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Fig. 1. Spurious stresses: nonuniform 3D mesh. Incremental potential contact [Li et al. 2020] introduces spurious contact forces in many configurations.
We show a 3D block with rounded corners, maximal edge length 0.42m, and minimum edge length 0.03m Left: With 𝑑 chosen suitably small for the coarsely
discretized regions (in this example 𝑑 = 0.07m,), IPC introduces spurious forces at finely meshed corners, leading to jagged deformation artifacts. Right: our
method maintains the rest configuration in the absence of other outside forces by deriving a new IPC-like contact formulation from the continous case.

The Incremental Potential Contact (IPC) method enables robust complex
simulations of deformable objects with contact and friction. The key to IPC’s
robustness is its strict adherence to geometric constraints, avoiding intersec-
tions, which are a common cause of robustness issues in contact mechanics.
A key element of the IPC approach to contact is a geometric barrier function,
which is defined directly in the discrete setting. While IPC achieves its main
goal of providing guarantees for contact constraints, its parameters need to
be chosen carefully to avoid significant simulation artifacts and inaccura-
cies. We present a systematic derivation of an IPC-like continuum potential
defined for smooth and piecewise smooth surfaces, starting from identifying
a set of natural requirements for contact potentials, including the barrier
property, locality, differentiable dependence of shape, and absence of forces
in rest configurations, based on the idea of candidate sets. Our potential is
formulated in a way independent of surface discretization.

This new potential is suitable for piecewise-linear surfaces and its effi-
ciency is similar to standard IPC. We demonstrate its behavior and compare
it to IPC on a range of challenging contact examples.

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: Finite element method, Elastodynamics,
Contact dynamics

1 INTRODUCTION
Contact modeling is a critical component of simulation tools for
many domains, including physical simulation for computer graphics,
robotics, mechanical design, and biomedical engineering. Recent
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advances, in particular, Incremental Potential Contact (IPC) [Li et al.
2020], make it possible to perform, in a reliable way, complex, large-
deformation, and long-duration simulations of deformable objects
with self-contact, with minimal parameter tuning.

The fundamental principle of the IPC solvers is the strict adher-
ence to geometric constraints over the entire trajectory (no inter-
sections including self-intersections), even when approximations
are made in other aspects of the problem. This feature is the key to
robustness: overwhelmingly, robustness issues in contact mechanics
are geometric in nature; once a contact constraint is violated, it may
be very difficult for the simulation to recover.
Geometric constraint satisfaction in IPC is accomplished by a

combination of using a geometric barrier function, i.e. an inter-
action potential that approaches infinity for contact points, and
conservative continuous collision detection (CCD). IPC formulation
excels at its main goal, qualitatively improving the robustness of
contact simulations.
At the same time, the approach has limitations, and certain con-

ditions may lead to inaccurate results and simulation artifacts. The
primary reason for this behavior is several specific features of the
design of the barrier potentials used in the simulation. The potential
was designed directly for discretized models, rather than obtained
from a discretization of a continuum potential; as we discuss in
more detail in Section 2. In particular, there is a direct, and strong
limitation on how local the potential is (and, as a consequence, how
stiff it is) and how the object is discretized.
In this paper, we undertake a systematic derivation of a contin-

uum barrier potential and its discretization from a set of desiderata,
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elaborated in Section 4. Similarly to Convergent IPC [Li et al. 2023],
we assume that the total contact potential is obtained by integra-
tion over the surface of a pointwise potential𝜓 (𝑥). The following
requirements, which we make more precise in Section 3 include:

• Generality: The total potential over the surface is well-defined
for any piecewise smooth surface not in contact.

• Barrier : The potential𝜓 (𝑥) grows to infinity as the objects
in the simulation approach (self-)contact at 𝑥 , but is finite
for any configuration not in contact.

• No spurious forces: In the undeformed configuration the po-
tential is zero.

• Localization: The potential has a parameter 𝑑 and vanishes
if the objects are further away than 𝑑 from contact.

• Differentiability: The potential depends smoothly on the
surface configuration (e.g., for piecewise surfaces, on mesh
vertex positions).

• Resolution independence: The localization of the contact po-
tential can be controlled independently from mesh resolu-
tion.

Note that two key requirements (Localization and, less directly,
No spurious forces depend on the notion of distance to contact: how
we measure this distance for self-contact is critical for choosing the
right potential Section 3.

The original IPC formulation [Li et al. 2020] meets these require-
ments only partially for piecewise linear surfaces. Namely, it can
violate No spurious forces and Resolution independence depending
on the choice of 𝑑 . To address this we introduce an IPC-like poten-
tial designed to satisfy these requirements. The key features of our
approach include:

• The concept of contact candidate sets, that, in turn, supports
a definition of distance to contact suitable for contact barrier
potentials.

• An approach for defining a contact potential for piecewise
smooth surfaces that meets the requirements enumerated
above, independently of the choice of discretization.

• A discrete version of this potential for piecewise-linear sur-
faces retaining the same properties and efficiency of standard
IPC.

We demonstrate in a set of benchmarks that satisfying the prop-
erties above is crucial for accurate elastodynamic: our formulation
avoids spurious, discretization-dependent forces introduced by the
original IPC formulation [Li et al. 2020] (Section 5). The decoupling
of the locality from mesh resolution further reduces the parameter
tuning required for scenes with large deformations (Section 5).

2 RELATED WORK
Traditional methods for contact response mostly formulate non-
interpenetration constraints based on the normal displacements
of the contacting regions with locally approximated geometries.
Then the constrained time integration problem is solved with La-
grange multipliers [Carpenter et al. 1991; Deuflhard et al. 2008;
Hiermeier et al. 2018; Kane et al. 1999; Laursen and Love 2002; Paoli
and Schatzman 2002a,b; Taylor and Papadopoulos 1993; Vola et al.
1998], penalty methods [Armero and Petőcz 1998; Belytschko and
Neal 1991; Hauret and Le Tallec 2006; Hiermeier et al. 2018; Puso and

Laursen 2004], barrier methods [Belytschko et al. 2000; Christensen
et al. 1998; Kloosterman et al. 2001], etc. To guarantee global con-
vergence for the solution of frictionless large deformation contact
problems for hyperelastic materials, Youett et al. [2019] proposed
a filter-trust-region method to solve the constrained minimization
problem formulated from implicit time integration.
Mortar methods [Belgacem et al. 1998; Hüeber and Wohlmuth

2006; Puso and Laursen 2004] are commonly used in engineer-
ing [Krause and Zulian 2016] and biomechanics [Maas et al. 2012]
but require to (a priori) mark all possible pairs of contacting mesh
boundary. A clear limitation of these methods is then that they
cannot handle, without extensions, self-collisions or collisions in
regions with more than two contacting surface regions. Li et al.
[2020] provide a didactic comparison of IPC and one such mortar
method [Krause and Zulian 2016]. There it can be seen that such
methods enforce contact constraints weakly and therefore allow
intersections (especially at large timesteps and/or velocities).

Instead of directly treating contact as unilateral constraints, Wrig-
gers and Laursen [2006] and Sauer and De Lorenzis [2013] formulate
frictionless contact based on distance-dependent surface interac-
tion potentials, providing a unified framework for various contact
formulations including Lagrange multiplier, penalty, and barrier.
Starting with the first and second laws of thermodynamics, Duong
and Sauer [2019] recently extended [Sauer and De Lorenzis 2013]
to account for Coulomb friction under isothermal conditions, and
demonstrated the convergence of the method under refinement.

Gap functions. Gap functions compute a signed distance for pairs
of points or primitives, where negative distance measures the inter-
penetration depth. Collisions are then resolved by enforcing that
all gap functions are non-negative. Commonly used gap functions
include projecting between pairwise surface primitives onto a fixed
geometric normal [Otaduy et al. 2009; Wriggers 1995] or using CCD
to determine the point of contact and compute a projected distance
along the contact normal [Harmon et al. 2008; Verschoor and Jalba
2019]. Harmon et al. [2011] introduced the method of space-time
interference volumes which was in part motivated by the need
to define a version of the gap function in a fully general setting;
the complexity of their construction shows that even rigorously
formulating the self-contact problem in inequality-constrained is
nontrivial. We discuss the connection of our method to one type of
gap function in Section 4 in more detail.

Barrier-based methods. The use of barrier functions for handling
contact has been utilized in graphics for over a decade now. Most
notably, Harmon et al. [2009] and Vouga et al. [2011] utilize a set of
layered discrete penalty barriers that grow unbounded as the config-
uration approaches contact. However, this incremental construction
makes it unsuitable for optimization-based implicit time integration
and therefore requires small time-steps for stability.

Kaldor et al. [2008] simulate knitted cloth at the yarn level where
yarn-yarn collisions are handled through a continuous potential
integrating a barrier function over two disjoint spline segments.
This approach, however, ignores self-collisions within a single seg-
ment and between neighboring segments. To discretize their model,
Kaldor et al. [2008] use “Simpson’s quadrature at fixed positions in
parameter space” which has the limitation of potentially missing
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the nearly singular portion of the integral and therefore introducing
intersections.
Our method largely follows the IPC method of Li et al. [2020],

which transforms discrete gap constraints into a sum of log barrier
functions. The method of Li et al. [2020] has been directly utilized
and extended by numerous follow-up works to include support for
codimensional elements [Li et al. 2021], rigid/affine body dynam-
ics [Ferguson et al. 2021; Lan et al. 2022], medial elastics [Lan et al.
2021], solid-fluid interactions [Xie et al. 2023], higher-order finite
element analysis [Ferguson et al. 2023], etc.
The most significant limitation of IPC [Li et al. 2020] is its lack

of convergence under mesh refinement due to its purely discrete
formulation (see Li et al. [2023] and Du et al. [2023] for details). To
address this, Li et al. [2023] form a continuous formulation for the
original IPC model which requires minimal adjustments to existing
implementations. The limitation of their approach is the requirement
for joint refinement of 𝑑 and mesh resolution. We provide further
discussion of the limitations below.

