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Let X be the germ of a complex- or real-analytic manifold M at a point xo [ M, or the henselian germ of an algebraic manifold M
over a field k of characteristic zero at a point xo [ M(k), D ; X a divisor. Under some assumptions on D and its singularities we give
a description of the structure, the singularities, and the divisor class group of all finite normal coverings of X ramified over D.

Let g : X 3 gl(n) be an analytic or a k-algebraic family, respectively, of semisimple matrices, the eigenvalues of which are ramified
on D as functions of x [ X. Put U 5 X 2 D. Using the above results under some quite general assumptions on g and D we construct
an irreducible nonsingular variety Uc, a finite etale morphism ac : Uc3 U, and a morphism uc : Uc3 GL(n) (all in the same category
as X and g), such that tc(x) 5 uc(x)g(x)uc(x)21 is a diagonal matrix, for all x [ Uc. This construction gives, among other things, an
extension in a refined form (on the level of Uc-sections) of the classical one-parameter Perturbation Theory of matrices to the case
of many parameters, ramified eigenvalues, not necessarily hermitian matrices, etc. We also prove the stable triviality of the
eigenbundles of g on U and vanishing of their Chern classes.

1. Introduction and Notation

Let k be a field of characteristic zero.

1.1. In this paper, unless it is explicitly stated otherwise, A will be a local noetherian k-algebra of one of the following two
types:

1.1.1. A 5 Bh is the henselization of a smooth finitely generated k-algebra B of finite type over k with respect to a maximal
ideal m of B.

1.1.2. A 5 k{T1, T2, . . . , Tn} is the algebra of convergent power series over a field k, where k 5 C the field of complex or
k 5 R the field of real numbers.

In the algebraic case of 1.1.1, denote X 5 Spec A, and in the analytic case of 1.1.2, denote X 5 Specan A, the analytic spectrum
of A (see ref. 1, Ch. 2, and sections 3.3 and 2.1 below). Denote by xo the closed point of X in the k-algebraic case and the center
of the germ X in the k-analytic case. We shall call such an X k-henselian or k-analytic germ, respectively, and shall refer to these
cases as the local k-algebraic henselian and the local k-analytic cases, respectively.

1.1.3. Let g : X 3 gl(n) be a k-analytic or k-polynomial morphism in the same category. We shall call such a g a k-analytic
or k-algebraic matrix valued function.

We say that the matrix valued function g is pointwise diagonalizable over k if g(x) is a matrix diagonalizable over the residue
field k(x) of x, for all x in X(k# ), where k# is the algebraic closure of k.

1.1.4. We say that xo is a turning or a transition point for a matrix function g, if some eigenvalues ei1
, ei2

, . . . , eim
of g change

their multiplicities in X. We say that a turning point xo is unramified if all the eigenvalues ei(x) of g(x) are regular functions in
X in the same category, as functions of the parameter x, i.e. they are analytic or polynomial functions of the parameter x in X
in the analytic or algebraic cases, respectively. Otherwise, we shall say that the turning point xo is ramified. In this case, some
of the eigenvalues eij

changing their multiplicities in X are the branches of one or several ramified analytic functions.
1.2. We say that a pointwise diagonalizable matrix function g is locally diagonalizable or admits a local diagonalization in a

neighborhood of xo, if there exists an invertible matrix valued function u : X 3 GL(n) in the same category as X and g, such
that the following equality holds:

u~x!g~x!u~x!21 5 t~x!, for all x [ X, [1]

where t(x) is a diagonal matrix function.
The existence of a local diagonalization of a matrix-function g when dimX $ 1 is a classical problem that frequently arises

and plays an important role in many areas and contexts in mathematics and physics, including nearly all the main branches of
differential equations, perturbation theory, gauge theories, etc. See refs. 2–7 and sections 4 and 5 of this paper and literature
quoted there for further discussions of these links.

It is well known (see for example, ref. 4, section 2) that the main difficulties presents a diagonalization in a neighborhood
of a turning point xo. In ref. 4 this problem was studied in the case when dim X $ 1 and the turning point xo is unramified. Under
this assumption and some additional assumptions on g(x), it was shown in ref. 4 that a diagonalization exists on each stratum
of a certain stratification of the germ X. However, the ramification of the eigenvalues ej is a very common feature when dim
X $ 2. For this reason, the assumption of the regularity of the eigenvalues is too restrictive for many important questions and
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potential applications. The situation here is the opposite to that encountered in the classical one-parameter real-analytic
Perturbation theory of Hermitian matrices and operators, where the problem of ramification did not arise, because of a theorem
of F. Rellich that established its absence on the real line (2, 3, 5).

