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Abstract

Neural Networks are complex, composite, parameterized functions that are being trained
with some variant of gradient descent to learn a target concept. Despite their large capacity,
they are very effective in generalizing to samples different than the training ones. In this short
survey, we review explanations that have been proposed for this generalization behavior of neural
networks.

1 Introduction

Machine Learning can be broadly defined as computational methods using experience to improve
performance or to make accurate predictions [11]. In particular, for the task of classification, a
computational method, or hypothesis, predicts one class out of many possible ones. We typically
have access to a finite amount of training data, which we use for learning one hypothesis (from
a set of, possibly infinite, candidates), and we are concerned with the question of how well our
hypothesis will generalize to new points (how accurately will predict their classes).

As of 2023, most classification problems are tackled with Deep Learning techniques [10]. Large
Neural Networks compute hierarchical representations of the input and they are being trained
with some variant of gradient descent on vast amounts of data. Herein, we will consider the
most simple version of a multi-layer neural network. Let X ⊆ Rd be an input space, Y be an
output space of cardinality |Y| = k, A1, A2, . . . , AL be real matrices (called weight matrices) of size
n1 × d, n2 ×n1, . . . , nL−1 × k, and σ : R → R be a ρ-Lipschitz function (called activation function),
then a neural network f : X → Rk is the function

f(x) = ALσ (AL−1σ (. . . σ(A1x) . . .) , (1)

where σ above is overloaded to be applied elementwise to its input.
Such models have been applied successfully in domains like image recognition [9], speech analysis

[6], text analysis [5], biology [8] and chemistry [13], that is they are able to predict correctly
on unseen data. Let us introduce some notation to start formalizing these notions, and restrict
ourselves, to the case of binary classification with Y = {±1}. We denote by D a distribution
over X × Y, and we assume access to m training pairs, S = {(x1, y1), . . . , (xm, ym)} drawn i.i.d.
from D. We use S to select a hypothesis h from a hypothesis class H of binary-valued functions.
We care about the prediction of h on samples from D and quantify this with the true error :
R(h) = P(x,y)∼D [h(x) ̸= y]. Since D is most often unknown to us, we only have access to the

empirical error : R̂S(h) = P(x,y)∼S [h(x) ̸= y] = 1
m

∑m
i=1 1h(xi )̸=yi . In controlling the difference

between the two errors, the VC-dimension of H, V C(H) is important; with probability at least
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Figure 1: The 0-1 loss commonly used in classification versus the margin loss which grants scale
sensitive generalization bounds.

1− δ (over the random draw of S from D), for any h ∈ H it holds [11]

R(h) ≤ R̂S(h) +O

(√
log(m/V C(H))

m/V C(H)

)
. (2)

From the above inequality, one can see that by using m samples, with m ∈ Ω(V C(H)), they
can be sure that if the empirical error is small, then the true error will also be small (i.e. h will
generalize). The issue with neural networks, however, starts from the empirical observations that,
in order to generalize, they typically require much less samples than their VC dimension (for typical
activation functions it is a function of the number of parameters). For instance, AlexNet that fueled
the deep learning revolution in Computer Vision [9] has roughly 60m parameters and it is able to
generalize from training on only 1.2m labeled data.

One issue with the previously sketched analysis is that the VC-dimension is a scale-insensitive
measure of complexity. It doesn’t take into account the confidence of the hypothesis on its pre-
dictions. An analysis that circumvents this is based on the so-called Rademacher Complexity of a
hypothesis class and the notion of margin. For a function class G = {g : Z → [a, b]}, we define its
empirical Rademacher Complexity on a sample S = (z1, . . . , zm) as the maximum correlation of a
g ∈ G with binary noise:

R̂S(G) = Eσ

[
sup
g∈G

1

m

m∑
i=1

σig(zi)

]
, (3)

where σi ∼ Unif({−1,+1}). Typically G is thought as being a family of functions consisting of a
loss function composed with hypotheses from an H. For instance, the loss could be the 0-1 loss,
which we used in our definition of error previously. Another loss that penalizes predictions with
low confidence |f(x)| is the so-called margin loss (see Figure 1):

Lρ(yf(x)) =


1, if yf(x) < 0

1− yf(x)
ρ , if 0 ≤ yf(x) ≤ ρ

0, if yf(x) > ρ.