Du et al. [2023] show the tendency of “Node-to-Segment”methods
(e.g., IPC [Li et al. 2020]) to produce spurious tangential contact
forces. To remedy this they propose to use a fully 𝐶1-continuous
surface representation; computing distances used in the contact
potential between the nodes and smooth surface (extending the
method of Larionov et al. [2021]). The main limitation of [Du et al.
2023], however, is the inability to handle self-collisions.

Tangent-point energies. A possible continuous approach to avoid-
ing intersections are the tangent-point energies [Buck and Orloff
1995; Strzelecki and von der Mosel 2013] which repel surface points
by integrating over all surface pairs (𝑥,𝑦) ∈ Ω × Ω:∫

𝑥∈Ω

∫
𝑦∈Ω

1
𝑟 (𝑓 (𝑥), 𝑓 (𝑦))𝛼 d𝑥d𝑦,

where 𝑟 is the radius of the smallest sphere tangent to 𝑓 (𝑥) and
passing through 𝑓 (𝑦) and 𝛼 controls the repulsion strength. This
avoids having infinite energy for geodesic neighbors as the radius is
large, but grows to infinity for points approaching zero distance in
Euclidean space. Recently, Yu et al. [2021a,b] utilize tangent-point
energies to prohibit intersections while optimizing surface geometry.
In pure form, this method is unsuitable for collision response due
to its global coupling of all points, but it is closely related to our
approach as discussed in Section 4 in the case of smooth surfaces.
This not only leads to a dense system that needs to be factorized in
the optimization but also spurious contact forces between distant
pairs.

3 CONTACT POTENTIAL REQUIREMENTS
We consider a collection of deformable objects defined on a material
domain Int(Ω), whose boundary is Ω. Int(Ω) may have multiple
connected components (Figure 2).

An admissible deformation 𝑓 : Int(Ω) ↦→ R𝑛 , 𝑛 = 2, 3 is noninjec-
tive on the boundary only, i.e., 𝑓 is injective in the interior of the
domain, but may have contact points 𝑥 ≠ 𝑦 on the boundary Ω, for
which 𝑓 (𝑥) = 𝑓 (𝑦).

We say that an admissible 𝑓 is a contact deformation, if it has
contact points, otherwise, we call it contact-free. We assume that for

Fig. 2. A collection of objects is transformed using a deformation 𝑓 (left),
which can cause the objects to intersect at a contact point (right).

a point 𝑥 ∈ Ω, we have a measure𝑑𝑐 (𝑥, 𝑓 ) of how far it is from being
a contact point. Defining this measure is a key aspect of our con-
struction, and is necessary to formulate our contact requirements.
We note that the problem of defining 𝑑𝑐 (𝑥, 𝑓 ) is far from trivial.

While for rigid objects the distance to the closest point on another
object is an adequate measure, this is not the case for deformable
objects. Due to the possibility of self-contact, we cannot exclude
points on the same object and, in this case, there are always points
on Ω arbitrarily close to 𝑥 in Euclidean distance that need to be
considered to be far from being in contact with 𝑥 . At the same time,
an arbitrarily small, if measured by Euclidean distance, perturbation
of a surface may create an actual contact, so the distance from 𝑥 to
a real contact point 𝑦 can be arbitrarily small.
Before describing our approach to the distance to contact, we

make the properties we stated in the introduction more precise.

Requirement 1 (Generality). A total contact potential

Ψ(𝑓 ) =
∫
Ω
𝜓𝜖 (𝑥 ; 𝑓 ) d𝑥

is well-defined, i.e., 𝜓𝜖 (𝑥 ; 𝑓 ) is integrable on Ω for a sufficiently
broad class of surfaces. Our construction applies to piecewise-smooth
surfaces, although in our implementation we focus on piecewise
linear.

Requirement 2 (Barrier). 𝜓𝜖 (𝑥 ; 𝑓 ) increases to infinity for 𝑓 if the
distance to contact𝑑𝑐 (𝑥, 𝑓 ) goes to zero. Combinedwith incremental
potential time-stepping and CCD, this can be used to guarantee that
all configurations remain contact-free.

Requirement 3 (No spurious forces). For the undeformed config-
uration 𝑓 = Id, 𝜓𝜖 (𝑥 ; Id) is zero everywhere. This is necessary to
ensure that the potential does not create artificial forces that would
cause motion/deformations even if no external forces are acting on
the object.

Requirement 4 (Localization). 𝜓𝜖 (𝑥 ; 𝑓 ) has a locality parameter
𝜖 > 0 (𝑑 in the notation of Li et al. [2020]), with no restrictions
on its magnitude, on which it depends at least continuously, and
the potential vanishes if 𝑑𝑐 (𝑥, 𝑓 ) > 𝜖 . If we solve a sequence of
problems with decreasing 𝜖 , we approach a solution of the standard
inequality-constrained formulation of contact problems.

Requirement 5 (Differentiability). If 𝑓 is defined by a finite number
of parameters (in the simplest case, vertex positions of a mesh) then
𝜓𝜖 (𝑥 ; 𝑓 ) depends differentiably, and piecewise twice differentiably
on the parameters of 𝑓 . Then the potential leads to a force with



4 • Zizhou Huang, Max Paik, Zachary Ferguson, Daniele Panozzo, and Denis Zorin

Fig. 3. In the rigid case, for a point 𝑥 , the contact candidate set (highlighted
in blue) is the set of points in all connected components of Ω that do not
contain 𝑥 .

piecewise continuous Jacobian, allowing for second-order methods
for implicit time-stepping.

Importantly, these properties are independent of whether we
consider a smooth problem or its discretization: below, we require
that both a smooth potential and its discretization satisfy these
properties.
In the discrete case, the total potential is a sum of discrete po-

tentials defined on pairs of discrete primitives. We note that it is
important that all requirements above are satisfied by the discretized
total contact potential directly, not only in its continuous formula-
tion.

4 FORMULATION
Our approach to defining contact potentials is conveniently for-
mulated in terms of contact candidate sets 𝐶 (𝑥 ; 𝑓 ). These sets are
defined for every point 𝑥 as a subset of Ω, and the potential we
construct is restricted to these.

To be able to use them in the definition of a contact potential, we
choose the contact sets 𝐶 (𝑥) with the following properties

• For 𝑓 in contact, 𝐶 (𝑥) contains the contact point of 𝑥 ;
• If is not in contact, the (Euclidean) distance from 𝑓 (𝑥) to
𝐶 (𝑥) is positive, and it decreases to zero if we interpolate
between an 𝑓 in contact and 𝑓 in contact.

We define the distance to contact 𝑑𝐶 (𝑥, 𝑓 ) of a point 𝑥 under defor-
mation 𝑓 as the distance to the contact candidate set of 𝑥 :

𝑑𝐶 (𝑥, 𝑓 ) = min
𝑦∈𝐶 (𝑥 )

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥.

If a potential 𝜓 (𝑥 ; 𝑓 ) is obtained by integrating a positive func-
tion 𝑔(𝑥,𝑦) supported on the contact set, depends on the distance
between 𝑥 and 𝑦, and increases to infinity if the distance is zero,
then we can observe that using such candidate sets allows us to
satisfy Requirements 2 to 4. In particular, the Requirement 4 (Local-
ization) is satisfied if 𝑔(𝑥,𝑦) is chosen to vanish for a small 𝑑𝐶 (𝑥, 𝑓 ),
and Requirement 3 (No spurious forces) is satisfied if it vanishes for
𝑑𝐶 (𝑥, 𝐼𝑑).

4.1 Rigid objects
To make the contact set definition less abstract, we briefly consider
the case of rigid objects, for which 𝑓 restricted to each connected
component of Ω is rigid motion, as a guiding example for defining
a contact candidate set and a corresponding potential satisfying the
contact potential requirements (Section 3).
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Fig. 5. Barriers. Left: plot of the cubic spline ℎ𝜖 (𝑧 ) and barrier function
𝑝𝜖 (𝑧 ) = ℎ𝜖 (𝑧 )/𝑧𝑛−1 for 𝜖 = 1. We also include a plot of the log barrier
𝑝 IPC𝜖 (𝑧 ) of Li et al. [2020] for comparison. Right: our barrier improves ap-
proximation to the discontinuous function as 𝜖 goes to 0.

In this case, the choice is simple and intuitive: for 𝑥 , the contact
candidate set 𝐶 (𝑥) is the set of points in all connected components
of Ω that do not contain 𝑥 (Figure 3). Then the distance 𝑑𝑐 (𝑥) is
simply the distance to the closest object. The requirements above
for the contact set are satisfied, and one can define the potential as

𝜓𝑅 (𝑥 ; 𝑓 ) =
∫
𝑦∈𝐶 (𝑥 )

𝑝𝜖 (𝑥 ) (∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥) d𝑦 (1)

where 𝑝𝜖 (𝑥 ) (𝑧) → ∞ as 𝑧 → 0, fast enough for the integral to be
unbounded if 𝑥 is in contact and there are points in𝐶 (𝑥) arbitrarily
close to 𝑥 (Figure 5). We choose

𝑝𝜖 (𝑥 ) (𝑧) =
ℎ𝜖 (𝑧)
𝑧𝑛−1

for 𝑛 = 2, 3,
ℎ𝜖 (𝑧) = 3

2𝐵
3 (2𝑧/𝜖)

where 𝐵3 ∈ 𝐶2 (R) is a cubic spline (Figure 4)

𝐵3 (𝑣) =



2
3 − 𝑣2 + 1

2 |𝑣 |3 |𝑣 | < 1
1
6 (2 − |𝑣 |)3 1 ≤ |𝑣 | < 2
0 2 ≤ |𝑣 |

.

