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Abstract

Theorem

Every graph property definable in the monadic second-order logic of graphs
can be decided in linear time on graphs of bounded treewidth.

Figure: Bruno Courcelle, 2004
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Tree Automata

We consider finite trees T with a root rT , which have labels on their
nodes over an alphabet Σ (Σ∗∗ being the set of all of them).
We wish to extend the familiar(?) DFA to be able to parse trees.

Definition (Deterministic Finite bottom-up Tree Automata, in short
TA)

A TA is a 5-tuple (Q,Σ, δ,S ,F ) and a number f , where:

Q: a finite set of states

Σ: a finite alphabet

δ: a transition function
⋃

1≤i≤f (Q × Q × ...× Q︸ ︷︷ ︸
i times

×Σ)→ Q

S : the set of initial states S ⊆ Q

F : the set of final states F ⊆ Q
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Tree Automata-example

As we see from the definition, the transition between states is ruled by the
state of current node’s children and its label. To clarify the definition, let’s
see an example. (on board)

Example (Transition function)

States Label δ()

q0 0 q0

q0 1 q1

q1 0 q1

q1 1 q1

q0, q0 0 q0

q0, q0 1 q1

q0, q1 0 q0

q0, q1 1 q1

q1, q0 0 q0

q1, q0 1 q0

q1, q1 0 q0

q1, q1 1 q1
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Tree decomposition

Definition (Tree decomposition)

Let G = (V ,E ) be a graph. A tree T is a tree decomposition of G , if
the following are true:

Every node t of T is a set Bt ⊆ V of nodes of G (namely bag), with⋃
t Bt = V

For each edge e = (u, v) ∈ E , there exists bag Bt such that
{u, v} ⊆ Bt

For each node u ∈ G , the induced subgraph of T consisting of all
bags that include u is connected.
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Treewidth

We define as width of a tree decomposition the size of the biggest bag
minus 1.

Definition (Treewidth)

We call treewidth of a graph the minimum width across all of its tree
decompositions. Formally,

tw(G ) =̂ min
T : T tree decomposition of G

{max
t∈T

(|Bt | − 1)}

This pair of concepts encapsulate the idea of ”tree-likeness” of an arbitrary
graph. For our needs, we need only to know how to find the treewidth of a
graph. Sadly,..
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Computational aspects of treewidth

Theorem (Arnborg, Corneil, Proskurowski 1987)

The following problem is NP-hard:
Given a graph G and a number k, does G have treewidth of size at most
k?

But if we fix the parameter treewidth as a constant then we have the
following result, which establishes the conditional tractability of the
problem.

Theorem (Bodlaender, Kloks 1996)

Given a graph G, there exists an algorithm which returns a tree
decomposition of G of width w (if there exists) in time O(2O(w3) · |G |).

The above method (to fix a parameter as a constant and attack the
problem) lies at the heart of the field of Parameterized Complexity.
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NP-Completeness
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Beyond NP-Completeness - FPT complexity

Attacking NP-Complete problems by:

Approximation Algorithms (sacrificing precision)

Probabilistic Algorithms (sacrificing control)

Fixed Parameter Tractable Algorithms (sacrificing a number of
instances)

Example: Vertex Cover(n,k)

We fix the size of the vertex cover at a constant k . For every edge, one of
its endpoints must belong to the cover. Doing this recursively for every
edge, creates O(2k) subproblems and in every one of them, we can check
if its nodes form a vertex cover in O(n) time. Thus, the previous
procedure yields a O(2kn) algorithm for the vertex cover.
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FPT Complexity

Definition (Parameterized problem)

A parameterized problem is a language L ⊆ Σ∗ × N , where Σ is a finite
alphabet. The second component is called the parameter of the problem.

Definition (FPT Class)

A parameterized problem L is fixed-parameter tractable if the question
”(x , k) ∈ L” can be decided in running time f (k) · |x |O(1), where f is an
arbitrary function depending only on k. The corresponding complexity
class is called FPT.
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Parse trees

We aim to connect the concepts of graphs of bounded treewidth and Tree
Automata. We start with a couple of essential definitions.

Definition (t-boundaried graphs)

A t-boundaried graph is a graph G together with t distinguished vertices,
which they get labels from {1, .., t}. We denote these vertices with ∂(G )
and they form the boundary of G.

