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1 Introduction

We will review some interesting themes from the classical work of David Donoho and Iain Johnstone from
1992, titled “Ideal Spatial Adaptation by Wavelet Shrinkage”. This paper is known for the introduction
of wavelets into statistical estimation tasks.

2 Problem formulation

The problem of interest is that of function recovery from noisy, evenly sampled, observations. In other
words, we are given one-dimensional data

yi = f(ti) + ϵi, i = 1, . . . , n, ti = i/n, (1)

where ϵi are independently sampled from N (0, σ2), and our goal is to estimate the noiseless part
f := (f(t1), . . . , f(tn))

⊤ on these n points. We will measure the performance of an estimate f̂ :=
(f̂(t1), . . . , f̂(tn))

⊤ of f by the risk

R(f̂ , f) =
1

n
E∥f̂ − f∥2. (2)

This is what we called in class as Gaussian sequence model, enhanced with the extra assumpion that our
samples are equally spaced inside the [0, 1] interval.

3 Introduced frameworks

Before proposing their approach, the two authors introduce two useful and novel (to my understanding)
frameworks to think about the problem; one that unifies spatially adaptive methods, and a second that
serves as a notion of ideal performance obtained by such methods.

3.1 Spatial Adaptivity

In the context of statistics, spatial adaptivity refers to the ability of an estimator to adapt its “behavior”
(in means of adjusting its “hyperparameters”) given the actual observations that it encounters. For
example, a simple estimator for our problem (1) clusters the points ti, i = 1, . . . , n, into L groups of same
size, and outputs the average of each of these groups as the estimation of the function values that lie in
the corresponding group (Fig. 1). As we saw in class, if we are willing to assume that our true function
is smooth in terms of Lipschitz or Hölder smoothness, then this yields an estimation rate better than the
one obtained from the maximum likelihood estimator. Notice, however, that the number of groups L is a
“hyperparameter” of the estimator and, in the proof contained in the notes, knowledge about the exact
degree of smoothness (Lipschitz constant) was assumed to optimally pick L. This may be too much to
ask. Instead, one may try to “select” L from the actual observations, and adapt their estimator. This is
the idea of spatial adaptivity.

We can summarise the above as follows. Spatially adaptive estimators f̂ are defined as

f̂(·) = T (y, d(y))(·), (3)
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Figure 1: Local average estimator. We partition the observations into L = 4 groups and, then, compute
the average on each interval.

where T (y, δ) is the reconstruction expression of the estimator with spatial parameter δ and d(y) is a
data-adaptive choice of δ. In the previous example, T (y, δ) would be the average of the “correct” group
(the interested reader can use indicator functions to analytically express this) and δ would be the list of
numbers that define the partition. There are several different approaches for designing the selector d(y)
and they can be viewed as solving a model selection problem. However, it may be difficult to argue about
the theoretical performance of such procedures.

3.2 Ideal Adaptivity with Oracles

If we would like to theoretically design a spatially adaptive estimator of the form (3), then we may wonder
what is the optimal performance we can hope for in this context? Fixing the reconstruction formula,
restricts us to varying only the spatial parameter δ. But, what is the best choice of δ for an underlying
(unknown) function?

An answer to this question requires oracular access to the function, which, in principle, can not be
expected to be obtained from a finite number of observations. Such knowledge can only be provided by
an oracle that consults f . Note, however, that the oracle will not tell us f itself, but will tell us, for our
method T (y, δ), what is the best choice (measured by the risk) of δ given the true f .

The authors motivate this framework with the following example. Consider the case of estimating a
function f that is piecewise polynomial of degreeD, with L pieces, I1, . . . , IL. It seems reasonable to define
an estimator that is itself a piecewise polynomial of degree D. An oracle, then, can supply us with the true
partition of f . Given this knowledge, we can design L linear models Yi = Xiβi + E, βi ∈ RD+1, Yi ∈ Rn

(in order to do so, we need to observe that a polynomial model is nothing but a linear model with
“transformed” covariates), and find the least squares estimator for each of the βi (by Xi we mean the
data that lie in the i-th set of the partition). We used this linear regression model in class when we talked
about regularization and the lasso estimator in high-dimensional statistics. The “in-sample error” of the
least squares estimator β̂i for each of the β′

is is then

E∥Xiβi −Xiβ̂i∥22 = (D + 1)︸ ︷︷ ︸
# of parameters

σ2. (4)
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The estimator across the whole domain can be written as

f̂PP (t) =

L∑
i=1

βi1t∈Ii (5)

and, finally, for the risk (2) it holds

Rn,σ2(f̂PP , f) =
1

n
L(D + 1)σ2. (6)