Therefore, ℎ𝜖 ∈ 𝐶2 (R) satisfies
ℎ𝜖 (𝜖) = ℎ′𝜖 (0) = ℎ′′𝜖 (𝜖) = 0.

−2 2

1
3

2
3

1

𝑧

Fig. 4. Plot of 𝐵3 (𝑧 ) .

We note that somewhat counter-
intuitively, it is not strictly necessary for
the potential𝜓 (𝑧) to be infinite to guar-
antee that no contact happens (see Ap-
pendix A). The choice of the power for
the potential is important: on the one
hand, e.g., the logarithmic potential used
in IPC, in the continuum case may result
in a finite integral, i.e., requirement 2 not
satisfied; on the other hand, if the power
is too high, that the pointwise potential may lead to divergent in-
tegrals for piecewise-smooth surfaces folding along sharp features
(see Section A).

Then ℎ𝜖 vanishes if 𝑑𝐶 (𝑥 ; 𝑓 ) exceeds 𝜖 , and as a consequence,𝜓𝑅

is zero. By construction,𝜓𝑅 (𝑥 ; 𝑓 ) becomes infinite if 𝑑𝐶 (𝑥 ; 𝑓 ) → 0,
i.e., this potential satisfies Requirements 2, 4, and 5, as long as the
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potential grows fast enough. To satisfy Requirement 3 (No spurious
forces), we choose a variable 𝜖 (𝑥) for each point 𝑥 to be equal to

min(𝑑𝐶 (𝑥, 𝑓0)/2, 𝜖trg),
where 𝜖trg is the global parameter determining the maximal distance
at which the potential may be nonzero.

Remark. Note that 𝜖 (𝑥) is not necessarily smooth or even continu-
ous as a function of 𝑥 . This may affect the convergence of the outer
integral in computing Ψ; however, it does not affect the required
properties, in particular, Requirement 5 (Differentiability) of the
total potential’s dependence on the shape parameters of 𝑓 .

4.2 Deformable smooth surfaces
Contact candidate sets for self-contact. For an arbitrary deforma-

tion 𝑓 , self-contact needs to be taken into account since points on
the same objects cannot be excluded. We need a different approach
for defining 𝐶 (𝑥).
Our key observation is: for a fixed point 𝑥 and 𝑦 ≠ 𝑥 in contact,

if we consider 𝑑 (𝑦) = ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ with 𝑦 varying over the surface,
𝑑 (𝑦) has a local minimum at 𝑦 (Figure 8).

Clearly, 𝑑 (𝑦) has also a local minimum at 𝑥 which we exclude,
but not at any point in a neighborhood of 𝑥 . This leads to the idea
of including in 𝐶 (𝑥) points that are close to being local minima of
the distance function ∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥ in the candidate set, and, in
addition, the vector 𝑓 (𝑥) − 𝑓 (𝑦) points towards the exterior of the
surface at 𝑓 (𝑥) and towards the interior at 𝑓 (𝑦). The latter is critical
for handling thin objects.

We first consider smooth surfaces, to describe the main ideas with-
out considering many cases needed for piecewise smooth surfaces,
and then extend the formulation to a general case.

In this case, the local minima of the distance function from 𝑓 (𝑥)
to 𝑓 (𝑦) for a contact-free 𝑓 satisfy the condition

Φ(𝑥,𝑦)2 = ∥(𝑓 (𝑦)−𝑓 (𝑥))+×𝑛(𝑥)∥2 = 1−((𝑓 (𝑦)−𝑓 (𝑥))+·𝑛(𝑥))2 = 0,

where (·)+ denotes normalization to a unit vector. The resulting
distance to contact and potentials are related to one of the com-
monly considered gap function types in the FEM literature [Otaduy
et al. 2009; Wriggers 1995] and the potential to tangent-point ker-
nels [Buck and Orloff 1995; Strzelecki and von der Mosel 2013; Yu
et al. 2021a,b].
Additionally, define

Φ𝑛 (𝑥,𝑦) = 𝑛(𝑥) · (𝑓 (𝑦) − 𝑓 (𝑥))+
Then 𝑓 (𝑦) is on the side of the outward pointing normal from 𝑥 , if
Φ𝑛 (𝑥,𝑦) > 0.
This suggests the following definition of a contact candidate set

for a smooth surface:

𝐶 (𝑥) = {𝑦 | Φ𝑛 (𝑥,𝑦) ≥ −𝛼,Φ(𝑦, 𝑥) ≤ 𝛼} (2)

(Figure 6). Observe that𝐶 (𝑥) for smooth surfaces is isolated from 𝑥 :
as 𝑦 approaches 𝑥 , 𝑓 (𝑦) − 𝑓 (𝑥) becomes tangent to the surface and,
as a consequence, perpendicular to the normal 𝑛(𝑦), so the distance
from 𝐶 (𝑥) to 𝑥 is positive for any 𝛼 < 1.

In the case of smooth surfaces Φ(𝑥,𝑦)2+Φ𝑛 (𝑥,𝑦)2 = 1, so restrict-
ing Φ(𝑥,𝑦)2 to be close to zero is equivalent to restricting Φ𝑛 (𝑥,𝑦)2

(A) (B) (C)

Fig. 6. Potential distribution on the surface with respect to the red dot.
From left to right are potential distributions. (A) Without constraint on
surface tangent, the potential distributes spherically around the red dot
regardless of the surface shape. (B) With tangent constraints, only surfaces
that are close to the local minima of distance from the red dot have high
values. (C) With both tangent and normal constraints, only surfaces on the
closer side of the volumetric object have high values.

−1 −0.5 0.5

1
𝐻𝛼 (𝑧)

𝑧

Fig. 7. Smoothed Heavyside function 𝐻𝛼 (𝑧 ) with 𝛼 = 1
2 .

to be 1. However, the relationship is more complex for piecewise
smooth surfaces, so we treat these separately.

At the same time, as 𝑓 approaches contact at 𝑥 , the set will even-
tually contain the contact point 𝑦.
In this case, the property 1, i.e., the fact that contact potential

is well-defined for a contact-free 𝑓 : while𝜓 (𝑥) may be defined for
any point 𝑥 , it may have no upper bound, so the integral over 𝑥 is
not defined. However, there is a global positive lower bound on the
separation distance for non-empty 𝐶 (𝑥): the set of such points is
closed, and the bound is positive for all points. This ensures that
Requirement 1 (Generality) is satisfied for smooth surfaces.

Contact potential. Using a 𝐶2 smooth function

𝛿𝛼 (𝑧) = 2
𝛼
𝐵3 (2𝑧/𝛼),

which
(1) has a maximal value at zero,
(2) decays to zero for |𝑧 | = 𝛼 (i.e., on the boundary of the contact

candidate set), and
(3) integrates to 1,

we also use the smoothedHeaviside step function𝐻𝛼 (𝑧) = 𝐻 (𝑧/𝛼) ∈
𝐶2 (R), with

𝐻 (𝑧) =




0 𝑧 < −3
1
6 (3 + 𝑧)3 −3 ≤ 𝑧 < −2
1
6 (3 − 9𝑧 − 9𝑧2 − 2𝑧3) −2 ≤ 𝑧 < −1
1 + 1

6𝑧
3 −1 ≤ 𝑧 < 0

1 0 ≤ 𝑧

;
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Then we define the angle factor as

𝛾𝑆 (𝑥,𝑦) = 𝛿𝛼 (Φ(𝑥,𝑦))𝐻𝛼 (Φ𝑛 (𝑥,𝑦)) (3)

which ensures that the potential is supported within the contact set
𝐶 (𝑥).

We can define a potential for deformable contact as

Ψ(𝑓 ) =
∫
𝑥∈Ω

∫
𝑦∈Ω

𝛾𝑆 (𝑥,𝑦)𝛾𝑆 (𝑦, 𝑥)𝑝𝜖 (𝑥 ) (∥ 𝑓 (𝑥) − 𝑓 (𝑦))∥). (4)

Here, similar to the rigid motion case, we choose

𝜖 (𝑥) = min(𝑑𝐶 (𝑥 ; 𝑓0)/2, 𝜖trg),
where 𝜖trg is the maximal distance at which the potential is non-zero
so that in the undeformed state, the potential vanishes everywhere.

Relation to gap functions and tangent kernels. One of the gap func-
tions described in FEM literature (e.g., [Wriggers 1995]) is obtained
by shooting a ray along the normal direction 𝑛(𝑥) to obtain a point
𝑦 (𝑥), defining in this way the correspondence between surfaces,
and defining the gap function as 𝑛(𝑥) · (𝑓 (𝑦 (𝑥)) − 𝑓 (𝑥)). This is
similar to applying Φ(𝑥,𝑦) for a specific choice of 𝑦. We note that in
general geometry,𝑦 (𝑥) may not exist, or move discontinuously. Sim-
ilarly, repulsive surfaces [Strzelecki and von der Mosel 2013; Yu et al.
2021a] use potentials of the form (𝑛(𝑥) · (𝑓 (𝑦) − 𝑓 (𝑥)))𝑝/∥𝑥 −𝑦∥2𝑝 .
Our potential can be considered a localization of repulsive potentials
of this type in space and angle.

4.3 Piecewise smooth contact
We now extend the potential to piecewise smooth surfaces. There
are two reasons for this extension: (1) piecewise smooth surfaces
are ubiquitous in graphics and scientific computing as they can
represent shapes with sharp features, and (2) smooth surfaces are
often approximated by piecewise-linear for which efficient robust
continuous collision detection is available.
We consider surfaces consisting of patches Ω𝑖 , which form a

curved manifold mesh satisfying the standard definition [Do Carmo
2016]. We assume that each patch has continuously varying normals
defined everywhere including boundary (i.e. no cones are allowed)
and the edge curves meeting at a vertex have distinct tangents. We
refer to the curves separating patches as edge curves, or simply edges,
and points shared by more than 2 patches as vertices.
In this case, there are six possibilities for a contact point, corre-

sponding to the possible pairs of contacts between any two element
types: Face-Face, Face-Edge, Face-Vertex, etc.

