
references that cover some aspects of this area already, and we have mainly based our ex-
position on the works of Kunisky et al. (2022); Ilias Zadik (2019); Zdeborová and Krzakala
(2016).

2. Notation

We will use log to denote the logarithm in base 2, following conventions in computer science.
Whenever we refer to an undirected graph going forward, we mean an undirected graph with
no self-loops.

3. The Gap Conjecture for Planted Clique

It is most concrete to introduce the idea of a statistical-computational gap through a canon-
ical example of a problem that is thought to exhibit one. The planted clique problem is
such in example (Jerrum, 1992; Gamarnik and Zadik, 2019; Chen et al., 2022). At a high
level, this problem consists of finding the k clique in a random undirected graph of n nodes.
Whereas it is statistically possible to detect the planted clique when k ≥ (2 + ϵ) log n for
some small ϵ > 0 (Chen et al., 2022), there is only known to be a polynomial-time algorithm
for detection when k ≥ Ω(

√
n). Thus, when (2 + ϵ) log n < k < Ω(

√
n), the planted clique

problem is statistically possible to solve, but there is no known efficient algorithm for doing
so.

This motivates the conjecture that there is a statistical-computational gap for planted
clique, i.e., that any efficient algorithm to find the planted clique must require a larger
value of k than the value necessary to statistically distinguish the planted clique from other
cliques. Yet, this gap remains a conjecture, since there could be an unknown algorithm that
solves planted clique efficiently for values of k smaller than Ω(

√
n). Recent work attempting

to understand statistically-computational gaps has proven such an algorithm cannot exist,
at least for restricted classes of statistical algorithms. After introducing planted clique in
more detail in this section, we will turn to discussing this recent work.

3.1 Problem Definition

We now define the planted clique problem more formally. There are really two related
variants of planted clique that we will discuss: recovery and detection.

Recovery. In the recovery variant planted clique, we first sample a random undirected
graph by creating n nodes, and choosing whether to connect each pair of nodes with prob-
ability 1

2 , as showin in the left side of Figure 2. We denote the distribution of this initial
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(a) Example initial graph (n = 4) with prob-

ability 2−(
4
2) = 1

64 under G(4, 1
2 ).
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(b) Resulting graph after planting a 3-clique
at nodes {1, 3, 4}.

Figure 2: Example of (a) a random graph sampled from G(4, 12) and (b) a possible resulting
graph under G(4, 12 , 3) with a 3-clique planted at nodes {1, 3, 4}.

graph G(n, 12). We then plant a clique in this graph, i.e., we choose k out of n edges to
fully connect. We denote the distribution of this new graph, which is guaranteed to contain
a k-clique, as G(n, 12 , k). The planted clique problem takes as input G ∼ G(n, 12 , k) and
expects as output the indices of the k nodes that form the planted clique that we injected
into G.

Detection. The planted clique problem can be equivalently stated with a more statistical
flavor as follows. We imagine we are given a graphG coming from either G(n, 12) or G(n,

1
2 , k),

and we wish to distinguish the distributions, i.e., test the null hypothesis that G came from
G(n, 12). The detection variant effectively reduces to distinguishing whether a k-clique found
inG was planted or occurred by chance, and is thus “at most as hard as” the recovery version
of planted clique.

Formally, the task of hypothesis testing can be formulated as follows. Let Q = (Qn)n∈N︸ ︷︷ ︸
null hypothesis

and P = (Pn)n∈N︸ ︷︷ ︸
planted hypothesis

be two (sequences of) probability distributions over a (sequence of)

measurable space(s) X = (Xn)n∈N, where we overload notation to also let X refer to the
union of these spaces. One can think of n as the size of the problem. The goal of hypothesis
testing is to design a statistic or test fn that, given data X ∈ Xn for some n, decides the
“true” generating distribution with high probability as the size of the instance gets bigger
and bigger. That is, we search for an fn : Xn → {0, 1} such that:

PX∼Pn{fn(X) = 1} n→∞−−−→ 1

and
PX∼Qn{fn(X) = 0} n→∞−−−→ 1.

