Derrida–Retaux model: from discrete to continuous time

Michel Pain (ENS Paris / Sorbonne Université)
joint work with Yueyun Hu and Bastien Mallein (Paris 13)

The 5th Workshop on Branching Processes and Related Topics
25 June 2019
Discrete-time Derrida–Retaux model
Definition

- Re-introduced by Derrida–Retaux (2014) for studying the depinning transition.

Re-introduced by Derrida–Retaux (2014) for studying the depinning transition.

Definition: Start with a nonnegative random variable X_0 and, for any $n \geq 0$,

$$X_{n+1} = (X_n + \tilde{X}_n - 1)_+$$

where \tilde{X}_n is an independent copy of X_n.
Definition on a tree

Construction of X_n on a binary tree:

If $X_0 \in \mathbb{N} := \{0, 1, 2, \ldots\}$, it can be seen as a parking procedure on the tree.
Construction of X_n on a binary tree:

If $X_0 \in \{0, 1, 2, \ldots\}$: it can be seen as a parking procedure on the tree.
Definition on a tree

Construction of X_n on a binary tree:

If $X_0 \in \mathbb{N} := \{0, 1, 2, \ldots\}$: it can be seen as a parking procedure on the tree.
Construction of X_n on a binary tree:

If $X_0 \in \mathbb{N} := \{0, 1, 2, \ldots\}$, it can be seen as a parking procedure on the tree.

\[
(a + b - 1)_+ \quad \text{i.i.d. copies of } X_0
\]
Construction of X_n on a binary tree:

If $X_0 \in \mathbb{N} := \{0, 1, 2, \ldots\}$: it can be seen as a parking procedure on the tree.

- X_n is constructed by i.i.d. copies of X_0.
- The process involves a series of decisions at each level of the tree, with choices depending on the values of a and b.
- At each node, the process chooses a value from $\{0, 1, 2, \ldots\}$, which is then added to the cumulative sum of the parent nodes.

The diagram illustrates the path taken through the tree, with nodes representing the choices made at each step.
Definition on a tree

Construction of X_n on a binary tree:

If $X_0 \in \mathbb{N} := \{0, 1, 2, \ldots \}$: it can be seen as a parking procedure on the tree.
Definition on a tree

Construction of X_n on a binary tree:

If $X_0 \in \mathbb{N} := \{0, 1, 2, \ldots \}$: it can be seen as a parking procedure on the tree.
Construction of X_n on a binary tree:

If $X_0 \in \mathbb{N} := \{0, 1, 2, \ldots \}$: it can be seen as a parking procedure on the tree.
Phase transition

Free energy: \(F_\infty \) := \(\lim_{n \to \infty} \frac{\mathbb{E}[X_n]}{2^n} \in [0, \infty] \).
Phase transition

Free energy: \(F_\infty := \lim_{n \to \infty} \frac{\mathbb{E}[X_n]}{2^n} \in [0, \infty]. \)

- \(F_\infty > 0: \) supercritical phase.
- \(F_\infty = 0: \) subcritical phase.

Assume that \(X_0 \in \mathbb{N} \) a.s. and that \(P(X_0 = 1) < 1. \)

- (supercritical) If \(\mathbb{E}[X_0^2X_0] > \mathbb{E}[2X_0^2] \) or \(\mathbb{E}[2X_0^2] = \infty, \) then \(F_\infty > 0 \) and \(X_n^2 n \) a.s. \(\to \) as \(n \to \infty. \)

- (subcritical) If \(\mathbb{E}[X_0^2X_0] \leq \mathbb{E}[2X_0^2] < \infty, \) then \(F_\infty = 0 \) and \(X_n \) probability \(\to 0 \) as \(n \to \infty. \)

Open question: Try to say something about the case where \(X_0 \) is not integer-valued.
Free energy: \(F_\infty := \lim_{n \to \infty} \frac{\mathbb{E}[X_n]}{2^n} \in [0, \infty]. \)

- \(F_\infty > 0 \): supercritical phase.
- \(F_\infty = 0 \): subcritical phase.

Theorem (Collet–Eckmann–Glaser–Martin 1984): Assume that \(X_0 \in \mathbb{N} \) a.s. and that \(\mathbb{P}(X_0 = 1) < 1. \)
Phase transition

Free energy: \(F_\infty := \lim_{n \to \infty} \frac{\mathbb{E}[X_n]}{2^n} \in [0, \infty] \).

- \(F_\infty > 0 \): supercritical phase.
- \(F_\infty = 0 \): subcritical phase.

Theorem (Collet–Eckmann–Glaser–Martin 1984): Assume that \(X_0 \in \mathbb{N} \) a.s. and that \(\mathbb{P}(X_0 = 1) < 1 \).