Thus, assume now that the eigenvalues of g do ramify on a divisor D , X, as functions of the (multi-)parameter x [ X and
xo [ D is a ramified turning point. In this case it is known that a regular diagonalizing family u for g satisfying Eq. 1 above may
not exist on X, in general. Furthermore, in section 4.6 below we give an example of g for which a diagonalizing morphism u does
not exist on U 5 X 2 D and even on any finite etale covering of U.

One of the main purposes of this paper is to prove the existence of a diagonalizing morphism uc : Uc 3 GL(n) for g over
a suitable finite etale cover ac : Uc3 U under some restrictions on g (Theorem 3.5). This is the first positive result on the local
diagonalization in a neighborhood of a ramified turning point when dim X $ 2, to our knowledge. In the analytic case, this gives,
among other things, an extension in a refined form of the classical Perturbation Theory onto the multi-parameter ramified case,
not-necessarily-Hermitian matrices, and in some other directions. Indeed, these results give the triviality of the eigenbundles
of g over Uc, rather than just the existence of analytic projections onto them, as the classical analytic constructions of the
Perturbation Theory do, and the first property is by far stronger and more delicate than the second in the multi-parameter case,
as Example 4.6 shows.

1.3. The results outlined in section 1.2 are based on several more general results that have an independent interest in broader
algebra-geometric and analytic contexts. The main of them are an explicit construction and a description of the singularities of
all finite normal coverings Y 3 X, ramified along a divisor D, which satisfies the following condition: there exists a closed
subgerm N , D of codimension $ 2 in D such that D is a divisor with normal crossings outside N (and D may have arbitrary
singularities inside N) (Theorem 2.9). Theorem 2.9 extends the classical Abhyankar Lemma (ref. 8, XIII, section 5), and it provides
a much greater flexibility in applications than this Lemma. In particular, using this extension, we construct under some quite
general assumptions on g and its eigenvalues an irreducible reduced factorial germ Xc and a finite ramified cover ac : Xc 3 X,
such that all the (ramified) eigenvalues ej of g give rise to functions ec, j on Xc that are well defined everywhere and are regular
in the corresponding category (section 3). These nice properties of Xc allow us to define on Xc the eigensheaves Ec, j of g
corresponding to the ‘‘regularized’’ eigenvalues ec, j, for all j, and to show that the restrictions of Ec, j onto Uc 5 Xc 2 Dc are
trivial bundles, for all j, where Dc 5 ac

21(D).
The last facts imply the results mentioned in section 1.2 (Theorem 3.5) and they have many other applications. Applications

to the stable triviality of the eigenbundles (including the kernel bundles) of g on U and vanishing of their Chern classes are given
in sections 4 and 5. It seems these are the first general results on properties of the eigenbundles in a neighborhood of a ramified
turning point. Many explicit calculations of the local Chern classes and holonomies of the eigenbundles in some special
low-dimensional (dim X # 3) cases can be found in the literature on the geometric (Berry) phases, quantum Hall effect, and
anomalies (see refs. 6 and 7, and literature quoted there). The algebra-geometric methods of this paper are significantly different
from those used in the previous works on these questions and they give more precise and complete results under much broader
assumptions (e.g., for dim X $ 4), where the differential-geometric methods of the previous works (the Chern-Weil theory, etc.)
are inapplicable in principle (see section 4.7).

The results of sections 4 and 5 can be extended onto ramified eigenvalues and the corresponding eigenbundles of analytic
families of differential operators. The eigenbundles, their Chern classes, and other properties for families of differential
operators arising in various branches of geometry and physics (Laplac, Dirac, and Schroedinger operators, etc.) have geometrical
or physical interpretations and carry information important for these fields.

2. Construction and Properties of a Class of Finite Ramified Coverings
2.1. Complex-Analytic Varieties Defined over R. For our purposes it will be convenient to use systematically in the analytic category
analogues of the concepts of complex algebraic varieties defined over the real field R and their morphisms defined over R, which
have become standard in algebraic geometry since A. Weil and A. Grothendieck. They are defined as follows.

We say that an analytic function f : U 3 C on an open subset U , Cn is defined over R, or simply is R-analytic if in suitable
systems of coordinates in U and C its Taylor series expansion has only real coefficients. We say that a complex-analytic variety
Y (or a complex-analytic germ Y) is defined over R if there exists a collection of local charts (Ui, i [ I) covering Y, where each
Ui is analytically isomorphic to an open subset of Cn, such that the set of equations (fi, j, j [ Ji) defining Y ù Ui in Ui and the
functions ui, j gluing the charts Ui can be chosen R-analytic. For a simplicity we shall call such a Y an R-analytic variety or
R-analytic germ, respectively.