In words, the test must with high probability output 1 when the data come from the planted
distribution and 0 otherwise. In that case, we will say that fn distinguishes between P and
Q. As noted, this definition is concerned with what happens in the asymptotic limit n → ∞.

3.2 Statistical Possibility

The first question we seek to answer about planted clique when it is statistically possible to
find the planted clique. Informally, when k is small, there may randomly be other cliques
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of size k in the random graph, which forces us to guess which one was planted. Thus,
we cannot identify the planted clique with high probability. As k increases, it becomes
vanishingly less likely that some set of nodes should form a k-clique in the random graph,
as all k nodes will have to share an edge, and each edge has probability 1/2. We thus have
the intuition that the problem may not be statistically feasible for smaller values of k, but
that it becomes so as some larger threshold for k.

We will seek to identify the minimum value of k for which it is possible to identify the
planted clique. Intuitively, this is statistically possible when the probability that there is
another k clique in the original graph is small. It turns out that, which high probability,
the maximum clique in a graph of n nodes has size (2 + ϵ) log n, for some small positive ϵ.
Thus, as long as k ≥ (2 + ϵ) log n, there is a high probability that the planted clique is the
only k clique, and the statistical estimation problem is thus possible.

We have found that most presentations of planted clique in the literature do not justify
that it is unlikely to have a maximum clique greater than 2 log n. In the interest of com-
pleteness, we provide such a proof, adapted from the rough proof sketch given by Trevisan
(2017):

Lemma 1 With probability at least 1− 1
nΩ(1) , the maximum clique in a graph G ∼ G(n, 12)

has size at most 2 log n+ 2.

Proof Let the random variable Nk be the number of k-cliques in G ∼ G(n, 12). Then,

E[Nk] =

(
n

k

)
·
(
1

2

)(k2)
≤ 2k logn+ k

2
− k2

2

= 2−
k
2
(k−1−2 logn).

For all k ≥ 2 log n+ 2, this becomes

E[Nk] ≤ 2−
2 logn+2

2
(2 logn+2−1−2 logn)

= 2− logn−1 ≤ 1

nΩ(1)
.

By applying Markov’s inequality, we get

Pr[Nk ≥ 1] ≤ E[Nk]

1

=
1

nΩ(1)
.

Let N be the number of cliques in G of size at least 2 log n+ 2. Because any clique of size
larger than 2 log n+ 2 would contain a clique of size 2 log n+ 2, we get that

Pr[N ≥ 1] ≤ Pr[N2 logn+2 ≥ 1]

≤ 2−Ω(logn)

∴ Pr[N = 0] ≥ 1− 1

nΩ(1)
.
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Note that tight concentration can also be shown in the other direction: i.e., this is not
just an upper bound, but the maximum clique in G is typically around 2 log n (Trevisan,
2017). However, for our purposes, the upper bound is sufficient to demonstrate that it is
very unlikely to observe a clique of size much greater than 2 log n in a large initial graph.

To recap, Lemma 1 is the core graph-theoretic tool that allows us to analyze whether the
planted clique is detectable. As long as k ≥ (2+ ϵ) log n, for large n we have k ≥ 2 log n+2.
It is thus very unlikely to find a “natural” k-clique in the original graph, so any clique we do
find is probably planted. We conclude that, with high probability, we can uniquely identify
the planted clique, or, equivalently, identify which distribution the graph came from.

3.3 Hypothesis Testing Algorithm

We now discuss an algorithm for the hypothesis testing variant of planted clique when
k ≥ Ω(

√
n), following the textbook presentation in Arora and Barak (2009).

The test procedure is motivated by understanding the distribution of the vertex degree
of a node in G. The Bernoulli random variable E describing whether a pair of nodes have
an edge has the following mean and variance:

E[E] =
1

2

Var[E] =

(
1− 1

2

)2

+

(
0− 1

2

)2

=
1

2
.

The vertex degree is then simply a sum of n−1 independent Bernoulli variables following this
distribution. By the central limit theorem, for large n, the vertex degree is approximately

Gaussian distributed with mean n−1
2 and standard deviation

√
n−1
4 . Since we are in the

asymptotic regime of large n, we can simplify this to a mean of n
2 and variance

√
n
2 .