The smooth-surface definition can be applied in cases involving
a face, as there is a well-defined normal on one side, and the defini-
tion of the potential requires only the normal at 𝑦. However, cases
that do not involve a face (for example, Edge-Edge) require special
handling and a generalization of our definition of𝐶 (𝑥) and distance
to contact. Observe that we cannot assume that, e.g., nearby face-
vertex contacts are sufficient: two edge points may be close, but
all points may be far from contact in the sense of 𝑑𝐶 (𝑥 ; 𝑓 ) defined
above.

Contact candidate sets for piecewise-smooth surfaces. To generalize
𝐶 (𝑥) to piecewise smooth surfaces, we take the following approach.

Fig. 8. Contact point as a local minimum of distance.

Consider the distance ∥ 𝑓 (𝑦) − 𝑓 (𝑥)∥2 as a function of 𝑦. Then for
the gradient w.r.t. 𝑦, we obtain

∇𝑦 𝑓 (𝑦) (𝑓 (𝑦) − 𝑓 (𝑥)) = 0
at the closest point. The columns of the matrix ∇𝑦 𝑓 are two tangents
at 𝑦, i.e., this condition is equivalent to the condition of 𝑛(𝑦) being
parallel to 𝑓 (𝑦) − 𝑓 (𝑥) in the definition of 𝐶 .

To generalize the minimum condition to arbitrary points of piece-
wise smooth surfaces, consider the set of faces Ω𝑖 containing a point
𝑦 (one face for face points, two for edge points, and any number for
vertex points). For each Ω𝑖 and each parametric direction at 𝑦, there
is a well-defined tangent 𝑡 .
The condition for a local minimum is that for any Ω𝑖 , and any

tangent 𝑡 , the distance increases along the tangent, i.e.,

∀𝑡, 𝑡⊤∇𝑦 𝑓 (𝑦) (𝑓 (𝑦) − 𝑓 (𝑥)) ≥ 0,
where the gradient∇𝑦 is computedwith respect to a parametrization
of Ω𝑖 .

If 𝑖 > 1, for any face Ω𝑖 , there are two unit tangent vectors 𝑡1𝑖 (𝑦)
and 𝑡2𝑖 (𝑦) along two edge curves of Ω𝑖 meeting at 𝑦 (Figure 9). Any
tangent vector 𝑡 at 𝑦 for Ω𝑖 is a linear combination of 𝑡1𝑖 and 𝑡2𝑖
unless these are collinear; however, in general, one cannot infer that
𝑓 increases along all directions 𝑡 between 𝑡1𝑖 and 𝑡2𝑖 from increase
along these two directions, unless the angle between them is strictly
less than 𝜋 , i.e., not for points on straight edges, or curved surfaces
if the patch Ω𝑖 boundary has a concave corner.
To treat all cases uniformly, we add a halfway vector 𝑡3𝑖 ; corre-

sponding to the direction halfway between 𝑡1𝑖 and 𝑡2𝑖 . Note that the
issue described above doesn’t happen to piecewise linear surfaces,
so 𝑡3𝑖 is not used in this case.

Then every unit tangent vector 𝑡 within Ω𝑖 can be represented as
a linear combination of 𝑡1𝑖 and 𝑡3𝑖 , or 𝑡

3
𝑖 and 𝑡2𝑖 , with non-negative co-

efficients, and consequently, positivity along these three directions
is sufficient for all directions.
Denote 𝑔(𝑦) = ∇𝑦 𝑓 (𝑦) (𝑓 (𝑦) − 𝑓 (𝑥)). Then if 𝑡𝑘𝑖 · 𝑔(𝑦) ≥ 0 for

𝑘 = 1, 2, 3, the same holds for any 𝑡 = 𝑎ℓ𝑡
ℓ
𝑖 + 𝑎𝑚𝑡𝑚𝑖 , (ℓ,𝑚) = 1, 2 or

2, 3.
The only special case is the case of face points, which do not have

any edge vectors; in this case, we can pick 𝑡𝑘𝑖 as arbitrary tangent
vectors spaced at equal 120-degree angles in the parametric domain.
Note that this doesn’t happen to piecewise linear surfaces.

The analog of Φ𝑛 (𝑥,𝑦) requires a criterion for determining that a
unit vector 𝑣 at a point 𝑥 of a piecewise surface points outside. Let
𝑃𝑖 be the tangent plane to Ω𝑖 , and let 𝑛𝑖 be the normals. Suppose
for at least one face, the projection of the vector 𝑣 to 𝑃𝑖 is inside
the face. Then the planar sector defined by the rays along 𝑣 and the
closest projection 𝑣 ′, to the plane 𝑃𝑖 which has minimal value of
|𝑣 · 𝑛𝑖 |, lies entirely on one side of the surface locally at 𝑓 (𝑥). Thus
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Fig. 9. 2D version of notation for Definition 1.

if 𝑛𝑖 · 𝑣 which is signed distance from the tip of 𝑣 to 𝑃𝑖 is positive,
it is pointing to the outside of the surface. Define 𝑑+𝑖 = min𝑖 𝑣 · 𝑛𝑖 ,
over 𝑖 for which 𝑣 · 𝑛𝑖 > 0, and 𝑣 projects inside the face 𝑖 , setting
it to ∞ if this set is empty. Similarly define 𝑑−𝑖 = min𝑖 −𝑣 · 𝑛𝑖 for
𝑣 · 𝑛𝑖 < 0, and similarly 𝑣 projects inside the face 𝑖 , setting it to∞ if
the set is empty (both cannot be empty). Then 𝑣 points outwards if
𝑑−𝑖 − 𝑑+𝑖 > 0.

This leads to the following definition of a contact candidate set:

Definition 1 (Piecewise smooth contact set). For each point 𝑦 of
Ω, let 𝐼 be the set of indices of patches Ω𝑖 containing 𝑦, and for each
patch, define 𝑡𝑘𝑖 (𝑦), 𝑘 = 1, 2, 3 as above. Then 𝑦 ∈ 𝐶 (𝑥) for a point 𝑦
iff

Φ𝑖𝑘 (𝑥,𝑦) := 𝑡𝑘𝑖 (𝑦)⊤∇𝑖
𝑦 𝑓 (𝑦) (𝑓 (𝑦) − 𝑓 (𝑥))+ ≥ 𝛼 (5)

for 𝑖 ∈ 𝐼 , 𝑘 = 1, 2, 3, with ∇𝑖
𝑦 𝑓 computed with respect to Ω𝑖 , and 𝛼

is a positive number, and in addition, 𝑑−𝑖 − 𝑑+𝑖 ≥ −𝛼
Contact potential for p.w. smooth surfaces. Using the new defi-

nition of contact candidate sets 𝐶 (𝑥) we can define the contact
potential in a similar way to smooth surfaces, except we use a new
angle factor, defined as

𝛾𝑃𝑆 (𝑥,𝑦) =
𝑚𝑦∏
𝑖=1

3∏
𝑘=1

𝐻𝛼,𝑏 (Φ𝑖𝑘 (𝑥,𝑦)) (6)

where𝑚𝑦 is the number of patches meeting at a vertex,𝑚𝑦 = 1 for a
face point𝑦,𝑚𝑦 = 2 for an edge point, and𝑚𝑦 > 2 for a vertex point.
The function 𝐻𝛼,𝑏 (𝑧) is a smoothed Heaviside function (Figure 7)
with shift, which is 1 for positive arguments 𝑧 ≥ 𝑏 and 0 below −𝛼 :

𝐻𝛼,𝑏 (𝑧) := 𝐻

(
3

𝛼 + 𝑏 (𝑧 − 𝑏)
)
,

satisfying

𝐻𝛼,𝑏 (𝑏) = 1, 𝐻𝛼,𝑏 (−𝛼) = 0, and 𝐻𝛼,𝑏 ∈ 𝐶2 (R),
Additionally, we define

Φ𝑛𝑖 (𝑥,𝑦) = 𝑛𝑖 (𝑦)⊤∇𝑖
𝑦 𝑓 (𝑦) (𝑓 (𝑦) − 𝑓 (𝑥))+

where 𝑛𝑖 (𝑦) is the face normal of patch Ω𝑖 at 𝑦, which is unique
per patch on a piece-wise linear surface. To eliminate the contact
between opposite sides of the object (Figure 6), the following should
hold

Φ𝑛𝑖 (𝑥,𝑦) < 0 for some 𝑖 ∈ 1, . . . ,𝑚𝑦 .

Note that not all normals satisfy the constraint above when there
is a collision, so the constraint is on only one normal direction.
While this condition for determining the correct side is precise, its
mollification is relatively complex. For this reason, we relax this to

a simpler, weaker condition, following a similar way of smoothing
the constraints on Φ𝑖𝑘 and multiply 𝛾𝑃𝑆 (𝑥,𝑦) by

𝐻1,0 ©«
−1 +

𝑚𝑦∑︁
𝑗=1

𝐻𝛼,𝑏 (−Φ𝑛𝑖 (𝑥,𝑦))
ª®¬
,

which reaches maximum 1 when there exists 𝑖 such that

Φ𝑛𝑖 (𝑥,𝑦) ≥ 𝑏,

and vanishes if for all 𝑖

Φ𝑛𝑖 (𝑥,𝑦) ≤ −𝛼.
Since Φ𝑛𝑖 , Φ𝑖𝑘 are essentially dot products between unit vectors,

𝛼 acts as a threshold of contact potential on the cosine value of the
angle between contact pairs. One can pick 𝛼 based on the desired
angle threshold.
Recall that contacts between vertices and faces may not neces-

sarily lead to non-zero potentials for faces. As a consequence, the
interaction potential in these configurations will vanish outside of
a measure-zero set (edge curves and/or vertices), and direct integra-
tion of𝜓 (𝑥) will lead to a zero potential.
For this reason, we treat low-dimensional elements separately.