For R-analytic variety Y we can consider the set Y(R) of its real points—i.e., real solutions of the local equations fi, j, as well
as the set Y(C) of its complex points. R-analytic morphisms f : Y 3 Z between R-analytic varieties Y and Z are defined using
R-analytic functions in the obvious way.

For each real-analytic local R-algebra B we can consider R-analytic germ Y, the set of complex points of which is Y(C) 5
Specan(B RR C) , Cn (see ref. 1, Ch. 2, section 3). We shall denote this R-analytic germ Y by the symbol Specan B and shall
refer to it as an R-analytic germ corresponding to B.

As in algebraic geometry, all the standard geometric notions and properties concerning R-analytic varieties Y, Z . . . and their
morphisms f : Y 3 Z (for example, the dimension, the codimension, the finiteness, or the surjectivity of morphisms, etc.) will
be defined as they usually are defined for the complex varieties of their C-points Y(C), Z(C) . . . and their analytic morphisms,
rather than for their sets of real points Y(R), Z(R) only.

2.2. Let Y be a normal irreducible k-germ in the same category as X and a : Y 3 X a finite Galois (ramified) k-covering of
X. Then Y 5 Spec AY for a suitable local henselian k-algebra AY in the henselian algebraic case, or Y 5 Specan AY for a local
analytic k-algebra AY in the k-analytic case.

Denote by K 5 Fract(A) the field of fractions of A—i.e. K is the field of rational functions on X in the algebraic case and
the field of meromorphic functions on X in the analytic case—and by KY 5 Fract(AY).

Denote by D 5 Ram (a) , X the ramification divisor in X of the morphism a. Let D 5 øi51
s Di be the decomposition of D into

a union of its irreducible components Di, ri the ramification index of Y with respect to Di (defined, for example, in ref. 9, section 2)
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and rY :5 )i51
s ri the total ramification index of a. Because X is a nonsingular germ, the divisor D (respectively each Di) is defined by

a single equation f 5 0 (resp. fi 5 0) in X.
2.3. We say that a divisor D 5 øi Di is a k-divisor if all its irreducible components Di are defined over k and are geometrically

irreducible. In this case, the equations fi of Di also can be chosen with the coefficients in k.
2.4. For a divisor D, denote by N(D) the closed subgerm of D with the reduced structure consisting of all points x [ D, at

which D is not a divisor with normal crossings. (Notice that the irreducible components Di of D may have self-intersections.)
Denote by ir(D) the number of the irreducible components Di of D and let c(D) 5 codimDN(D).

2.5. We say that a divisor D satisfies condition (SDm) if it is a k-divisor, ir(D) # dimX and c(D) $ m.
2.6. Denote by Ho the homotopy category of pointed simplicial sets, and by Pro 2 Ho the category of pro-objects from Ho,

which was defined and studied by Artin and Mazur in ref. 10. For a noetherian scheme X or an analytic space X or an analytic
germ X over C denote by ht(X) its homotopy type—i.e., the corresponding class in Pro 2 Ho; see ref. 10 for its definition and
properties. For a scheme X, its homotopy groups pm(X) are defined as pm(ht(X)) and p1(ht(X)) coincides with the etale
(profinite) fundamental group p1

et(X) defined in ref. 8. For an analytic space or germ X over C, pm(ht(X)) coincides with the
topological homotopy groups pm

t (X) of this space or germ, for all m. For a scheme X over C, denote by X(C)an the associated
analytic space, and by Xcl the ‘‘classical’’ topos of X defined in refs. 10 and 11.
PROPOSITION 2.7. Let D 5 øi51

s Di be a divisor in X with the irreducible components Di, U 5 X 2 D, Ui 5 X 2 Di. Assume
that D satisfies SD2.

(1) If X 5 Specan A is a nonsingular complex-analytic germ as in 1.1.2, then

p1
t ~Ui~C!an! 5 Z and p1

t ~U~C!an! 5 Pi 5 1
s p1

t ~Ui~C!an!

(2) If X 5 Spec A is local henselian algebraic over C as in 1.1.1, then

p1
et~Ui! 5 Ẑ and p1

et~U!) 5 Pi 5 1
s p1

et~Ui!.

Proof: The second statement of (1) was proved in ref. 12, Corollary 2.4.1. Let Di be an irreducible component of D given by
an equation fi 5 0 for some analytic function fi : X 3 C. It is proved in ref. 12 that the Milnor fiber of fi is simply connected.
The first statement of (1) follows then from the exact sequence of homotopy groups of the Milnor fibration of fi, which was
constructed in ref. 13. Both statements of (2) follows from those of (1) and PROPOSITION 2.8 below applied to Y 5 U and
Y 5 Ui.