How does this analysis help us with planted clique? If we observe a k-clique with
k = Ω(

√
n), then there is roughly a perturbation from the null distribution equal to one

standard deviation, hence detectable. This is the basic idea of a test that can distinguish
between the 2 hypotheses.

3.4 Other Canonical Problems with Gaps

We have chosen to introduce statistical-computational gaps by analyzing the planted clique
problem because it is perhaps the longest studied and best understood problem thought
to exhibit a statistical-computational gap. However, other problems have been analyzed in
the literature, including high dimensional linear regression, sparse PCA, tensor PCA and
the stochastic block model.

3.5 Summary

The planted clique problem is a canonical example of a problem thought to exhibit a
statistical-computational gap. We have discussed how the problem becomes statistically
solvable when k ≥ (2 + ϵ) log n, but there is no known efficient algorithm to solve it until
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k ≥ Ω(
√
n). While the efficient algorithm we provided required k ≥ Ω(

√
n), we have not

proven there is not another algorithm that is able to solve planted clique for smaller values
of k. In general, proving the hardness of planted clique remains open, but progress has
been made analyzing restricted classes of hypothesis testing algorithms. In the remainder
of the power, we turn to work that takes steps towards establishing lower bounds on the
computational hardness of solving planted clique with k ≤ o(

√
n).

4. Low-Degree Likelihood Ratio

First we introduce the idea of low-degree likelihood ratio (through the classical in statistics
notion of likelihood ratio), and then demonstrate how this method can predict the phase
transition from the easy to the hard regime in the planted clique problem.

In classical statistics, an optimal, in a sense which is to be clarified, test for hypothesis
testing is the likelihood ratio test. The likelihood ratio is simply defined as the ratio between
the probability of the data under the planted distribution and the probability of the data
under the null distribution:

L(X) =
PX∼P [X]

PX∼Q[X]
. (1)

The likelihood ratio test chooses a threshold η and decides 1 (planted hypothesis) whenever
L(X) > η, and 0 otherwise.

To see the optimality of the likelihood ratio, it is instructive to define an inner product
space over functions. Specifically, let f, g : X → R, then:

⟨f, g⟩ = EX∼Q[f(Y )g(Y )]. (2)

This inner product measures the correlation of f and g under the null distribution. In this
space, we measure the length of a function with the norm: ∥f∥ =

√
EX∼Q[f2(Y )]. Denote

by L2(Q) the (Hilbert) space of functions for which ∥f∥ < ∞. Under these definitions,
the likelihood ratio can be seen as the solution to the following optimization problem over
L2(Q):

max
f∈L2(Q)

EX∼P [f(X)],

s.t. ∥f∥ = c, c ∈ R.

By observing that EX∼P [f(X)] = EX∼Q[L(X)f(X)] = ⟨L, f⟩, and Cauchy-Schwarz inequal-
ity, we can indeed see that (a scalar multiple of) the likelihood ratio is indeed optimal. The
above problem yields that function f which, under the planted distribution, has in expec-
tation maximum value, while remaining bounded (in norm) under the null distribution.

Now, let us consider again the set up of Section 3.1, where there is a specific dependence

of P,Q on n, and define Ln(X) =
PX∼Pn{X}
PX∼Qn{X} for any n. That is, we consider a sequence of

likelihood ratios. Then, the following fundamental proposition holds.

Proposition 2 If ∥Ln∥2 remains bounded as n → ∞, then there is no test fn that distin-
guishes between P and Q.

This is often called the second moment method in the literature of hypothesis testing, and
is an often used tool for tackling hypothesis testing problems.

7



Merrill and Tsilivis

4.1 Low degree polynomials

Let us focus now on the subspace of L2(Q) consisting of all degree (at most) D polyno-
mials, denoted by VD. This is a proper (linear) subspace. If we consider the constrained
optimization problem

max
f∈L2(Q)

EX∼P [f(X)],

s.t. ∥f∥ = c, c ∈ R,
f ∈ VD,

then its solution is simply the projection of the likelihood ratio on VD, called low degree
likelihood ratio and denoted by LD

n .
The reason why this an important object of study is because it conjecturally captures

the essence of computationally efficient hypothesis testing.