Informally, we can think about the interaction of lower-dimensional
elements, as expanding them into areas: e.g., an area of width 𝐿
along curves, and an area of size 𝐿2 assigned to vertices, with the
potential constant along the direction in the area orthogonal to the
curve, or on the whole area assigned to a vertex. More precisely,
this corresponds to adding line integrals for edge curves weighted
by 𝐿, and points sums for vertices, weighted by 𝐿2. The potentials
we integrate for a pair of elements of 𝐺 and 𝐻 , possibly of different
dimensions, can be written in the form

𝑃 (𝑥,𝑦;𝐺,𝐻 ) = 𝛾𝑃𝑆 (𝑥,𝑦;𝐺)𝛾𝑃𝑆 (𝑦, 𝑥 ;𝐻 )𝑝𝜖 (𝑥 ) (𝑥,𝑦)
where 𝛾𝑃𝑆 (𝑥,𝑦;𝐺) is the angle factor defined in Equation (6), for 𝑥
considered as a point on element 𝐺 . E.g., if 𝑥 is a vertex point on a
boundary of a face 𝐺 , then it is considered as a face point, with a
single face used. If 𝐺 however is an edge, both faces are used for 𝑥 .

Then the total potential can be written as∑︁
(𝑔,ℎ)

𝐿2−dim𝑔−dimℎ
∑︁

𝑖∈𝐼𝑔, 𝑗∈𝐼ℎ,𝐺𝑖≠𝐻 𝑗

∫
𝐺𝑖

∫
𝐻 𝑗

𝑃 (𝑥,𝑦;𝐺𝑖 , 𝐻 𝑗 ) (7)

where𝑔, ℎ are one of𝑉 , 𝐸, 𝐹 , the sum is over 6 unordered pairs 𝐼𝑔 and
𝐼ℎ are sets of indices of elements of types 𝑔 and ℎ, and the integrals
are area, line, or 0-dimensional, i.e., simple evaluations for vertices.

If we define the distance to contact as

min
𝑦∈𝐶 (𝑥 )

𝑑 (𝑥,𝑦),

then the potential Equation (7) satisfies all required conditions.

Parameters of the potential. In principle, whether the potential
satisfies contact potential requirements does not depend on the
choice of 𝐿, 𝜖trg, and 𝛼 , as long as these are positive.

• 𝛼 determines the size of the contact candidate sets, and as a
consequence how smoothly the potential depends on 𝑓 : the
closer 𝛼 is to zero, the less smooth the dependence is.
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• 𝜖𝑡𝑟𝑔 determines the upper bound on how far the potential
extends (𝑑 in IPC) but especially at concave corners, 𝜖𝑡𝑟𝑔 as
well as 𝑓0, affect this.

• 𝐿 determines the strength of potential for low-dimensional
contact.

4.4 Discretization
To discretize these integrals, and still satisfy the contact potential
conditions, we cannot directly apply an arbitrary quadrature: if
we evaluate the potentials at arbitrary points on elements we may
miss a contact point, and the potential will not satisfy the barrier
property. To address this problem we choose the closest points as
our quadrature points, possibly reducing integration precision, but
guaranteeing that the potential remains a barrier.

In this case, the lowest-order discretization of the potential inte-
gral is:∑︁

(𝑔,ℎ)

∑︁
𝐿2−dim𝑔−dimℎ

∑︁
(𝑖, 𝑗 )

𝑃 (𝑥𝑖 , 𝑦 𝑗 ;𝐺𝑖 , 𝐻 𝑗 )𝐴(𝐺𝑖 )𝐴(𝐻 𝑗 )

where (𝑥𝑖 , 𝑦 𝑗 ) is a pair of closest points on elements 𝐺𝑖 and 𝐻 𝑗 ,
respectively, and (𝑖, 𝑗) are pairs of non-adjacent elements, and𝐴(𝐺𝑖 )
and𝐴(𝐻 𝑗 )) aremeasures of elements (area for faces, length for edges
and 1 for vertices). Here the adjacent elements are dropped from
summation.

For the discrete potential to depend differentiably on the shape pa-
rameters (vertex positions in the piecewise-linear case), we need an
additional modification. First, observe that the distance between two
elements is already 𝐶1 with the only exception being the distance
between two parallel edges, which can be mollified as explained in
[Li et al. 2020], so the term 𝑝𝜖 (𝑥 ) in 𝑃 does not require modifications.
However, the terms 𝛾 (𝑥,𝑦) depend on the direction between closest
points, which may change non-smoothly. We use a mollification for
the closest point position to obtain a smooth variation. Importantly,
it does not affect the barrier property or the contact set properties.

Distance function mollification. For an edge [𝑝0, 𝑝1], and a point 𝑞,
we define the mollified closest point as follows. Let 0 ≤ 𝑠 < 1 be the
coordinate of 𝑞 along the edge, and 0 ≤ 𝑐 < 1/2 be the mollification
parameter (we use 10−3). Our mollification is based on

ℎ(𝑧) :=


0 𝑧 ≤ 0
𝑧 (2 − 𝑧) 0 < 𝑧 < 1
1 1 ≤ 𝑧

ℎ𝑐 (𝑠) := ℎ( 𝑠
𝑐
)

Define three basis functions𝑚0 (𝑠) = ℎ𝑐 (𝑐 − 𝑠),𝑚1 (𝑠) = ℎ𝑐 (𝑠 − (1 −
𝑐)) and𝑚2 (𝑠) = 1 −𝑚0 (𝑠) −𝑚1 (𝑠), and mollified closest point as
𝑚0 (𝑠𝑐 )𝑝0 +𝑚1 (𝑠𝑐 )𝑝1 +𝑚2 (𝑠𝑐 )𝑝𝑐 , where 𝑝𝑐 is the closest point, and
𝑠𝑐 its coordinate along the edge. Then the 𝛾 is computed using the
mollified point.

Similarly for a triangle, we use barycentric coordinates (𝑠1, 𝑠2, 𝑠3)
to define a mollified closest point, with 7 basis functions, one for
each vertex and edge and the central one:

𝑚𝑒
𝑖 (𝑠𝑖 ) =𝑚0 (𝑠𝑖 ) (1 −𝑚0 (𝑠 𝑗 )) (1 −𝑚0 (𝑠𝑘 ))

𝑚𝑣
𝑖 (𝑠𝑖 ) = (1 −𝑚0 (𝑠𝑖 ))𝑚0 (𝑠 𝑗 )𝑚0 (𝑠𝑘 )

where 𝑖, 𝑗, 𝑘 is a permutation of (1, 2, 3) and𝑚𝑒
𝑖 and𝑚

𝑣
𝑖 are the edge

and vertex basis functions. The mollified closest point combines the
vertex, edge, and face closest points with these weights.

Note that with the amplification above, the edge-edge mollifica-
tion in IPC is not needed anymore. The edge-edge mollification was
introduced to avoid non-smooth distance with almost parallel edges.
In our case, not only the parallel edges case but also the case where
edge-vertex distance reduces to vertex-vertex distance is mollified.

Adaptive 𝜖𝑡𝑟𝑔 . We introduce adaptive 𝜖𝑡𝑟𝑔 for our formulation.We
first specify a fixed 𝑑max for the simulation, and collect contact pairs
in the rest configuration within 𝑑max and with nonzero potential
values. We pick 𝜖𝑡𝑟𝑔 for every primitive (vertex/edge/face) so that
none of the contact pairs are active. Then the 𝜖𝑡𝑟𝑔 for every edge
(face) is chosen to be the minimum among its neighboring vertices
(edges). Benefited from our formulation with angle constraints, for
a cube mesh there’s no contact for a wide range of 𝛼 , so the adaptive
𝜖𝑡𝑟𝑔 can be any positive number without causing spurious contact
forces between its primitives.

Adjacent elements can be excluded. Specifically, if adjacent ele-
ments are in contact, other, nonadjacent elements will be in contact.
Adjacent elements such that one does not contain another can be
vertex-adjacent face and edge, and vertex- and face-adjacent faces.
Suppose an edge and a face are in contact, i.e., an edge is in the
plane of the face, and they share a vertex and other points. Then
the other edge endpoint is either inside the face, or the edge inter-
sects the boundary of the face, crossing an edge which it does not
share a vertex with. In the first case, we have vertex-face contact,
in the second case, we have non-adjacent edge-edge contact. If it is
a face-face contact, the argument reduces to the first, if applied to
one of the face edges that is not a common edge with the other face.

5 EVALUATION
We implement our algorithm inC++ by extending the IPCToolkit [Fer-
guson et al. 2020] (details provided in the supplemental document).
We use Eigen [Guennebaud et al. 2010] for linear-algebra operations,
Pardiso [Alappat et al. 2020; Bollhöfer et al. 2019, 2020] for solving
linear systems, auto-differentiation [aut 2012] for the derivatives
of our potential, and PolyFEM [Schneider et al. 2019] as the finite
element simulation framework. All experiments are run on a system
with an AMD Ryzen Threadripper PRO 3995WX 64-Cores (limited
to 16 threads) and 440GiB of memory. For comparisons against
IPC [Li et al. 2020] and “Convergent IPC” [Li et al. 2023], we use the
open-source implementations provided in the IPC Toolkit (together
with PolyFEM). Please see our supplemental video for animations.
All simulation parameters and statistics are summarized in Table 1.
Our reference implementation, used to generate all results, will be
released as an open-source project.

5.1 Resolving Spurious Forces
In this section, we consider a variety of unit tests where the original
IPC formulation introduces spurious forces.