Definition (graph gluing ⊕)

Let G1,G2 be t-boundaried graphs. We denote by G1 ⊕ G2 the graph
obtained by ”gluing” G1,G2 at their boundary.

(example on board)
There is also a more flexible version of ⊕, namely the t-boundaried
operator ⊗. These operators capture the core structure of bounded
treewidth graphs, as the next theorem reveals.
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Parsing theorem (1/2)

Theorem

There exists a linear algorithm which converts a tree decomposition of
width t into a binary parse tree using t + 1 parsing operators.

The proof uses the following 6 operators:

∅: creates t + 1 vertices, with labels 1, .., t + 1.

γ: shifts cyclically by 1 (modulo t + 1) the labels of the boundary.

i : interchanges the vertices labeled as 1, 2.

e: adds an edge between vertices 1, 2.

u: adds a vertex and labels it 1.

⊕.
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Parsing theorem (2/2)

-And who cares? you may ask.
-The big deal here is that for each bounded treewidth graph we have
now an alphabet (the 6 operators) and a tree (its corresponding parse
tree) to feed as input in a suitable Tree Automaton and we are able to
check if a graph has a structural property of interest.
-But Courcelle’s theorem promises the decidability of a whole class of
properties. Do we need to construct a TA for every one of them?
-Thank Göd, no!
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Graph-theoretic Myhill -Nerode (1/2)

Definition (Graph Universes)

1 Large universe, U large
t : Consists of all t-boundaried graphs.

2 Small universe, Usmall
t : Consists of t-boundaried graphs obtained by

parse trees.

Definition (Regular equivalence relation of graphs)

Let U be a universe of t-boundaried graphs, G1,G2 ∈ U and F be a family
of graphs in U, then we write G1 ∼F G2 iff:

∀H ∈ U(G1 ⊕ H ∈ F ⇐⇒ G2 ⊕ H ∈ F )

Definition (t-finite stae)

Let F be a family of graphs. We call F t-finite state when the parse trees
corresponding to the set F ∩ Usmall

t are finite state (that is, there exists a
Tree Automaton that recognizes them)
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Graph-theoretic Myhill-Nerode (2/2)

Reminder: The index of an equivalence relation is the number of its
equivalence classes.
We are now ready to express the theorem:

Theorem

Let F be a family of graphs. Then the following are equivalent:

F is t-finite state

the relation ∼F has finite index over Usmall
t

So, now, in order to show that there is an automaton which recognizes a
family of graphs, we need only to show that the induced relation ∼F has
finite index. This is the way we are going to prove Courcelle’s theorem.
First of all, we need to define the logical language.

Nikos Tsilivis (NTUA) Courcelle’s theorem January 26, 2020 16 / 32



Monadic Second Order Logic

A logical language for graphs

Part of Second Order Logic (quantification over predicates of one
variable -monadic- or equivalently sets)

Syntax consists of:

Logical connectives ∧,∨,¬
Variables for a vertex, an edge, a set of vertices and a set of edges
Quantifiers ∃,∀ over variables
Five binary relations:

u ∈ U, where u is a vertex variable and U a vertex set variable
d ∈ D, where d is an edge variable and D an edge set variable
inc(d , u), where d is an edge variable, u a vertex variable and the
interpretation is that the edge d is incident on the vertex u
adj(u, v), where both u, v are vertex variables and the interpretation is
that u and v are adjacent vertices.
Equality relation = over variables
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MSO2 Examples (1/2)

Example (3-colorability)

3-colorability ≡ ∃X1,X2,X3 ⊆
V (part(X1,X2,X3) ∧ indp(X1) ∧ indp(X2) ∧ indp(X3)), where:

part(X1,X2,X3) ≡ ∀v ∈ V ((v ∈ X1 ∨ v ∈ X2 ∨ v ∈ X3) ∧ ¬(v ∈
X1 ∧ v ∈ X2) ∧ ¬(v ∈ X1 ∧ v ∈ X3) ∧ ¬(v ∈ X2 ∧ v ∈ X3)

indp(X ) ≡ ∀u, v ∈ X¬adj(u, v)
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MSO2 Examples (2/2)

Example (Hamilton Cycle)

Hamiltonicity ≡ ∃R ⊆ E (conn(R) ∧ ∀v ∈ V deg2(v ,R)),

where:

conn(R) ≡ ∀Y ⊆ V [(∃u ∈ V (u ∈ Y ) ∧ ∃v ∈ V (v /∈ Y ))⇒ (∃e ∈
R, u ∈ Y , v /∈ Y (inc(u, e) ∧ inc(u, e)))]

deg2(u,R) ≡ ∃e1, e2 ∈ R[(e1 6= e2 ∧ inc(e1, u) ∧ inc(e2, u) ∧ (∀e3 ∈
R(inc(e3, u)⇒ (e3 = e1 ∨ e3 = e2)))]
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proof of Courcelle’s theorem(1/11)

Theorem

Let φ be a sentence defined in MSO2 and F be the family of graphs which
satisfy it. The relation ∼F has finite index in the U large

t .