Conjecture 2.1 If ∃ϵ > 0 such that ∥LD
n ∥ remains bounded for some D ≥ (log n)1+ϵ as

n → ∞, then there is no test fn computable in polynomial time that distinguishes between
P and Q.

Notice the similarity with Proposition 2.

4.2 Calculations using the Low Degree method

Let us demonstrate now how the low degree method works in practice. Specifically, we will
compute LD

n for a slight modification of the planted clique problem, and show that when
k = Θ(

√
n), ∥LD

n ∥ undergoes a phase transition.
We can view the distribution over graphs with n vertices, as a distribution over

(
n
2

)
binary variables. Each variable corresponds to the existence or not of an edge, with +1
meaning the edge exists, and −1 meaning that the edge does not exist.

The null distribution Q is the uniform over {±1}(
n
2), and the planted distribution is

constructed as follows: each vertex is added to a set C with probability n
k , then all edges

are added to this set, and for the remaining graph each edge is added with probability 1
2 .

This is close to the original planted clique problem, with a size of clique roughly k.
The calculation of ∥LD

n ∥ can be done through an orthonormal basis over the boolean
cube for the polynomials, which in our case is the set of functions

hα(X) =
∏
e∈α

Xe (3)

for all α ⊂
(
n
2

)
. We have then:

Ln =
∑
α

⟨Ln, hα⟩hα(X) (4)

and the projection on the space of low degree polynomials is

LD
n =

∑
|α|≤D

⟨Ln, hα⟩hα(X), (5)

8



Review: Planted Clique as a Case Study for Statistical-Computational Gaps

with norm
∥LD

n ∥2 =
∑

|α|≤D

⟨Ln, hα⟩2. (6)

Each coefficient can be calculated through the planted distribution, since

⟨Ln, hα⟩ = EX∼Q[Ln(X)hα(X)]

= EX∼P [hα(X)]

= ECEX∼P|C [
∏
e∈α

Xe]

= EC [1{vertices(α) ⊂ C}]

= P[vertices(α) ⊂ C] =

(
k

n

)|vertices(α)|
.

(7)

Plugging this back to Eq. (6), and for D = O(log n) (where we have roughly nd different
graphs with d vertices), we finally get

∥LD
n ∥2 =

D∑
d=0

nd

(
k

n

)2d

=
D∑

d=0

(
k2

n

)d

, (8)

which remains bounded for k >
√
n and blows up otherwise, predicting accurately the

conjectured computational phase transition from the easy to the hard regime.

5. Statistical Query Lower Bounds for Detecting Planted Bicliques

Another approach to establishing the computational hardness of planted clique is by analyz-
ing the detection variant where the statistical algorithm doing the detection is constrained to
be a statistical query algorithm. Statistical query (SQ) algorithms are statistical algorithms
that can only access data through statistical queries: that is, they cannot access individual
data points, but can only compute statistics (expectations of real-valued functions) over a
subsample of the data. The notion of SQ learning (Kearns, 1998) was originally introduced
as a restriction of probably-approximately-correct (PAC) learning (Valiant, 1984) with more
noise tolerance. One prominent development in cryptography based on SQs is the differen-
tial privacy framework for certifying that algorithms defined in terms of SQs cannot access
individual records in a dataset (Dwork et al., 2014).

More relevant for our current purposes, Feldman et al. (2017) demonstrated the existence
of a computational gap for a near variant of planted clique detection assuming the algorithm
solving the problem may only interact with the data through statistical queries. We now
introduce the problem they analyzed, the basic notions of statistical queries and statistical
query dimension, and sketch their results.

5.1 Statistical Queries and Statistical Algorithms

This section recounts the formalism presented by Feldman et al. (2017). They define a
statistical algorithm as an algorithm that interacts with some random data (given by a
distribution D) through SQs. A SQ is a call to a STAT oracle, which is a procedure that
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estimates the expectation of a bounded real-valued function of the data. The calls to STAT
may be adaptive, meaning that later calls may condition on previous ones. The STAT oracle
can be defined as a high level of generality as follows:

Definition 3 (STAT oracle; Kearns, 1998) Let D be a distribution over input domain
X . For τ > 0, STAT(τ) is the (randomized) oracle that, for any function h : X → [−1, 1],
returns some value v such that

v ∈ [Ex∼D[h(x)]− τ,Ex∼D[h(x)] + τ ] .