(4)

Based on the above definitions, we can obtain a general generalization bound that is now scale
sensitive. Let H be a real valued hypothesis class, and let ρ be a positive number. With probability
at least 1− δ, for any h ∈ H it holds [11]

R(h) ≤ 1

m

m∑
i=1

Lρ(yif(xi)) +
2

ρ
R̂S(H) + 3

√
log(2/δ)

2m
. (5)
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We call this analysis scale-sensitive, because, if the predictor h has 0 empirical margin loss on all
points for a large ρ (large, correct, confidence), then the complexity term 2

ρR̂S(H) will be small, and
hence the bound tight. Therefore, in order to argue about the generalization of a neural network,
one must compute (or upper bound) the Rademacher complexity (eq. (3)) for the hypothesis class
consisting of neural networks of the form of eq. (1)1. Most of the results that we will present follow
this route.

The rest of this survey is organised as follows: Section 2 reviews the first generalization bound
for neural networks that was scale sensitive and dates back in 1996 [2]. Section 3 makes a leap in
time and presents a generalization bound that follows closely the general techniques we presented
above and succeeds in upper bounding the Rademacher Complexity by what is termed as the
spectral complexity of the network [3]. In section 4, we will present a similar bound [12], that
follows from the so-called PAC-Bayes framework2. Section 5 presents a fundamentally different
idea based on the idea of compressing networks [1]. Finally, Section 6 presents some experiments
on measuring bounds with trained neural networks in various settings.

2 Beyond VC-dimension type bounds

As already mentioned, for typical neural networks, like multilayer threshold ones, their VC dimen-
sion scales at least as fast as the number of weights of the network [4]. However, scale sensitive
analyses demonstrate that it is the magnitude of the weights that play a crucial role in generaliza-
tion, as suggested by the (explicitly titled) paper “For valid generalization, the size of the weights
is more important than the size of the network” [2].

That work considered the task of binary classification, real valued hypotheses classes H and
proved a bound on the generalization error of any h ∈ H using the notion of γ fat-shattering
dimension of H.

Definition 2.1. Let γ > 0 be a scale parameter. We say that a sequence x1, . . . , xm is γ-shattered
by H, if there exists r1, . . . , rm such that for all binary labels t1, . . . , tm ∈ {±1}m, there is an h ∈ H
such that

(h(xi)− ri) ti ≥ γ ∀i ∈ [m]. (6)

The fat-shattering dimension of H at γ, denoted fatH(γ), is the size of the largest γ-shattered
sequence.

This definition captures the idea of margin, already presented in the introduction, so it comes
as no surprise that the generalization bound that follows resembles that of eq. (5).

Theorem 2.2. Let γ ∈ (0, 1). With probability at least 1− δ, for any h ∈ H it holds:

R(h) ≤ 1

m

m∑
i=1

L0−1
γ (yif(xi)) +

√
2 (fatH(γ/16) ln (34em/fatH(γ/16)) log(578m) + ln(4/δ))

m
, (7)

where L0−1
γ (f(x)y) is the hard margin loss (shown with green in Figure 1).

1It is instructive for the reader to try to compute eq. (3) for a linear function. What kind of constraints would we
like our predictor to satisfy?

2The PAC-Bayes framework originally argues about randomized predictors. However, it is often presented in the
literature as a competing framework for explaining generalization for derandomized predictors as well, like neural
networks. Its edge (if any) over the type of analysis we presented in our introduction, is unclear as it can be shown
to stem from Rademacher Complexity type analysis (see Appendix H in [7])
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We remark that indeed this bound is qualitatively similar to that of eq. (5): first, the margin
loss can always be upper bounded by the hard margin loss, and, second both of the complexity
terms decrease with increasing margin ρ / scale γ.