Proof.

In correspondence to the free variables (fr(0), fr(1),Fr(0),Fr(1)) of φ, we
define a partial equipment signature σ, consisting of:

Disjoint sets int0(σ), ∂0(σ) ⊆ fr(0) and a map f 0
σ : ∂0(σ)→ {1, .., t}

Disjoint sets int1(σ), ∂1(σ) ⊆ fr(1) and a map f 1
σ : ∂1(σ)→ {1, .., t}2

A set Uσ ⊆ {1, ..t} for each vertex set variable U ∈ Fr(0)

A set Dσ ⊆ {1, ..t}2 for each edge set variable D ∈ Fr(1)
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proof of Courcelle’s theorem(2/11)

Proof (Continue).

We say that a t-boundaried graph X is σ-partially equipped, if it has
distinguished elements (vertices and edges) for each element of signature
σ and the following properties hold:

If u is a vertex variable and u ∈ int0(σ), then the corresponding
vertex of X , uX , must belong in the interior of X .

If u is a vertex variable and u ∈ ∂0(σ), then uX must be the only
vertex satisfying f (uX ) = f 0

σ (u).

If d is an edge variable and d ∈ int1(σ), then edge dX must have at
least on of its endpoints in the interior of X .

If d is an edge variable and d ∈ ∂1(X ), then edge dX = (uX , vX )
must satisfy f 1

σ (d) = {f (uX ), f (vX )}.
If U is a vertex set variable and U ∈ Fr(0), then the corresponding
vertex set UX of X must satisfy f (UX ∩ ∂(X )) = Uσ.
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proof of Courcelle’s theorem (3/11)

Proof (Continue).

If D is an edge set variable and D ∈ Fr(1), then the corresponding
edge set DX of X must satisfy
{{f (uX ), f (vX )} : (uX , vX ) ∈ E} ∩ ∂2(X ) = Dσ.

We also define the complementary signature σ̄ of a signature σ:

∂0(σ̄) = ∂0(σ) and f 0
σ̄ = f 0

σ

int0(σ̄) = fr(0)− ∂0(σ)− int0(σ)

∂1(σ̄) = ∂1(σ) and f 1
σ̄ = f 1

σ

int1(σ̄) = fr(1)− ∂1(σ)− int1(σ)

For each vertex set variable U ∈ Fr(0): Uσ̄ = Uσ

For each edge set variable D ∈ Fr(1): Dσ̄ = Dσ
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proof of Courcelle’s theorem (4/11)

Proof (Continue).

The previous odd definition simply assures that for graphs X ,Z equipped
with equipments σ, σ̄ respectively, sentence φ has also consistent
interpretation for graph X ⊕ Z .
After these quite tedious definitions, we can state the main claim we seek
to prove:
For each sentence φ ∈ MSO2, with equipment signature σ, the relation ∼φ

has finite index in the universe of t-boundaried σ-partially equipped
graphs, where X ∼φ Y when for each σ̄-partially equipped t-boundaried
graph Z holds:

X ⊕ Z |= φ ⇐⇒ Y ⊕ Z |= φ

We will show the claim with the use of structural induction.
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proof of Courcelle’s theorem (5/11)

Proof (Continue).

Atomic formulas:

u ∈ U
d ∈ D
inc(e, u)
adj(u, v) ≡ ∃d ∈ D(inc(d , u) ∧ inc(d , v))

All easy with case checking for different signatures.
e.g. φ = d ∈ D, ∂1(σ) = d ,Dσ = ∅, then σ̄ = σ and
∀X ,Z (X ⊕ Z ) 6|= φ, as d /∈ D (since D is limited to interior edges).
So index 1 (all equivalent).
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proof of Courcelle’s theorem (6/11)

Proof (Continue).