That is, STAT(τ) oracle estimates the expectation of any function over the input, and
the approximation error to the true value is guaranteed to be at most τ . This definition
of STAT is a bit abstract; it may be easiest to understand it by thinking about how it
might naturally be implemented. We could achieve a STAT(τ) oracle by computing h(x)
on O(1/τ2) samples from D, and returning their empirical average. By standard learning-
theoretic analysis, for all δ, the error of this empirical estimate is at most τ with probability
1− δ, where the sample complexity is polynomial in both 1/τ and log(1/δ) (Kearns, 1998).
Thus, any problem learnable in terms of SQs is also PAC-learnable (cf. Valiant, 1984).

The oracle that Feldman et al. (2017) use in their analysis is VSTAT, a modification
of the standard STAT oracle where h is boolean-valued, and where tolerance is set a bit
differently:

Definition 4 (VSTAT oracle; Feldman et al., 2017) Let D be a distribution over in-
put domain X . For t > 0, VSTAT(t) is the (randomized) oracle that, for any function
h : X → {0, 1}, returns some value v ∈ [p − τ, p + τ ], where p = Ex∼D[h(x)] and

τ = max{1/t,
√

p(1−p)
t }.

Note that VSTAT(t) can simulate STAT(1/
√
t) and can be simulated by STAT(1/t)

(Feldman et al., 2017), enabling conversion of results presented in VSTAT terms to STAT
terms if desired.

5.2 Statistical Query Dimension

One measure of the complexity of a statistical algorithm defined in terms of SQs is its SQ
dimension, which was originally proposed in the context of SQ learning problems (Blum
et al., 1994), and later generalized to analyze arbitrary statistical algorithms (Feldman
et al., 2017; Diakonikolas et al., 2022). We largely adapt the presentation from Feldman
et al. (2017).

The precise definition of SQ dimension is quite technical, but intuitively it measures the
average correlation between two distributions. To arrive at the notion of SQ dimension, we
first define an inner product over functions f, g : X → [−1, 1] with respect to a distribution
(density or mass function) D as follows:

⟨f, g⟩D = Ex∼D[f(x)g(x)].

The norm of a function f : X → [−1, 1] is thus

∥f∥D ≜
√
⟨f, f⟩D =

√
Ex∼D[f(x)2].
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We can now use this norm to define the pairwise correlation χD(D1,D2) between two
distributions D1,D2 with respect to a reference distribution D:

χD(D1,D2) =

∣∣∣∣ 〈D1

D
− 1,

D2

D
− 1

〉 ∣∣∣∣.
In the special case where D1 = D2, this correlation recovers something familiar from classical
statistics: the χ2 distance between D1 and D. The next step towards defining the SQ
dimension is to generalize pairwise correlation between two distributions to the average
correlation between pairs of distribution D1,D2 in some finite set of distributions D (still
with respect to a reference distribution D). This can be defined simply as the average
pairwise correlation between all distributions in D:

ρ(D,D) ≜
1

|D|2
∑

D1,D2∈D
χD(D1,D2)

=
1

|D|2
∑

D1,D2∈D

∣∣∣∣ 〈D1

D
− 1,

D2

D
− 1

〉 ∣∣∣∣.
Consider a search problem Z (e.g., planted clique detection) over the domain X (e.g.,
graphs). Associated with Z is some set of distributions D over X and a class of solutions
F . We are finally in a position to define the SQ dimension of Z.

Definition 5 (SQ dimension; Feldman et al., 2017) For γ̄ > 0, η > 0 and a search
problem Z, we define the SQ dimension SQD(Z, γ̄, η) to be the largest integer d such that
there exists a reference distribution D over X and a set DD ⊆ D that satisfy the following:

1. For any solution f ∈ F , the set Df = DD \ Z−1(f) has size at least (1− η) · |DD|;

2. For any f ∈ F and D′ ⊆ Df such that |D′| ≥ |Df |/d, it holds that ρ(D′,D) > γ̄.

This definition allows us to prove the following main result, which describes the number
of queries needed by a statistical algorithm to solve a problem as a function of the problem’s
SQ dimension:

Theorem 6 (Feldman et al., 2017) Let Z be a search problem parameterized by distri-
butions D over X and hypothesis class F . For γ̄ > 0 and η ∈ (0, 1), we let d = SQD(Z, γ̄, η).
Then, any SQ algorithm that solves Z with probability δ > η requires at least δ−η

1−η queries to
the oracle VSTAT(1/3(γ̄).