The following proposition is a local henselian version of the ‘‘generalized Riemann existence theorem,’’ which was proved
by Artin and Mazur for algebraic varieties of finite type over C (ref. 10, Theorem 12.1):
PROPOSITION 2.8. Let V be a normal complex algebraic variety, xo [ V(C) a C-point on a V, and Z a closed subvariety of V containing
xo, Y 5 V 2 Z. Let Vh and Zh be the henselian germs of V and Z, respectively, at xo, Van and Zan the analytic germs of V and Z,
respectively, at xo. Put Yh 5 Vh 2 Zh and Yan 5 Van 2 Zan. Then there exists a map of the homotopy types « : h(Y(C)an)3 h(Yet)
in the category Pro 2 Ho, and the natural homomorphism of the homotopy groups: pm

t (Y(C)an)3 pm
et(Yh), induced by «, becomes

an isomorphism after profinite completion of pm
t , for all m $ 0.

Proof: The construction of the map « is a local version of that given in ref. 10, Theorem 12.1. As in 10, it is sufficient to prove
that it induces an isomorphism between the analytic and etale cohomology with the twisted finite coefficients. For this we use
the strong comparison (or base change) theorem between the analytic and etale cohomology (ref. 11, XVI, 4.1), applied to the
natural embedding i : U 3 X.

The following theorem is an extension of the classical (absolute) Abhyankar Lemma (ref. 8, XIII, 5.1–5.3), which assumes
that D is a divisor with normal crossings.
THEOREM 2.9. Let X 5 Spec A or X 5 Specan A be a nonsingular k-germ in the k-henselian or k-analytic category as in section
1.1.1 or 1.1.2, respectively. Let Y be a normal irreducible k-germ, a : Y 3 X a finite Galois ramified k-covering of X in the same
category as X, and let the objects AY, D, Di, etc. be defined for this covering as in section 2.2. Assume, in addition, that condition
(SD2) for the ramification divisor D is satisfied and that the extension YyX induces an isomorphism k 3; kY of the residue fields.

(1) If dY 5 deg(YyX) 5 rY, then
(1i) Y coincides with Spec A9Y in the henselian k-algebraic case and with Specan A9Y in the k-analytic case, where

A9Y 5 A@f1
1/r1, . . . , fs

1/rs#

and it is a complete intersection, germ, finite flat over X in the both k-algebraic and k-analytic cases;
(1ii) the singular locus Sin(Y) of Y is contained in the inverse image N(D)Y 5 a21(N(D)) in Y under a of the non-normal crossing

subgerm N(D) of D.
(2) If dY 5 deg(YyX) , rY, then there exists a normal irreducible reduced k-germ Yc and a finite Galois abelian purely ramified

k-covering b : Yc 3 Y of degree rYydY (both in the corresponding category), such that the following properties (2i) and (2ii) are
satisfied:

(2i) The ramification divisor Ram(ac) of the composite projection ac 5 a + b : Yc 3 X in X coincides with D as a set.
(2ii) The germ Yc is a complete intersection and its singular locus Sin(Yc) is contained in the inverse image germ N(D)c :5

ac
21(N(D)) , Xc.
Remark 2.9.1: If the field k is algebraically closed, then automatically k 5 kY, and by PROPOSITION 2.7, any finite covering

Y 3 X, etale over U 5 X 2 D, is Galois.
An outline of the Proof: Assume first that k 5 C. In the both cases (algebraic henselian over C case and the complex-analytic

case) it follows from PROPOSITION 2.7 that

G 5 Gal~YyX! 5 Pi51
s Zyri,
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where the ith factor Ri 5 Zyri of G is the ramification subgroup of G with respect to the component Di of D and ri is the
ramification index of KYyK with respect to Di. This implies that KY 5 K(f1

1/r1, . . . , fs
1/rs). This KY is, clearly, the field of fractions

of the ring A9Y, which was defined in claim (1i) above.
Using the results of ref. 14 and an induction on s one can prove that the ring A9Y is a complete intersection ring. Denote Y9

5 Spec A9Y in the k-algebraic case and Y9 5 Specan A9Y in the k-analytic case. Let a9 : Y9 3 X be the natural projection and
put N(D)9Y :5 (a9)21(N(D)).

The classical Abhyankar Lemma (ref. 8, expose XIII, 5.1) implies that all the points x [ Y9 2 N(D)9Y are smooth. This
establishes claim (1ii). Furthermore, (1ii) and the condition c(D) $ 2 implies that codimY9Sin(Y9) $ 3 and by the criterion of
normality of Krull–Serre (15) Y9 is a normal germ. Therefore, it coincides with the normalization Y of X in KY.