Using larger 𝜖trg . Suppose the input mesh is relatively fine, either
globally (a dense mesh) or locally (adaptively refined e.g. to resolve
fine features). Having a large 𝜖trg allows one to solve the implicit
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Fig. 10. Spurious stresses: nonuniform squircle mesh. Our method
properly handles nonuniformmeshes. In this case, we consider a 2D rounded
block (of size 1m x 1m) with maximal edge length 0.21m in its straight
sections and minimal edge length 0.01m at its corners. Top row: with 𝑑 =
0.1m, IPC introduces spurious contact forces in the refined corners, resulting
in a deformation. Bottom row: our method avoids this by calculating 𝜖 (𝑥 )
such that the potential is zero in the rest configuration.

time-stepping problem faster because the barrier is less numerically
stiff, and CCD needs to do less work in the line search if the objects
are kept further apart by the potential. An even stronger reason,
when for large deformations, the elements may shrink a lot, is given
below Figure 12. We provide an example of this scenario in Figure 10,
where it is natural to have small edges around the rounded corners of
a square and long edges along the sides. However, doing so restricts
the range of usable 𝑑 for IPC. Using a value (𝑑 = 0.1m in this case)
larger than the minimum edge length (ℎmin = 0.01m) results in
spurious forces along the corners and artifacts upon simulation.
In contrast, our utilization of an adaptive 𝜖 allows us to choose a
starting 𝜖trg that results in zero initial contact force, while still being
large for the non-refined regions.

Spurious stress in the rest configuration. Even if 𝑑 < ℎmin is satis-
fied, the IPC formulation may still have spurious stress in the rest
configuration. We show two such scenarios in Figure 11.
In the first case (Figure 11 Top), two blocks in the initial config-

uration sit on the plane with the initial distance between blocks
less than 𝑑 . With IPC, they incorrectly start sliding apart without
external force applied where the blocks should stay still at all times.
In the second case (Figure 11 Bottom), IPC causes the slit to expand
at the top without external forces and stress appears at the bottom.
Our approach avoids spurious forces between close objects by

using an adaptive 𝜖𝑡𝑟𝑔 . For the contact between primitives on the
same object, due to our constraints on the angle of contact pairs, we
can use 𝜖𝑡𝑟𝑔 larger than the edge lengths without activating contact
at rest configuration (with a wide range of 𝛼).

Fig. 11. Spurious stresses: rest configuration 3D. Top row: two cubes
initially separated by less than 𝑑 = 0.025m. IPC artificially repels the two
blocks while ours does not. Bottom row: a block with a slit of width less
than 𝑑 = 0.0125m. Our method does not introduce spurious forces across
the slit.
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Fig. 12. Spurious stresses: compression. An initially valid choice for 𝑑
can lead to spurious contact (arrows and color) when using IPC. Left: cube at
rest with a minimum edge length of 0.03m. Center: upon compression with
𝑑 = 0.0125m, IPC introduces spurious contacts. Right: our method avoids
this by considering the angle when finding candidate contacts. Bottom: IPC
introduces artificial contact pressure.
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Fig. 13. Spurious stresses: expansion. Upper left: an initially deflated
balloon with rest thickness of 0.1m is expanded by an outward force of
5 kN. Center: with 𝑑 = 0.02, the balloon eventually becomes thin enough
that spurious contact forces (represented as red arrows) between its inner
and outer layers appear. Lower left: a cross-section showing spurious forces
on both the inner and outer layer of the balloon. Right: our method can
inflate the balloon until it is arbitrarily thin without introducing artificial
contact forces. Bottom: artificial contact pressure is introduced by IPC.

Spurious stress under deformation. Even for a well-chosen 𝑑 pa-
rameter and a benign rest configuration, IPC can still add spurious
forces upon deformation.
In Figure 12, we compress a cube mesh to 33% of its original

height.We assign a Poisson ratio of 0 to the cube to show an example
where no bulging and/or folding of the surface occurs. The value
for 𝑑 is initially chosen such that no points are in contact, but
upon compression distances shrink and IPC introduces spurious
contact forces on the sides of the cube (despite them being flat). Our
formulation does not have spurious forces because we use the angle
of contact to build our collision candidate set.
In Figure 13, we inflate a balloon modeled as a volumetric mem-

brane of thickness 0.1m.1 As the balloon inflates, its walls get thin-
ner and eventually they become thinner than the initially chosen
𝑑 = 0.02m. At this point, IPC treats the inner and outer sides as
in contact, introducing forces between the two sides. Our collision
candidate set for one side does not include the other as it accounts
for the angle of contact, avoiding this issue.
In Figure 14, we extrude the extended 𝜒-shaped structure from

[Joodaky 2020] to 3D and simulate its compression. When the shape
buckles it forms cusp contacts at the corners. We show that Conver-
gent IPC [Li et al. 2023] exhibits large contact forces in these regions,
IPC [Li et al. 2020] exhibits less forces, while our method has much
less contact forces than both methods. Our method reduces the con-
tact forces around the cusp because of the constraints on the angle
1While one could model the balloon using codimensional shell elements to avoid this
issue, modeling the thickness may be important for analysis or design. For example,
with constant outward pressure, the balloon oscillates in thickness, which a shell model
would not capture.

Ours Convergent IPC
[Li et al. 2023]

IPC
[Li et al. 2020]
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Fig. 14. Cusp compression. Compression of a 𝜒-shaped structure. For
comparison, we use the adaptive barrier stiffness for IPC, 𝜅 equals Young’s
modulus both for convergent IPC and our method. In the last time step, IPC
took 257 iterations, convergent IPC 58, and ours 72.

Fig. 15. Setup for corner hitting a plane discussed in Section 5.2.

between faces – only when edges are close enough to parallel, i.e.
the angle of the cusp becomes small enough, the contact is activated.
Without this constraint, large 𝜅 results in spurious stresses as in
Convergent IPC, while small 𝜅 results in convergence issues in IPC
– the number of iterations is much higher due to tiny distance of
10−11m between contact pairs.

5.2 Infinite Potential
Consider a corner hitting a plane, and suppose they are both refined
(Figure 16 Right). In this case, the integral of the Convergent IPC [Li
et al. 2023] potential over the plane will be finite, even if the apex
of the corner is directly on the plane (violation of Requirement 2).
Although each descritization will be infinite, the implication is that
the total potential will decrease as we refine, so the actual distance
will decrease to zero.

Figure 15 show the configuration: for a gap of 𝑟 and a distance
from the closest point on the plane Δ𝑥 , points along the square will
be at a distance of Δ𝑥 + 𝑟 . Assume the potential for points on the
corner is just ln

(
Δ𝑥+𝑟
𝑑

)
,2 then integrating over 𝑥 we get

(𝑟 + 𝐿) ln
(
𝑟 + 𝐿

𝑑

)
− ln

(
𝑟

𝑑

)
𝑟 − 𝐿,

and for 𝑟 = 0 (i.e. contact), a finite limit ln
(
𝐿
𝑑

)
𝐿 − 𝐿.

The force (i.e., the potential derivative) at 𝑟 = 0 is ∼ ln(𝑟 ) though
(i.e. is infinite), so for a finite force the static equilibrium problem
will always have a valid solution. This is not the case however
for a dynamic problem: if the kinetic energy exceeds the finite
potential, then the barrier cannot prevent contact. We show this
case in Figure 16. One can see the Convergent IPC model results in
ever decreasing distances as the mesh is refined (without refining
𝑑). Our method in comparison exhibits the same trajectory for all
2The extra quadratic term does not affect the conclusions.
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Fig. 16. Finite Potential for Zero Distance. A square impacts a plane at the corner of the square with a velocity of 234m/s. We refine both meshes (only at
the corner of the square of efficiency). Here we plot the height of the squares tip over time. Left: for Convergent IPC [Li et al. 2023], we see that the minimum
distance shrinks with every refinement of the mesh. This is a consequence of the continuous model having a finite potential. Middle: due to our choice of
barrier function, our method exhibits the same trajectory (all plots overlap) under refinement.

levels of refinement. This is because we use a barrier function whose
integral over the surface is not finite as the distance goes to zero,
and because the potential converges under mesh refinement.
Given that the minimum distance doesn’t depend on the mesh

resolution, one can pick 𝜖trg, independent of the edge lengths, based
on the deired accuracy on the contact handling.

5.3 Parameter Ablation and Convergence Study
To study the effects of our simulation parameters we conduct abla-
tion studies for 𝛼 and 𝜖trg.
Lower values of 𝛼 (Figure 17) make the solution more accurate,

preventing spurious forces from appearing but requiring more it-
erations. This effect is more pronounced in scenes with cusps: for
simpler scenes the difference in iteration count is less noticeable
(Figure 18).

We plot in Figure 18 the effect of 𝜖trg on the number of itera-
tions. As the support of the contact potential increases the problem
becomes softer and the number of iteration decreases accordingly.

We also perform a convergence study for three different scenarios
show in Figure 19. We see convergence under mesh refinement in all
of these scenes. Importantly, we use a fixed 𝜖trg (unlike Convergent
IPC [Li et al. 2023] which requires co-refinement of 𝑑).
We note that when our discretization is applied to PL surface,

treating it as a piecewise smooth surface, the integrals for edge
potentials and summations for vertex potentials are introduced,
with the relative scale of potentials determined by the constant 𝐿.
As the surface is refined, the scale of the constant also needs to be
adjusted, for the refined mesh potential to approximate the smooth
surface potential. We leave a rigorous study of convergence of the
discrete potential to the potential of the limit smooth surface as
future work.

α = 0.5α = 0.05 α = 0.1

Iterations: 867 625 497

Fig. 17. Parameter-study: 𝛼 . Simulation of Figure 14 with different 𝛼
including the total number of solver iterations. As 𝛼 increases, the nonlinear
problem becomes softer, hence fewer iterations. However, large 𝛼 introduces
artifacts and spurious stresses in some cases.
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εtrg

Fig. 18. Parameter-study: 𝜖trg. Simulation of two bunnies colliding with
varying 𝛼 and 𝜖trg. We show the plot (left) of the number of iterations over
𝜖trg, with a different 𝛼 for each curve, as well as the initial frame (middle)
and the colliding frame (right) of the simulation. For simple scenes, for a
large range of 𝛼 , the number of iterations is similar; as 𝜖trg increases, it
takes fewer iterations to converge.