This will be the main tool enabling analysis of the bipartite planted (bi)clique problem.

5.3 SQ Analysis of Planted Biclique Detection

Bipartite planted (bi)clique is a variant of planted clique where the graph is bipartite, i.e.,
the nodes V can be partitioned into two sets A,B such that every undirected edge goes
from A to B. In this kind of graph, we consider a set of nodes N ⊆ V to be a biclique if all
nodes in N ∩A have an edge to all nodes in N ∩B. Going forward in this section, we will
refer to a biclique simply as a clique.
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(a) A random bipartite graph under the par-
tition {{1, 2}, {3, 4}}.

1

2

3

4

(b) Resulting graph after planting a biclique
at nodes {1, 3, 4}.

Figure 3: Example of (a) a random bipartite graph and (b) the same graph with a planted
biclique.

The generation of the random graph proceeds analogously to standard planted clique.
For each possible edge between A and B, we choose to include it with probability 1/2. We
plant a clique by selecting a set N of k nodes and adding all edges between N ∩ A and
N ∩B. Figure 3 shows a simple example of this process.

Analogously to standard planted clique (subsection 3.2), bipartite planted clique be-
comes statistically solvable when k ≥ (2 + ϵ) log n (Feldman et al., 2017). Additionally, the
algorithms from subsection 3.3 can be extended to solve it when k ≥ Ω(

√
n). However, un-

like for standard planted clique, Feldman et al. (2017) are able to prove that computational
hardness of solving this problem using an SQ algorithm when k ≤ n1/2−δ for δ > 0. The
idea is to first compute the SQ dimension of the bipartite planted clique problem (The-
orem 7) and then apply Theorem 6 to get a lower bound on the query complexity and
runtime (Theorem 8).

Theorem 7 (Feldman et al., 2017) For all δ > 0, let k ≤ n1/2−δ, and let Zk be bipartite
planted k-clique problem. Then, for all ℓ ≤ k,

SQD

(
Zk, 2

ℓ+2k2/n2, 1/

(
n

k

))
≥ n2ℓδ/4.

By setting ℓ = log r and applying Theorem 6, Feldman et al. (2017) obtain the following
lower bound on the hardness of bipartite planted k-clique:

Theorem 8 (Feldman et al., 2017) For any δ > 0, k ≤ n1/2−δ, and r > 0, any SQ
algorithm must use at least nΩ(log r) queries to VSTAT(n2/(rk2)) to solve bipartite planted k-
clique. No poly-time SQ algorithm can solve the problem using queries to VSTAT(o(n2/k2))
and any SQ algorithm will require nΩ(logn) queries to VSTAT(n2−δ/k2).

In summary, using SQ dimension, Feldman et al. (2017) were able to show a lower bound
on the number of queries required to solve bipartite planted k-clique in the critical regime.
Thus, they have demonstrated the existence of a statistical computational gap for this
simplified version of the planted clique problem, at least under the simplifying assumption
that the algorithm solving the problem is an SQ algorithm.

12
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6. Conclusion

Many problems are thought to exhibit statistical-computational gaps, but proving that they
do is challenging because it involves deriving super-polynomial lower bounds on any algo-
rithm solving the problem. Planted clique is one of the longest studied of such problems, and
thus perhaps one of the best candidates for establishing lower bounds to prove a gap. We
have reviewed recent work that makes progress towards establishing such a gap assuming
a restricted class of statistical inference algorithms (low-degree polynomial and statistical
query algorithms). In addition to expanding our understanding of the planted clique prob-
lem, this line of research may help build a foundational understanding of what properties
of a problem create a statistical-computational gap, hopefully allowing us to better predict
when and why such gaps exist for more natural statistical problems in the real world.
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