(2) Assume now that dY 5 deg(a) , rY. Define Y9 5 Spec A9Y in the algebraic case and Y9 5 Specan A9Y in the analytic case,
as in 1(i) above, and put Yc 5 Y9. Let Kc be the field of rational functions on Yc in the k-algebraic case or meromorphic functions
in the k-analytic case. Then by (1i) Yc is the normalization of X in Kc and Yc satisfies property (2i) by its construction and property
(2ii) by (1ii).

The case of an arbitrary field k of characteristic zero can be reduced to that of k 5 C.
COROLLARY 2.10. Under the assumptions of THEOREM 2.9, the germ Y is the factor YcyH of a complete intersection germ Yc by

a finite abelian group H :5 Ker(Gc 3 G), where G 5 Gal(YyX) and Gc 5 Gal(YcyX).
2.11. For a normal Noetherian scheme Z or a normal k-analytic space Z denote by Cl (Z) and Pic (Z) the (Weil) divisor class

group of Z and the Picard group of Z respectively.
2.12. Denote U 5 X 2 D and let Dc 5 ac

21(D) and Uc 5 ac
21(U) be the inverse images of D and U in Yc, respectively.

COROLLARY 2.13. Under the notation and assumptions of THEOREM 2.9 assume in addition that condition (SD3) is satisfied. Then
Cl(Yc) 5 0—i.e. this scheme is factorial, and

(i) in the k-algebraic henselian case, Cl(Uc) 5 Pic(Uc) 5 0;
(ii) in the k-analytic case, let V be a line bundle on Uc that has an extension

∧
V onto the whole Yc as a coherent sheaf. Then its

class in Pic(Uc) vanishes.
Proof: By THEOREMS 2.9(1i) and (2ii) Yc is a complete intersection germ and condition (SD3) and 2.9(1ii) imply that

codimYc
(Sin(Yc)) $ 4. The vanishing of Cl(Yc) follows now from the factoriality theorem of Grothendieck, which proved the

Samuel Conjecture (ref. 16, XI, 3.14). In the algebraic case, the natural homomorphism Cl(Yc)3 Cl(Uc) is surjective. Therefore,
the triviality of Cl(Yc) implies (i).

In the analytic case, denote by W the double dual
∧
V** of 2Yc

-module
∧
V. It is a coherent reflexive 2Yc

-module of rank 1 on
Yc that extends

∧
V. The description of the (Weil) divisor class groups given in ref. 17 shows that V is in the image of the natural

homomorphism Cl(Yc) 3 Cl(Uc). This implies (ii).

3. A Construction of a Local Diagonal Form and of a Perturbation Theory in the Case of Ramified Eigenvalues
Let A and X be as in section 1.1.1 or section 1.1.2, K the field of fractions of A, g : X3 gl(n) a k-morphism in the k-algebraic

henselian or the k-analytic category, respectively.
3.1. Consider the characteristic equation

p~l! 5 det~lIn 2 g~x!! 5 0

of the matrix g(x) as a polynomial equation with respect to l over the field K. Here In is the unit matrix of order n. Assume
that p(l) is irreducible over K. Let LyK be a decomposition field of p(l) over K and e1, . . . , en the collection of all the roots
of p in L.

Denote by Kp the (minimal) Galois field extension of K generated by all the roots ej of p over K and by A9 5 A[e1, . . . , en]
the A-subalgebra of Kp generated by all the ej. Let Ap be the integral closure of A in K. It is a henselian local k-algebra in the
algebraic case and an analytic k-algebra in the analytic case. For each root ej, the characteristic equation is an equation of an
integral dependence of ej over A. Hence, A9 , Ap and Ap is the integral closure of A9 in K.

3.2. Denote Xp 5 Spec Ap in the k-algebraic henselian case and Xp 5 Specan Ap in the k-analytic case, and let ap : Xp 3 X
be the natural projection. Let the germs D 5 Ram(a), Dj, 1 # j # s, N(D) and U 5 X 2 D be defined as in sections 2.2–2.4
for Y 5 Xp and a 5 ap.

Assume that condition (SD2) and the following condition (RF) are satisfied:
(RF) The extension ApyA induces an isomorphism k 3; kp of the residue fields of these rings.