5.4 3D Examples
Lastly, we reproduce challenging 3D simulation examples of [Li et al.
2020]. First, we validate our method on the 3D unit tests proposed
by [Erleben 2018] in Figure 20. We see similar results to those shown
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Fig. 19. Convergence of potential under mesh refinement in fixed scenes
with fixed 𝜖trg. We pick 2 configurations in 2D and 1 in 3D, start with the
coarse mesh, and compute the potential under mesh refinement. In 2D, the
potentials of (A) and (B) converge with an order of 0.82 and 1.57. Due to
the nearly singular cusp, (A) converges slower than (B). In 3D, although
we cannot further refine the surface mesh due to memory restriction (the
number of contact candidates grows quadratically under refinement), it
shows a trend of converging.

Fig. 20. Erleben tests. We reproduce the test-cases of Erleben [2018]. Top:
initial conditions involving challenging exact point-point, point-edge, and
edge-edge collisions. Bottom: as in [Li et al. 2020], our approach robustly
passes all the tests.

in [Li et al. 2020], but we highlight one improved result in Figure 21
where we see reduced spurious tangential movement compared to
[Li et al. 2020]. Second, we reproduce the dolphin funnel (Figure 22),
trash-compactor (Figure 23), and mat twist (Figure 24) examples.
Each of these examples features large deformations and complex
contacts. Just as in [Li et al. 2020], we robustly handle these scenarios
and prevent intersections and inversions at every step.

6 CONCLUSION
Incremental potential contact [Li et al. 2020] enabled a qualitative
improvement in robustness of accurate simulation of deformable
objects with complex contact. In this paper, we revisit the IPC con-
tact formulation to relate it to a family of potentials defined for a
broad class of surfaces, that satisfy a set of natural requirements for
barrier potentials for contact. We demonstrate that applying these
principles leads to a new formulation that is similar in efficiency to
IPC but alleviates some of its shortcomings.

Future work. While we have not considered friction in this paper,
the extension to friction is straightforward: the IPC formulation

Initial Config. IPC Ours

Fig. 21. Erleben test: cliff edge. We reproduce the cliff edge test-case
of Erleben [2018]. Middle: [Li et al. 2020] passes the test but introduces
spurious horizontal forces, causing the top block to rotate. Right: our method
significantly reduces extra sliding due to the restriction in normal forces.

Fig. 22. Dolphin in a funnel. We reproduce the funnel test from [Li
et al. 2020] using our method. Top: an elastic dolphin is pulled through
a small tube. Middle: this causes extreme deformations. Bottom: the dolphin
squeezes through without artifact and recovers its original shape.

Fig. 23. Trash-Compactor.We reproduce the trash-compactor example
from [Li et al. 2020] using our method. Left: three objects are placed in
a compactor. Middle: the objects are compressed. Right: the compactor
releases and the shapes return to their original shape without intersections.

applies essentially with no changes. Our derivation assumes surfaces
without boundaries at several steps, which needs modifications
for co-dimensional objects; a possible direction for future work is
handling surfaces with boundaries and co-dimensional surfaces.
Additionally, it may be beneficial to use a high-order quadrature to
better integrate the continuous formulation (in addition to including
the closest-point quadrature).
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Table 1. Simulation statistics. For each simulation we report geometry, (minimum, average, and maximum edge length ℎ), time step Δ𝑡 , material (Young’s
modulus 𝐸, Poisson ratio 𝜈 , and density 𝜌), 𝜖trg, maximum memory used, as well as average timing and number of Newton iterations. A value of 0 for iterations
indicates the optimization did not run because the initial configuration was at a force equilibrium (i.e., no spurious forces at rest).

Example # nodes, # cells h (m)
(min, avg, max) Δ𝑡 (s) 𝐸 (Pa), 𝜈 ,

𝜌 (kg/m3) 𝜖trg (m) 𝛼
memory
(MB)

timing (s),
iterations

(per timestep)
Slit block (2D) (Supp. Video) 199, 325 0.04, 0.18, 0.34 0.0047 4000, 0.2, 100 0.1 0.1 19 0.07, 0
Slit block (3D) (Fig 11) 1058, 3871 0.01, 0.04, 0.13 0.0047 100, 0.2, 10 0.0125 0.1 93 0.14, 0
Fillet block (2D) (Fig 10) 445, 672 0.01, 0.04, 0.21 0.0047 4000, 0.2, 100 0.1 0.1 26 0.09, 0
Fillet block (3D) (Fig 1) 1003, 3824 0.02, 0.19, 0.42 0.0047 100, 0.2, 10 0.07 0.1 92 0.14, 0
Compressed block (2D) (Supp. Video) 356, 630 0.09, 0.12, 0.22 0.0047 10000, 0, 100 0.04 0.1 63 0.17, 2.3
Compressed block (3D) (Fig 12) 2169, 9799 0.03, 0.10, 0.18 0.0047 10000, 0, 100 0.0125 0.1 644 0.78, 2.5
Two blocks (2D) (Supp. Video) 708, 1260 0.09, 0.12, 0.22 0.0047 4000, 0.2, 100 0.1 0.1 24 0.08, 0
Two blocks (3D) (Fig 11) 580, 2079 0.04, 0.21, 0.55 0.0047 10000, 0, 100 0.025 0.1 61 0.14, 0
Balloon (3D) (Fig 13) 421, 701 0.04, 0.11, 0.18 0.0047 4000, 0, 100 0.02 0.1 722 0.67, 1
Dolphin funnel (Fig 22) 4074,10511 0.0017,0.020,0.081 0.025 10000,0.4,1000 0.001 1 1403 15.4, 58.1
Mat twist (Fig 24) 45000, 133206 0.0067, 0.0088, 0.0126 0.04 20000,0.4,1000 0.002 0.4 17683 32.4, 195
Cusp compression (Fig 14) 3761, 12777 0.024, 0.047, 0.089 0.01 1000000, 0.3, 100 0.015 0.05 501 5.02, 15.8
Trash compactor (Fig 23) 6611, 21696 0.00033,0.049,0.36 0.002 10000, 0.4, 1000 0.002 1 2833 119.8, 125

Fig. 24. Mat-Twist. We reproduce the mat-twist example from [Li et al.
2020], demonstrating, overall, our method works similarly to the original
IPC. Left: our simulation at 10 s after 2 rounds of twisting at both ends.
Right: at 27.5 s after 5.5 rounds of twisting.
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A VERIFICATION OF PROPERTIES
The properties No spurious forces and Localization are accomplished
by construction. Differentiability is also attained by construction,
as all functions used in the definition of the potential are 𝐶1. One
subtle point is that the distance functions used in the discrete version
of the potential are also 𝐶1, except the edge-to-edge distance that
require mollification. However, the closest point on an element to a
given point 𝑓 (𝑥) is not a 𝐶1 function of 𝑓 (𝑥), and for this reason
we introduce mollification whenever these points are used.

Our arguments are informal and we leave a complete proof with
all the necessary technical assumptions as future work.

Generality. In the case of smooth surfaces, the potential is clearly
well-defined as it involves integrating a function bounded from
above, as there is a uniform bound on the distance between a point
𝑥 and a point in its contact set 𝑦.

For piecewise smooth surfaces, including PL surfaces, the sit-
uation is more subtle, as points may be arbitrarily close to their
contact set, if points are located on faces sharing an edge (Figure 25).
However, the contact area for such points becomes increasingly
small, so if the point-point potential does not grow very quickly,
the integrated potential is well-defined.
We assume that the angle 𝛾 between the normals of two faces

sharing an edge, is never zero. Then for a point at distance 𝑟 from
the edge the distance to the contact set is 𝑑 ∼ 𝑟 sin𝛾 , and the area
of the contact set, in 3D, ∼ 𝑟2 sin𝛼 . Thus, if potential power does
not exceed 2, then the integral of the potential over the contact set
for a point at distance 𝑟 to the edge, remains bounded, as 𝑑−𝑛𝑟2
is bounded. Similarly, in 2𝐷 , the potential needs to grow no faster
than 1/𝑟 .

Barrier. The interplay between the discretization and the con-
tinuum formulation is quite subtle in this case. In the continuum
case, clearly, it is not sufficient to choose a point-to-point potential
function that becomes infinite for coinciding points: the integral of
such function may be finite, which would mean that the barrier is
not preventing the contact.
Consider first the integral of the potential over one surface 𝑆𝑦

with respect to the variable 𝑦, with 𝑥 fixed. Further, assume an
isolated contact point with the distance between surfaces growing
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as 𝑟𝑛 with the distance to the contact point. For a smooth contact
𝑛 = 2, for a point contact (e.g. with a cone), 𝑛 = 1.

Consider a model problem with two surfaces in planar contact on
a disk of unit radius, at distance ℎ, and assume 𝑑 and 𝛼 to be large.
Then the total contact potential is approximated by

2𝜋
∫ 𝑅

𝑟=0

∫ 𝑅

𝑞=0

∫ 2𝜋

𝜃=0
((𝑟 cos𝜃 − 𝑞)2 + 𝑟2 sin2 𝜃 + ℎ2)𝑝𝑑𝜃𝑑𝑟𝑑𝑞

where 𝑅 is the contact zone radius, can be computed explicitly,
and for the point-to-point potential with 𝑝 = 2, can be shown to be
4𝜋2 (ln(2)− ln(ℎ))2, i.e., proportional to ln(ℎ)2. If we further assume
that one of the surfaces has a cone point, i.e., the distance between
the surface and the plane increases linearly w.r.t. the distance along
the plane to the contact point, withℎ replacedwith (ℎ+𝑟 ) above, then
the rate of growth reduces to ln(ℎ), but still results in a repulsive
force.