Inductive Step. Formula φ must be one of the below:
1 φ = ¬φ′

2 φ = φ1 ∧ φ2

3 φ = ∃uφ′

4 φ = ∃dφ′

5 φ = ∃Uφ′

6 φ = ∃Dφ′
,

where φ
′
, φ1, φ2 satisfy the desired property, that is the induced

relation has finite index.
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proof of Courcelle’s theorem (7/11)

Proof (Continue).

1 φ = ¬φ′

Let X ,Y such that X ∼φ′ Y , that is:

X ⊕ Z |= φ
′ ⇐⇒ Y ⊕ Z |= φ

′ ∀Z

Suppose that X ,Y are not ∼φ equivalent, that is there exists Z:

X ⊕ Z |= φ and Y ⊕ Z 6|= φ ⇐⇒

X ⊕ Z |= φ and Y ⊕ Z |= ¬φ ⇐⇒

X ⊕ Z |= ¬φ′
and Y ⊕ Z |= φ

′
,

a contradiction. We proved X ∼φ′ Y ⇒ X ∼φ Y , so ∼φ′ is a
refinement of ∼φ, and since ∼φ′ has finite index, so does ∼φ.
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proof of Courcelle’s theorem (8/11)

Proof (Continue).

2 φ = φ1 ∧ φ2

Define ∼≡∼φ1 ∩ ∼φ2 (with appropriate signatures..). ∼ has finite
index as the intersection of eq. relations of finite index.
Let X ,Y be graphs such that X ∼ Y , that is ∀Z :

X ⊕ Z |= φ1 ⇐⇒ Y ⊕ Z |= φ1

and
X ⊕ Z |= φ2 ⇐⇒ Y ⊕ Z |= φ2

Suppose X ,Y are not ∼φ equivalent, then exists Z :

X⊕Z |= φ∧Y⊕Z |= ¬φ ⇐⇒ (X⊕Z |= φ1∧φ2)∧(Y⊕Z |= ¬φ1∨¬φ2)

So either ∼φ1 or ∼φ1 equivalence of X ,Y breaks down, a
contradiction. So, ∼φ has finite index, in this case as well.
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proof of Courcelle’s theorem (9/11)

Proof (Continue).

3 φ = ∃uφ′
, where u is a vertex variable free in φ

′

Define a(X ,Z ) : exists vertex uX in the interior of X such that
Xu ⊕ Z |= φ

′
, where Xu is graph X further equipped with vertex uX

(which corresponds to variable u). Based on that, define an extra
relation:

X ∼∃u Y : ∀Z [a(X ,Z ) ⇐⇒ a(Y ,Z )]

The suitable, final, relation for this case is defined as X ∼ Y iff:
1 X ∼φ′ Y
2 Xi ∼φ′ Yi∀i ∈ {1, ..., t}, where Xi denotes the partially equipped

t-boundaried graph X , further equipped with boundary vertex labeled i
(corresponding to variable u), and

3 X ∼∃u Y

It has finite index.
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proof of Courcelle’s theorem (10/11)

Proof (Continue).

3 Let X ,Y such that X ∼ Y and suppose that they are not ∼φ

equivalent, that is ∃Z : X ⊕ Z |= φ and Y ⊕ Z |= ¬φ. If v is the
vertex of X ⊕ Z corresponding to variable u, consider the cases:

u belongs in the interior of Z , then:

X ⊕ Zu |= φ
′
⇐⇒ Y ⊕ Zu |= φ

′
, from (1),

meaning Y ⊕ Z |= φ, a contradiction.
u belongs in the boundary of X , then for a i ∈ {1, ..t} it holds:

Xi ⊕ Zi |= φ
′
⇐⇒ Yi ⊕ Zi |= φ

′
, from (2),

meaning Y ⊕ Z |= φ, a contradiction.
u belongs in the interior of X , then from (3) there exists vertex v

′
in Y

such that:
Xu ⊕ Z |= φ

′
⇐⇒ Yu ⊕ Z |= φ

′
,

meaning Y ⊕ Z |= φ, a contradiction.
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proof of Courcelle’s theorem (11/11)

Proof (Continue).

3 Thus, ∼ refines ∼φ and ∼φ has finite index.

4

5

6 Likewise for (4), (5), (6) (define statements ensuring the equivalence
in the interior of X , as in (3))

The proven theorem plus Bodlaender’s algorithm establish the promised
result.
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The End
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