This is a risk that corresponds to an ideal situation, and provides (at least asymptotically) an upper
bound of linear nature on the estimation rate we are hoping to achieve. The rates of non-adaptive
methods are typically worse and grow as O(

√
n), making themselves unsatisfactory for this estimation

task. The success of the wavelet methods that we will introduce shortly is that they are able to “close”
this gap. Restricting ourselves into the same piecewise polynomial true function scenario, not only these
wavelets perform “almost” as good as the ideal piecewise polynomial estimator when furnished with an
oracle, but they can also yield an estimator f̂∗ that depends on the data alone and is “almost” as good.
Even more remarkably, the situation is similar for any underlying function f . That is, wavelets provide
an, in a way, universal spatially adaptive method.

4 Spatial adaptivity with wavelets

Wavelets are families of functions that were introduced, in their current form, in the 70’s and 80’s, and
served initially as tools for signal analysis and processing in many disciplines of physics and engineering.
Intuitively, they can be thought as generalizations of the Fourier transform/series, allowing information
extraction from a signal in localised time intervals with varying “scales”. A so-called mother wavelet is
being translated and dilated (vertically scaled) in order to generate a whole basis of wavelets, in the same
way that a complex sinusoid gives birth to others with varying frequency in the context of Fourier analysis.
See Fig. 2 for two continuous wavelets. For each mother wavelet, there are 3 important parameters

• M : number of vanishing moments,

• S: support width,

• j0: cutoff frequency.

In this work, however, we are concerned with discrete wavelets, i.e. functions defined on the integers.

Suppose we have n = 2J+1 observations y1, . . . , yn from (1), where J ∈ N, and let y = (y1, . . . , yn)
⊤.

A choice of a wavelet function induces an orthogonal matrix W ∈ Rn×n (property that stems from the
definition of the wavelet), where each of its rows is a different “version” of the mother wavelet, which
corresponds, conventionally, to the first row. This allows the transformation of y into a new vector

w = Wy. (7)

The assumption of n being a power of 2 allows us to number the rows of W with two indices j ∈ {0, . . . , J}
and k ∈ {0, . . . , 2j − 1}; j and k represent the dilation and translation, respectively, with respect to the
mother wavelet. Since W is orthogonal (W−1 = W⊤), reconstruction is possible in the form of

y = W⊤w. (8)
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Figure 2: Two continuous wavelets. Left: Ricker wavelet with width=50. Right: Modulus of a Morlet
wavelet with width=0.8 and “frequency”=1.

We say that w contains the wavelet coefficients, wj,k, j = 0, . . . , J, k = 0, . . . , 2j − 1, of y. For instance,
if n = 8 = 22+1, then w contains in order w0,0︸︷︷︸

j=0

, w1,0, w1,1︸ ︷︷ ︸
j=1

, w2,0, w2,1, w2,2, w2,3︸ ︷︷ ︸
j=2

, w−1,0, where by convention

we denote the last coefficient by w−1,0. For each data sample yi, it holds separately

yi =
∑
j,k

wj,kWjk(i), (9)

where Wjk(i) denotes the i-th element of the jk-th wavelet. It follows from the theory of continuous
wavelet transforms that as long as j ∈ [j0, J − j1] and k ∈ (S, 2j − S) for some j1 (we are away from the
boundary cases), then Wjk as a function of i enjoys the following two properties

1. M vanishing moments:
n∑

i=1

ilWjk(i) = 0, ∀l = 0, . . . ,M. (10)

2. It is non zero only in [2J−j(k − S), 2J−j(k + S)].

Because of these localised properties, it is reasonable to expect that the wavelet coefficients wj,k of an
unknown signal f are non-zero for only a few values of j and k. Indeed, in the special case of polynomials
of degree D ≤ M , property 1. above (10) immediately implies that wj,k ̸= 0 only when j < j0.

Furthermore, applying a wavelet transform on our problem (1) yields

Wy = Wf +We. (11)

Since e ∼ N (0, σ2In) andW is an orthogonal matrix, it is true thatWe ∼ N (0, σ2W⊤InW ) = N (0, σ2In),
so the wavelet coefficients of the noise are also Gaussian with the same mean and variance. Coupled with
the previous “sparsity” property, this provides the key idea of statistical estimation with wavelets (which
we quote from the paper)

Every empirical wavelet coefficient therefore contributes noise of variance σ2, but only a very few
wavelet coefficients contribute signal.