The fat-shattering dimension, as the Rademacher Complexity, of a function class that is a
bounded linear combination of other functions can be upper bounded by a function of the dimension
of the individual ones. As such, for a neural network of the form (1) with sigmoid activations and
a constraint on the group norm of all the weight matrices and on the maximum element of the
input, ∥Ai∥1,∞ ≤ C, ∥x∥∞ ≤ B, one can show fatH(γ) ∈ Õ(B2CL(L+1)/2 log d/γ2L), where d is the
dimension of the input. If this upper bound gets combined with Theorem 2.2, then one gets what
is, to the best of our knowledge, the first generalization bound that appeared in the literature that
does not explicitly depend on the amount of the parameters, or the width, of the network. Notice,
however that there is an exponential dependence on the depth of the network L.

The proof of Theorem 2.2 goes through covering numbers for the hypothesis classH with respect
to the ℓ∞ norm. The upper bound on the fat-shattering dimension of the network uses also covering
numbers techniques and Maurey’s sparsification lemma.

3 Spectrally-normalized margin

Between 1996 and 2017 a lot of things happened, but one of them was that neural networks became
fashionable again, and questions of the past came to the surface once again; how possibly can neural
networks trained with gradient descent generalize if they are able to fit literally any training data
[14]?

One quantity that seems important for the sensitivity of neural networks seems to be the product
of the spectral norms of the weight matrices. Indeed, for a network of the form (1), it is:

∥f(x)− f(y)∥2 = ∥ALσ (AL−1σ (. . . σ(A1x) . . .)−ALσ (AL−1σ (. . . σ(A1y) . . .) ∥2
≤ ∥AL∥σ∥σ (AL−1σ (. . . σ(A1x) . . .)− σ (AL−1σ (. . . σ(A1y) . . .) ∥2
≤ ρ∥AL∥σ∥AL−1σ (. . . σ (A1x) . . .)−AL−1σ (. . . σ (A1y) . . .) ∥2
≤ . . .

≤

(
L∏
l=1

ρ∥Al∥σ

)
∥x− y∥2,

(8)

where the inequalities hold from the definition of the spectral norm (operator norm 2) and the
fact that the activation was assumed to be ρ-Lipschitz. The bound presented in this section will
depend on this quantity,

∏L
l=1 ρ∥Al∥σ, which can be thought as the Lipschitz constant of the whole

network. One thing to notice is that whether or not it increases exponentially with depth depends
on just the maximum singular values of the weight matrices (if all of them are less than 1, then the
product becomes smaller with increasing depth).

Now, we are in a position to present the bound. It is about multi-class classification with
k classes and is based on the margin-based analysis that we outlined in the introduction. The
difference, now, is that the margin is defined as the minimum difference between the outputs of
the network from the true one, i.e. M(x, y) = fy(x)−maxy′ ̸=y fy′(x). For each weight matrix Ai,
there is a corresponding reference matrix Mi appearing in the bound. We denote by ∥ · ∥p,q the p, q
group norm of a matrix, which corresponds to first computing the p-th norm of the columns and
then the q-th norm of those values viewed as a vector. Let also W denote the maximum amongst
d, n1, n2, . . . , nL−1, k (i.e. the width of the network).
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Theorem 3.1. Let weight matrices A1, . . . , AL, reference matrices M1, . . . ,ML, and let X ∈ Rm×d

be the data matrix (each row is a different input). For any γ > 0, with probability 1 − δ, for any
h ∈ H (where is H contains all the networks of the form (1)) it holds:

R(h) ≤ Rγ(h) + Õ

(
∥X∥FCh lnH

γm
+

√
ln(1/δ)

m

)
, (9)

where the spectral complexity, Ch, is defined as

Ch =

(
L∏
i=1

ρi∥Ai∥σ

)(
L∑
i=1

∥A⊺
i −M⊺

i ∥
2/3
2,1

∥Ai∥2/3σ

)3/2

. (10)

Remarks.