Let Xc be the complete intersection germ and b : Xc 3 Xp the ramified covering constructed for Y 5 Xp in THEOREM 2.9.
Put ac 5 ap + b : Xc 3 X. By their constructions, the maps ap, b, and ac are defined over k. Denote by gc 5 a*c(g) the pullback
of g onto Xc and by ec, j(x), j 5 1, . . . , n, the eigenvalues of the matrix gc(x), for x [ Xc. Notice that the element ej [ Ap gives
rise to a regular function a*c(ej) on Xc in the corresponding category, for all j. (However, these functions may not be defined
over k, in general.)
LEMMA 3.3. Assume that the matrix function g satisfies the following condition (PWDyU):

(PWDyU) the matrix function g is pointwise diagonalizable over k on U 5 X 2 D (cf. 1.1.3).
Then: (i) If k 5 R, the restriction of the eigenvalue ej on U(R) is a single-valued real-analytic function on U(R), for all j.
(ii) If in addition conditions (RF) and (SD2) are satisfied, the eigenvalue ec, j of gc coincides with some of the elements a*c(e1),

. . . , a*c(en), say a*c(ej), for each j. Furthermore, ec, j is a k-analytic function on Xc in the k-analytic case and it is a k-polynomial
function on Xc in the k-algebraic henselian case.

3.4. Preserve the assumptions of LEMMA 3.3. For each j and for each x [ Xc denote by Ec, j(x) the space of all the eigenvectors
of gc(x) in the vector space k(x)n belonging to the eigenvalue ec, j(x). The collection of k(x)-vector spaces Ec, j(x)) for all x in
Xc forms a coherent 2Xc

-submodule of the free 2Xc
-module 2Xc

n of rank n on Xc (ref. 4, section 2). It follows from the constructions
of Xc and D given above that the eigenvalues ec, j, j 5 1, . . . , n may coincide only inside Dc. Hence, they have constant
multiplicities mc, j(x) 5 dimk(x)(Ec, j(x)) over Uc. By ref. 4, Proposition 2.4, this implies that the restriction Ec, juUc of Ec, j onto
Uc is a vector bundle, for all j.
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THEOREM 3.5. In the notation above, assume that the characteristic polynomial p(l) is irreducible over K and that conditions (SD3)
of section 2.5, (RF) of section 3.2, and (PWDyU) of section 3.3, as well as condition (Mu1yU) below, are satisfied:

(Mu1yU) The multiplicities mj(x) of all the eigenvalues ej(x) are equal to one, for all x [ U.
Then the k-germ Xc is factorial and the following properties hold:
(i) The restriction Ec, juUc of the eigensheaf Ec, j on Uc is a trivial vector bundle in the corresponding category, for all j.
(ii) There exists a k-morphism uc : Uc 3 GL(n) in the same category as g, which diagonalizes the matrix-function gc 5 g + ac

on Uc—i.e., the equality

uc~x!gc~x!uc~x!21 5 tc~x!, for all x in Uc

is valid, where tc(x) 5 diag(ec,1(x), . . . , ec,n(x)) is the diagonal matrix with the eigenvalues ec, j(x) of gc(x) on the main diagonal.
Proof: Under the assumptions of THEOREM 3.5, the covering ac : Xc 3 X constructed in sections 3.1 and 3.2 satisfies the

conditions of THEOREM 2.9 with Y 5 Xc and a 5 ac. Then all the eigenbundles Ec, j are trivial on Uc by COROLLARY 2.13(i)
in the k-algebraic henselian case and by COROLLARY 2.13(ii) in the k-analytic case. This proves (i). The existence of a
diagonalizing k-morphism uc : Uc 3 GL(n) for gc on Uc follows from the triviality of Ec, j and Proposition 2.4 of ref. 4.

4. Rational Stable Triviality of the Eigenbundles of g(x) on U(R)
In this section k 5 C or R, the fields or complex or real numbers. We shall preserve in this section the general notation of sections
1–3 and assume that g satisfies condition (PWDyU) of section 3.3.

4.1. By LEMMA 3.3(i), the eigenvalues ej are single-valued R-analytic functions on U(R). Therefore, we can consider the
eigenbundle Ej over U(R), corresponding to the eigenvalue ej, for each j. It is an R-analytic bundle. Denote by Ej,C 5 Ej RR
C the complexification of Ej.

4.2. For a differentiable (C`) (respectively real-analytic) manifold M, denote by Bunt(M, C) the category of topological (t 5
t) (respectively real-analytic (t 5 ran)) vector bundles on M with the complex coefficients, and by Ko

t(M, C) the Grothendieck
group of this category.
THEOREM 4.3. Under the notation above, assume that conditions (SD3), (RF), (PWDyU) and (Mu1yU) of sections 2.5, 3.2, 3.3,
and 3.5, respectively, are satisfied. Let M be a closed differentiable (C`) submanifold of U(R), m 5 dimRM, Ej,CuM the restriction
of the complexified eigenbundle Ej,C onto M. Then

(i) The complex vector bundle dc(Ej,CuM) is topologically stably trivial on M, where dc is the degree of the extension XcyX.
Furthermore, if dc . my2, then this bundle is topologically trivial.