Thus, it is natural to use an estimator that selects only some of the wavelet coefficients of the data. In
the language of Sec. 3.1, the definition of a selective wavelet estimator is

TSW (y, δ) =
∑

(j,k)∈δ

wj,kWjk, (12)
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where δ here is a list of pairs.
Further extending the arguments used above about the “sparsity” of the coeffiecients, one can show

that, when f is a piecewise polynomial of degree D, there are only O(J) = O(log n) non-zero of them. If
an oracle then provides these optimal wavelet coefficients δ⋆, and we also observe that the reconstruction
formula essentially specifies the least-squares estimate for this problem, we can conclude that the obtained
ideal risk satisfies

Rn,σ2(TSW (y, δ⋆), f) = O

(
σ2 log n

n

)
. (13)

The assertion is that, in the ideal regime, we didn’t lose too much by using wavelets instead of piecewise
polynomials (compare with (6)). We are only a factor of log n shy of it. Coming up next with an estimator
that uses an actual data-dependent selector for the list of coeffiecients δ and is only log n itself away from
the ideal TSW (y, δ⋆), we will be able to show what was advertised in the end of Section 3.2; there is a
spatial wavelet estimator that has a rate of O( n

log2 n
), which is almost as good as the linear rate obtained

from ideal piecewise polynomial estimation, and a lot better than the typical O(
√
n).

4.1 Adaptive wavelet shrinkage and oracle inequality

Take a look at equation (12). The following operations are taking place in sequence: (i) first, we perform
the wavelet transform on the observations y to obtain wj,k, then (ii) a few of them live to see another
day inside δ, while the rest are set to 0, and (iii) an inverse wavelet transform is being applied to obtain
the final estimator. Part (ii) is an estimator that decides on each wavelet coefficient, whether to keep
it or not, and can be written in a spatial adaptive language as: (TH(w, δ))i = δiwi, for i = 1, . . . , n1

with δi ∈ {0, 1}. The subscript H hints “hard thresholding” and will be justified shortly. The risk of the
selective wavelet estimator can thus be written as

R(TSW (y, δ), f) =
1

n
E∥TSW (y, δ)− f∥22

=
1

n
E∥W⊤ (TH(Wy, δ))−W⊤θ∥22

=
1

n
E∥TH(Wy, δ)− θ∥22,

(14)

where θ denotes the true wavelets coefficients of f and we used the fact that W is an orthogonal matrix.
Therefore, in order to evaluate the performance of a wavelet estimator, we simply need to look at different
estimators for the coefficients. As mentioned before, the coefficients also obey the Gaussian sequence
model

wi = θi + ϵi, ϵi ∼ N (0, σ2). (15)

The following lemma establishes the ideal performance we aspire to achieve with the TH estimator.

Lemma 1. The ideal estimator TH(·, δ∗) for the above model is given by the hard thresholding estimator
TH(w, δ) = (wi1|θi|>σ)

n
i=1, and it attains risk equal to 1

n

∑n
i=1min(θ2i , σ

2).

Proof.

R(TH(w, δ), θ) =
1

n
E∥TH(w, δ)− θ∥22

=
1

n

n∑
i=1

E(δiwi − θi)
2.

(16)

1for the sake of simplicity we abandon for the rest of this section the dyadic indexing.
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For each i, there are two cases

E(δiwi − θi)
2 =

{
E(wi − θi)

2, δ = 1

E(0− θi)
2, δi = 0

=

{
σ2, δi = 1

θ2i , δi = 0.

(17)

An oracle can supply us, now, with the information of when we should keep the coefficient (|θi| > σ)
and when we should throw it away (|θi| ≤ σ). The ideal risk therefore is the sum of the individual
contributions, 1

n

∑n
i=1min(θ2i , σ

2).

Remarkably, this oracular performance can be approached by a similar data-adaptive estimator. Define
the “soft threshold” non-linearity as ηS(w, λ) = sgn(w)max(|w| − λ, 0).

Theorem 2. The estimator
θ̂i = ηS(wi, σ

√
2 log n), i = 1, . . . , n (18)

satisfies

E∥θ̂ − θ∥22 ≤ (2 log n+ 1)(σ2 +
n∑

i=1

min(θ2i , σ
2)). (19)

Notice in the right hand side the ideal risk of the hard thresholding estimator. That is, asymptotically,
θ̂ is at most a logarithmic factor away from the ideal performance.

Proof. As in the previous proof, we can consider each term separately. To simplify notation, we set σ = 1,
and let λ =

√
2 log n. First, notice that wi ∼ N (θi, 1). We have

E(θ̂i − θi)
2 = E(ηS(wi, λ)− θi)

2

= E(ηS(wi, λ)− wi + wi − θi)
2

= E(ηS(wi, λ)− wi)
2 + E(wi − θi)

2 + 2E(ηS(wi, λ)− wi)(wi − θi).