For a potential with a lower rate of growth, the limit interaction
potential can be finite, hence it does not result in a barrier in the
continuum case.

We note however, that for our construction of the discrete poten-
tial this does not necessarily cause a problem for any fixed resolution:
as the quadrature for the potential is defined using the minimal dis-
tance between contact pairs, for any barrier potential (e.g., ln(𝑑)
used in [Li et al. 2020]) one still has a barrier property for any dis-
crete approximation but the strength of the barrier decreases with
refinement, and the minimal distance between objects decreases.
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1 IMPLEMENTATION DETAILS
Our implementation makes use of most parts of the IPC algorithm,
except for the potential formulation. We first utilize the existing
broad-phase algorithm to collect contact candidates (edge-vertex in
2D, edge-edge and face-vertex in 3D) within 𝑑 .

Then in 2D, we split edge-vertex candidates into edge-vertex and
vertex-vertex pairs, where the former only contain pairs whose
minimum distance is not reached at the endpoints of the edge (oth-
erwise the potential vanishes due to mollification). Similarly, in 3D,
we split face-vertex candidates into face-vertex, edge-vertex, and
vertex-vertex pairs. Face-vertex pairs only contain those whose min-
imum distance is reached in the interior of the triangle; edge-vertex
pairs only contain those whose minimum distance is reached in
the interior of the edge. Note that we don’t need to further split an
edge-edge candidate, since if it reduces to an edge-vertex pair, it’s
already included in the face-vertex candidates. In total, we have 2
types of collision pairs in 2D and 4 types in 3D. The reason why
we have more types than IPC is that the restriction in the distance
direction and edge/face orientation eliminates some pairs necessary
to avoid intersections.
Since our formulation allows for a 𝑑 larger than the mesh edge

length, simply filtering the candidates by distance is not enough
for efficiency, since every vertex has interaction with its 1-ring
neighbors. To avoid a significant increase in cost, we first compute
the distance types of pairs and evaluate the potential with double
precision. For piecewise functions with large ranges of constant
valuesℎ𝜖 , 𝐻𝛼,𝑏 , 𝛿𝛼 , we cache inwhich range the variable belongs, to
filter pairs with zero potential, and to avoid computation of gradient
and hessian at trivial values (e.g. when 𝐻𝛼,𝑏 (𝑧) = 1). Note that
even if 𝑑 is larger than the edge length, it’s undesirable to have
contact everywhere on the surface (otherwise spurious stresses may
appear), so the number of pairs with positive potential values is still
sparse on the surface in most cases. We then use auto-differentiation
to compute the gradient and hessian for every collision pair. We
observe that in our examples, the FEM assembly and linear solve are
far more expensive than our computation of potential derivatives,
so we don’t further optimize the efficiency of our algorithm.

2 CONVERGENT IPC LIMITATIONS
Herewe evaluate the “Convergent IPC” [?] formulation and compare
it to our own.
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? define the continuum form of the IPC potential as

𝜓 𝐼𝑃𝐶 (𝑥 ; 𝑓 ) = max
𝑦, ∥𝑥−𝑦 ∥>𝑟

𝑝IPC𝜖 (∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥)

where the barrier function

𝑝IPC𝜖 (𝑧) =
{
−𝜅 ( 𝑧

𝜖 − 1
)2 ln ( 𝑧

𝜖

)
0 < 𝑧 < 𝜖

0 𝜖 ≤ 𝑧

and 𝑟 (with 𝑟 → 0) is a small radius in which self-contact is ignored.
From the above expression, one can make several observations.
First, instead of the integral 𝜓 is computed as max; this is not

smooth w.r.t. 𝑓 . This is recognized by ? with a couple of options pro-
posed (e.g., 𝐿𝑝 -norm or LogSumExp) but not implemented. Instead,
a smoother approximation is done in the discrete case. Therefore
the method uses a smoother approximations to a non-smooth limit
potential. As refinement progresses the approximation becomes less
smooth.
A specific example for which the max is not smooth is when

there is a switch between two parametrically distant closest points.
Suppose for some 𝑥 there are two points 𝑓 (𝑦0) and 𝑓 (𝑦1) equidistant
from 𝑓 (𝑥), and with the distance less than 𝜖 . If 𝑓 is changing, i.e., we
consider a family 𝑓𝑡 , with a scalar parameter 𝑡 , then at a point 𝑦, the
velocity 𝑣 (𝑦) = d

d𝑡 𝑓𝑡 (𝑦) is defined. If these velocities are different at
𝑦0 and 𝑦1 and the closest point switches from 𝑓 (𝑦0) to 𝑓 (𝑦1), then
the derivative of𝜓 (𝑥 ; 𝑓𝑡 ) has a discontinuity. This is shown in detail
in Figure 1.
Second, the choice of 𝑟 that would ensure that no contacts are

missed, requires an estimate on the curvature of the curve 𝑓 .Otherwise,
no matter how small 𝑟 is, the surface can fold onto itself, so that
there is a contact at a point with |𝑥 − 𝑦 | < 𝑟 . Furthermore, if we
would like to use a large 𝜖 , then 𝑟 has to be equally large, excluding
ever larger parts of Ω, i.e., potentially missing contact.

One smoothed version of𝜓 𝐼𝑃𝐶 (𝑥 ; 𝑓 ) proposed in the paper uses
𝐿𝑝 norm, i.e.,

𝜓 𝐼𝑃𝐶
𝐿𝑝

(𝑥 ; 𝑓 ) =
(∫

𝑦, ∥𝑥−𝑦 ∥>𝑟
𝑝IPC𝜖 (∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥)𝑝

)1/𝑝
which is similar to our potential for 𝑝 = 1. However, the candidate
set here would be all points excluding a small part of Ω near 𝑥
determined by 𝑟 .

The "smooth" discretization proposed for the IPC potential in 2D
for a piecewise linear mesh is defined as

𝜓 𝐼𝑃𝐶,𝑑 (𝑥 ; 𝑓 ) =
∑︁

edges 𝑖
𝑝IPC𝜖 (∥ 𝑓 (𝑥) − 𝑓 (𝑦𝑖 (𝑥))∥)

−
∑︁

vertices 𝑗
𝑝IPC𝜖 (∥ 𝑓 (𝑥) − 𝑓 (𝑥 𝑗 )∥)

(1)
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Fig. 2. Discretized convergent IPC geometry. Left:𝑑𝑒𝑖 = ∥ 𝑓 (𝑥 ) − 𝑓 (𝑦𝑖 (𝑥 ) ) ∥
shown in red are the distances to the edges that are within 𝜖 (𝑑 in IPC
notation) of the point 𝑓 (𝑥 ), which is assumed to be a vertex. Middle: 𝑑𝑣

𝑗 =
∥ 𝑓 (𝑥 ) − 𝑓 (𝑥 𝑗 ) ∥ are distances to vertices within the same radius. Right: the
"convex" case that motivates the convergent IPC discretization definition.
In this case, the distance from the point 𝑓 (𝑥 ) to the other candidate points
(i.e., points not on the adjacent edges) that are within the 𝜖 ball, is increasing
as one moves away from the closest point at the distance 𝑑𝑒2 . The distances
to all edges other than the closest one are the distances to one of their
vertices, which is canceled in the formula, leaving 𝑑𝑒2 only.

Fig. 1. Here we shows the situation for which the dependence of the min-
imum distance on 𝑓 is discontinuous for the “Convergent IPC” formual-
tion [?]. Suppose for 𝑡 < 𝑡0, 𝑑0 > 𝑑1 (i.e., 𝑑1 is minimal) and it changes at
the constant rate 𝑣1 on some interval 𝑡𝑠 ≤ 𝑡0 < 𝑡𝑒 . Similarly, 𝑑0 is changing
at a higher velocity 𝑣0, but initially is further away, becoming the closest
point for 𝑡 > 𝑡0. Although in 𝑓𝑡 the dependence of 𝑓 on 𝑡 is smooth at
every point, the minimal distance does not have a derivative w.r.t. 𝑡 , at this
point. If we think in discrete terms, and the endpoints of two segments
are 𝑞𝑖 𝑗 , 𝑖, 𝑗 = 0, 1, then we can write 𝑑min (𝑡 ) = min(𝑑0 (𝑡 ), 𝑑1 (𝑡 ) ) as a
function 𝑑min (𝑞00 + 𝑣0𝑡, 𝑞01 + 𝑣0𝑡, 𝑞10 + 𝑣1𝑡, 𝑞11 + 𝑣1𝑡 ) , the derivative w.r.t.
𝑡 is the directional derivative w.r.t. the vector of degrees of freedom 𝑞𝑖 𝑗 , in
the direction [𝑣00, 𝑣01, 𝑣10, 𝑣11 ], and it has a discontinuity.

where the summation is over all edges not containing 𝑥 and all
vertices excluding 𝑥 if 𝑥 is a vertex, and 𝑦𝑖 (𝑥) is the closest point
to 𝑥 on the edge 𝑖 . An illustration of this discretization is given in
Figure 2.

Here one can observe that:
• As 𝑦𝑖 (𝑥) may vary nonsmoothly with 𝑓 , the expression may

still be non-smooth w.r.t. 𝑓 .
• The implicit assumption is that 𝜖 in 𝑝IPC𝜖 is less than any

edge length, otherwise, the potential will create an artificial
repulsion between adjacent points.

• The proof of the discrete potential’s positivity (which is not
guaranteed by construction) uses the acceptable 𝑑 assump-
tion (𝜖 in our notation), which requires either updating 𝜖
separately at each vertex as the mesh evolves (or setting the
most conservative 𝜖 globally, also updating it as the mesh
changes).

• For either the continuum version of the potential or for
the discrete version, there is no guarantee that there is no
repulsion in the undeformed shape.