(ii) If M is a closed reduced coherent (in the sense of ref. 18, Ch. 2) real-analytic subvariety of U(R), then the vector bundle
dc(Ej,CuM) is real-analytically stably trivial on M. Furthermore, if dc . my2, then it is real-analytically trivial.

An outline of the Proof: Denote by Mc :5 ac
21(M) , Xc(C) the inverse image of M under the projection ac : Xc 3 X. Then

the restriction of ac onto Mc gives a continuous etale surjective map m : Mc 3 M of topological spaces of degree dc. This map
induces the direct image (or transfer) homomorphism of the Ko-groups m*

t : Ko
t (Mc, C) 3 Ko

t (M, C), and the inverse image
homomorphism m*t : Ko(M, C) 3 Ko(Mc, C), such that m*

t + m*t 5 dc.
The topological stable triviality of dcEj,CuM follows from THEOREM 3.1(i) and these properties of the transfer. The analytic

stable trivality in (ii) follows from that in (i) and a real analytic version of the Grauert–Oka principle (ref. 18, Ch. 8, Theorem
2.2). The last triviality statement in (i) follows from the stabilization theorems for topological bundles (ref. 19, Ch. 8, Theorem
1.5). The triviality statement in (ii) follows from that in (i) and the same version of the Grauert–Oka principle.

4.4. Let H*(M, R) be a cohomology theory with the coefficients in a commutative ring R that admits a theory of Chern classes
cr

t : Ko
t(M, C) 3 H2r(M, R) with the standard properties on the category Bunt(M, C), for t 5 t or t 5 ran, (see ref. 19, Ch.

16). If R is a Q-algebra, then for this cohomology theory the Chern character cht : Ko
t(M) 3 H*(M, R) is also defined and it

is a ring homomorphism.
As examples of such cohomology theories we can take the following: (i) the singular cohomology H*sin(M, R) of the underlying

topological space M with R 5 Z or Q; (ii) the de Rham cohomology theory H*dR(M, R) of smooth (C`) differential forms on
the C`-manifold M with R 5 R.
COROLLARY 4.5. Under the notation and the assumptions of THEOREM 4.3(i) (respectively 4.3(ii)) we have:

(i) The first (integral) Chern class c1
t(dcEj,CuM) of the restriction of the eigenbundle dcEj,C onto M is zero, for all j and t 5 t

(respectively t 5 ran).
(ii) If R is a Q-algebra, then cht(Ej,CuM) 5 0, for t 5 t (respectively for t 5 ran).
Example 4.6: Let X 5 (C3, 0) the germ of C3 at zero, g(x) 5 (i51

3 xisi [ gl(2), where si are the Pauli matrices, x 5 (x1, x2, x3) [ C3

[see Example 3.7 of Avron’s paper (6)]. Then D 5 ((ixi
2 5 0) is a cone in the germ X. It has an isolated singularity at its vertex 0 5 D(R)

of codimension 2 in D. The matrix g(x) has two eigenvalues e1 5 uxu and e2 5 2uxu, where uxu 5 ((ixi
2)1/2. According the

Chern–Weil theory, the Chern classes of the eigenbundles E1 and E2 of g can be calculated by integrating over a small 2-sphere S2

, U(R) with the center at 0 the curvature forms of the Berry connections on E1 and E2—i.e., the connections induced by the exterior
differential d on C3 (refs. 6 and 7). This gives c1(E1) 5 21 [ Z, c1(E2) 5 1 [ Z (ref. 6, p. 50). COROLLARY 4.5 above and its proof
imply then that this g(x) cannot be analytically (and even continuously) diagonalized on any finite cover of U. This shows that the
condition codimDN(D) $ 3 of (SD3) in THEOREMS 3.5 and 4.3, and all other statements depending on them, is sharp.

Remark 4.7: In the general cituation of the beginning of section 4, the method of the Chern–Weil theory indicated in section
4.6 is applicable only when U(R) is homotopy equivalent to a compact closed (without a boundary) orientable submanifold M
, U(R). For a germ X it is possible only when U(R) 5 X(R) 2 xo, or equivalently D(R) 5 xo. The last equality is a very strong
restriction on the pair (X, g). The methods and results here, including those of sections 4 and 5, do not require this restriction.

5. The Local Structure and Characteristic Classes of the Kernel Bundle
We return in this section to the general notation and assumptions of section 1.1.

5.1. Let Ker g be the kernel sheaf of g considered as a homomorphism of free sheaves of 2X-modules g : 2X
n 3 2X

n . We say
that xo is a turning or a transition point for Ker g at xo if the dimension of the fibers of Ker g jumps up at xo. It means that some
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eigenvalues of g, which are not zero identically on X, vanish at xo. We say that xo is a ramified turning or transition point for Ker g
if some of the nonzero eigenvalues vanishing at xo ramify at xo as the functions of x.