(20)

We will consider each term separately:

• “Variance” term
E(wi − θi)

2 = Var[wi] = 1. (21)

• “Bias” term

E (ηS(wi, λ)− wi)
2 = E (sgn(wi)max(|wi| − λ, 0)− wi)

2

= E(max(|wi| − λ, 0)− |wi|)2

= E(max(−λ,−|wi|))2

= Emin(|wi|, λ)2

= Emin(w2
i , λ

2).

(22)

• “Cross” term

E(ηS(wi, λ)− wi)(wi − θi) = EηS(wi, λ)(wi − θi)− Ewi(wi − θi)

= EηS(wi, λ)(wi − θi)− Ew2
i + θ2i

= EηS(wi, λ)(wi − θi)− 1

= Esgn(wi)max(|wi| − λ, 0)(wi − θi)− 1.

(23)
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By the law of total expectation, we write

Esgn(wi)max(|wi| − λ, 0)(wi − θi) = P{wi ≥ λ}E(wi − λ)(wi − θi)

+ P{wi ≤ −λ}E(wi + λ)(wi − θi)

= (Ew2
i − (λ+ θi)Ewi + λθi)P{wi ≥ λ}

+ (Ew2
i + (λ− θi)Ewi − λθi)P{wi ≤ −λ}

= P{wi ≥ λ}+ P{wi ≤ −λ}
= P{|wi| ≥ λ}.

(24)

Combining everything together yields

E(ηS(wi, λ)− θi)
2 = 1 + Emin(w2

i , λ
2)− 2P{|wi| < λ}

≤

{
1 + Eλ2 − 2P{|wi| < λ}
1 + Ew2

i − 2P{|wi| < λ}

=

{
1 + λ2 − 2P{|wi| < λ}
1 + (1 + θ2i )− 2P{|wi| < λ},

≤

{
1 + λ2

θ2i + 2P{|wi| ≥ λ},

(25)

where the two cases come from the two inequalities derived from min(a, b) ≤ {a, b}. Now the first term
is 1 + 2 log n ≤ (1 + 2 log n)(1 + 1

n), n ≥ 1, and the second can be shown to satisfy (through calculations
with the Gaussian distribution) θ2i + 2P{|wi| ≥ λ} ≤ (2 log n+ 1)( 1n + θ2i ), n ≥ 2. Therefore, we have

E(θ̂i − θi)
2 ≤ (2 log n+ 1)(

1

n
+min(θ2i , 1)) (26)

and summing all the coefficients together concludes the proof.

Two immediate corollaries follow from the previous theorem:

• θ̂ when combined with the matrices W⊤,W (W⊤ ◦ θ̂ ◦W ) yield an estimator, called VisuShrink,
for any function f that “almost” achieves the ideal wavelet performance (see (14)).

• The previous point together with equation (13) imply that W⊤ ◦ θ̂ ◦W is at most log2 n times worse
than the oracular piecewise polynomial estimator on the set up of (13). As we promised, a wavelet
estimator manages to close the performance gap.

Even more remarkably, through a bias and variance decomposition proof, the authors show that ideal
wavelet performance is close to ideal piecewise polynomial for any underlying function, and the first point
above leads to the second, but now for any f . As promised, modulo a log2 n factor, wavelets are universal
spatially adaptive methods.

Finally, the paper considers further refinements of the above procedure to assess how tight the bounds
are. In particular, there is a min-max optimal threshold, λ∗, for the thresholding that guarantees that
no estimator can achieve better performance than what (19) essentially achieves. The proof of min-max
optimality takes a probabilistic apparoach, by specifying a suitable prior distribution over the coefficients
θ and concludes the optimality through its Bayes risk (similarly to what we saw in one of the recita-
tions; although a bit more invloved of a proof). Hard thresholding is also studied, and is shown that
asymptotically the performance is identical as the one presented here.
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Figure 3: Handwritten digits denoising.

5 Bonus: Application in Image Denoising

While this paper (and the review) was focused on one-dimensional function estimation, wavelets have
had tremendous success in applications in computer vision. In computer vision, we are usually concerned
with two-dimensional images.

In this very small subsection, we evaluate the performance of VisuShrink in the task of denoising
handwritten digits from the popular MNIST dataset. We checked the performance of the estimator both
on Gaussian corrupted digits (first row of Fig. 3), and on adversarially (with respect to the function
of an infinitely wide neural network) corrupted images with the same order of noise (second row). One
interesting thing is that all noisy data have similar initial signal to ratio values, but wavelet denoising is
more successful both in terms of visual appearance and snr for the Gaussian case.
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