• Despite being a bound for k-class classification, there is no explicit dependence on the number
of classes.

• The bound depends logarithmically on the width.

• As mentioned already, the first term of the spectral complexity can be made to decrease
with depth (if all the spectral norms are less than one), yet the second term (the sum) is
upper bounded by a polynomial of depth. To see that, set {Mi}Li=1 to 0, then ∥A⊺

i ∥2,1 ≥
∥A⊺

i ∥F = ∥Ai∥F ≥ ∥A⊺
i ∥σ, thus the second term is upper bounded by

√
L3. Hence, there is

an unavoidable polynomial dependence on the depth on this bound, which is a bit annoying
(very deep neural networks, provided they can be optimized, can generalize just fine!).

The proof consists of 3 main steps. First, we derive a generic margin-bound as in equation (5),
but for multi-class classification. Then, the Rademacher Complexity of the neural networks family
is upper bounded by an expression that involves the ℓ2 covering number of this function class, with
a standard tool called Dudley’s entropy integral bound (it is proven by considering a sequence of
coverings at different scales, and invokes, amongst others, Massart’s lemma and Riemann’s integral
formula). The most technical part of the proof covers inductively the hypothesis class, covering a
layer at a time. To cover each individual layer, the following lemma is being proven.

Lemma 3.2. Let conjugate exponents (p, q) and (r, s) be given with p ≤ 2, as well as positive reals
(a, b, ϵ) and positive integer c. Let matrix X ∈ Rm×d be given with ∥X∥p ≤ b. Then

lnN
(
{XA : A ∈ Rd×c, ∥A∥q,s ≤ a}, ϵ, ∥ · ∥2

)
≤ ⌈a

2b2c2/r

ϵ2
⌉ ln (2dc), (11)

where N (F , ϵ, ∥ · ∥)) denotes the covering number of a function class F at scale ϵ with respect
to a norm ∥ · ∥.

4 PAC-Bayesian analysis grants margin bounds

The previous bound seemed to explain certain quantities that are important for generalization,
however its proof is fairly technical. A similar, but weaker3, bound [12] can be given starting
from the PAC-Bayes framework that is about randomized predictors, and is arguably using simpler
techniques.

3For a discussion, please refer to the original paper [12].
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Figure 2: An illustration of the PAC-Bayes framework. A hypothesis class H is furnished with
probability distributions over the hypotheses, and one reasons about the error of randomized pre-
dictors, as defined by different distributions.

Informally speaking, the PAC-Bayes framework treats the hypotheses as random variables,
with some being more likely than others, and reasons about the expected error of a predictor that
follows a specific distribution Q (often called “posterior”) based on the distance from a “prior”
distribution over the same space (see Figure 2 for an illustration). However, one can “derandomize”
the generalization bounds with a lemma that looks like follows:

Lemma 4.1. Let fw(x) : X → Rk be any predictor (i.e. neural network) with parameters w, and
P be any distribution on the parameters that is independent of the training data. Then, for any
γ, σ > 0, with probability ≥ 1 − σ over the training set of size m, for any w, and any random
perturbation u s.t Pu[maxx∈X |fw+u(x)− fw(x)| ≤ γ

4 ] ≥
1
2 , we have:

L0(fw) ≤ L̂γ(fw) + 4

√
KL(w + u||P ) + ln 6m

σ

m− 1
(12)

We will use Lemma 4.1 to derive the bound. The summary of the rest of the proof is as follows:
To derive a margin bound, we just need to find a proper distribution for u and P , where u satisfies
constraint Pu[maxx∈X |fw+u(x) − fw(x)| ≤ γ

4 ] ≥
1
2 . Then we get the bound simply by calculating

the KL(w + u||P ) in eq. (12).

5 Compression of Networks

6 Extensions
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