In this paper we consider only the case when xo is a ramified transition point for Ker g. In the unramifed case a description
of the local structure of Ker g under some natural assumptions on g follows easily from the results of ref. 4.

5.2. Assume from now on that xo is a ramified turning point for Ker g. Let eo 5 0 be the eigenvalue of g that is identically
zero on X, and mo its multiplicity in g. Let ej, mo 1 1 # j # n be the collection of all nonzero eigenvalues of g that vanish at
xo. Then the characteristic polynomial of g over K has a form

p~l! 5 det~l In 2 g~x!! 5 lmoq~l!.

Assume also that the polynomial q(l) is irreducible over K. Denote by Kq, Aq, Xq, aq : Xq 3 X, D, U, etc. all the objects
defined or constructed for the irreducible polynomal q in the same way as in sections 3.1 and 3.2 above for p. Assume that
conditions (SD2), (RF), and (PWDyU) are satisfied. Let Xc and b : Xc 3 Xq be the k-germ and the finite covering constructed
for Y 5 Xq in THEOREM 2.9, ac 5 aq + b : Xc 3 X, Dc, and Uc the inverse images of D and U in Xc. Denote dc 5 deg(XcyX).

Let gc be a pullback of g onto Xc, ec,j the k-regular eigenvalue of gc on Xc corresponding to ej, mo 1 1 # j # n, by sections 3.2 and
3.3. Put ec 5 Pj5mo11

n ec,j. Denote by Zc the divisor of zeros of ec in Xc, Z 5 ac(Zc) , X, and V 5 X 2 (D ø Z). Because ac is a finite
k-morphism, Z is a closed subgerm of X of codimension one, defined over k. Therefore, V is open in X and it is defined over k. Notice
that by the constructions the restriction Ker guV of the coherent sheaf Ker g onto V is a locally free 2V-module.

5.3. For a noetherian k-scheme (respectively for a k-analytic space) Z denote by Ko(Z) the Grothendieck group of the category
of coherent, locally free 2Z-modules, or equivalently k-algebraic (respectively k-analytic) vector bundles on Z.

Let Z3 H*(Z) be any cohomology theory on the category of k-schemes or k-analytic spaces for which there exists the theory
of Chern classes cr : Ko(Z) 3 H2r(Z) with the standard properties (ref. 19, Ch. 16). If H*(Z) is a vector space over a field F
of characteristic zero, then the Chern character ch(?) is defined with the values in H*(Z).
THEOREM 5.4. Assume that q is an irreducible polynomial over K and that conditions (SD3), (RF), (PWDyU), and (Mu1yU) for
the ramified eigenvalues ej of g are satisfied. Then

(1) In the k-algebraic category, the restriction Ker guV is a stably trivial 2V-module on V. In particular, if rank2V
(Ker guV) . dim

X, then Ker guV is a free 2V-module on V.
(2) in the k-analytic category, the dc-multiple dc(Ker guV) of the restriction Ker guV is a stably trivial 2V-module on V. In particular,

if rank dc(Ker guV) . dim X, then dc(Ker guV) is a free 2V-module on V.
An outline of Proof: Let Ec, j be the eigenbundle of the eigenvalue ec, j on Xc, mo 1 1 # j # n. Denote Vc 5 ac

21(V). Then
we have the following relation on Vc:

~Ker gcuVc! % ~ % j5mo11
n Ec,j! 5 2Vc

n .

Because all the eigenbundles Ec, j, are trivial on Uc, the equality above shows the stable triviality of Ker gcuVc. Using the transfer
arguments as in the proof of THEOREM 4.3, we can derive from this the stable triviality of dc(Ker guV) on V in the both k-algebraic
and k-analytic cases. But in the k-algebraic case the group Ko(V) 5 Z has no torsion, so Ker guV is stably trivial on V itself. The
stable rank of 2V is # dim V (20). Combining these facts we see that if rank2V

(Ker guV) . dim V, it is free on V.
COROLLARY 5.5. Under the conditions of 5.4 we have:

(1) In the k-algebraic category the (integral) Chern classes cr(Ker guV) of the bundle Ker guV vanish, for all r . 0.
(2) In the k-analytic category all the Chern classes cr(dc(Ker guV)) of the bundle dc(Ker guV) in H2r(V) vanish, for all r . 0.
(3) If H*(V) is a vector space over a field F of characteristic zero, then the (rational) Chern character ch(Ker guV) of Ker guV

in H*(V) also vanishes.
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