- (supercritical) If \(\mathbb{E}[X_0 2^{X_0}] > \mathbb{E}[2^{X_0}] \) or \(\mathbb{E}[2^{X_0}] = \infty \), then
 \[F_\infty > 0 \quad \text{and} \quad \frac{X_n}{2^n} \xrightarrow{n \to \infty} F_\infty. \]
Phase transition

Free energy: \(F_\infty := \lim_{n \to \infty} \frac{\mathbb{E}[X_n]}{2^n} \in [0, \infty]. \)

\(\bullet \) \(F_\infty > 0: \) supercritical phase.
\(\bullet \) \(F_\infty = 0: \) subcritical phase.

Theorem (Collet–Eckmann–Glaser–Martin 1984): Assume that \(X_0 \in \mathbb{N} \) a.s. and that \(\mathbb{P}(X_0 = 1) < 1. \)

\(\bullet \) (supercritical) If \(\mathbb{E}[X_0 2^{X_0}] > \mathbb{E}[2^{X_0}] \) or \(\mathbb{E}[2^{X_0}] = \infty, \) then

\(F_\infty > 0 \) and \(\frac{X_n}{2^n} \xrightarrow{\text{a.s.}} F_\infty. \)

\(\bullet \) (subcritical) If \(\mathbb{E}[X_0 2^{X_0}] \leq \mathbb{E}[2^{X_0}] < \infty, \) then

\(F_\infty = 0 \) and \(X_n \xrightarrow{\text{probability}} 0. \)

Open question: Try to say something about the case where \(X_0 \) is not integer-valued.
Phase transition

Free energy: $F_\infty := \lim_{n \to \infty} \frac{\mathbb{E}[X_n]}{2^n} \in [0, \infty].$

- $F_\infty > 0$: supercritical phase.
- $F_\infty = 0$: subcritical phase.

Theorem (Collet–Eckmann–Glaser–Martin 1984): Assume that $X_0 \in \mathbb{N}$ a.s. and that $\mathbb{P}(X_0 = 1) < 1.$

- (supercritical) If $\mathbb{E}[X_02^{X_0}] > \mathbb{E}[2^{X_0}]$ or $\mathbb{E}[2^{X_0}] = \infty$, then
 \[F_\infty > 0 \quad \text{and} \quad \frac{X_n}{2^n} \xrightarrow{n \to \infty} F_\infty. \]
- (subcritical) If $\mathbb{E}[X_02^{X_0}] \leq \mathbb{E}[2^{X_0}] < \infty$, then
 \[F_\infty = 0 \quad \text{and} \quad X_n \xrightarrow{\text{probability}} 0. \]

Open question: Try to say something about the case where X_0 is not integer-valued.
Let ν be a probability measure on $(0, \infty)$, in the supercritical phase.
Let ν be a probability measure on $(0, \infty)$, in the supercritical phase. Consider $X_0 \overset{(d)}{=} (1 - p)\delta_0 + p\nu$ for each $p \in [0, 1]$.
Let ν be a probability measure on $(0, \infty)$, in the supercritical phase.
Consider $X_0 \overset{(\text{d})}{=} (1 - p) \delta_0 + p \nu$ for each $p \in [0, 1]$.
Let $F_\infty(p)$ denote the free energy and $p_c := \inf\{p \in [0, 1] : F_\infty(p) > 0\}$.

![Graph showing $F_\infty(p)$ with $\nu = \delta_2$, $p_c = \frac{1}{5}$]
Let ν be a probability measure on $(0, \infty)$, in the supercritical phase.

Consider $X_0^{(d)} = (1 - p)\delta_0 + p\nu$ for each $p \in [0, 1]$.

Let $F_\infty(p)$ denote the free energy and $p_c := \inf\{p \in [0, 1] : F_\infty(p) > 0\}$.

If $X_0 \in \mathbb{N}$ a.s., then p_c is explicit by CEGM 1984.
Conjecture (Derrida–Retaux 2014):
If $p_c > 0$, then as $p \downarrow p_c$

$$F_\infty(p) = \exp\left(-\frac{K + o(1)}{(p - p_c)^{1/2}} \right).$$
Conjecture (Derrida–Retaux 2014): If $p_c > 0$, then as $p \downarrow p_c$

$$F_\infty(p) = \exp \left(- \frac{K + o(1)}{(p - p_c)^{1/2}} \right).$$

Theorem (Chen–Dagard–Derrida–Hu–Lifshits–Shi 2019+): If ν is supported by \mathbb{N}^* and $\int_0^\infty x^3 2^x \nu(dx) < \infty$, then as $p \downarrow p_c$

$$F_\infty(p) = \exp \left(- \frac{1}{(p - p_c)^{1/2 + o(1)}} \right).$$
Conjecture (Derrida–Retaux 2014): If $p_c > 0$, then as $p \downarrow p_c$

$$F_\infty(p) = \exp\left(-\frac{K + o(1)}{(p - p_c)^{1/2}}\right).$$

Theorem (Chen–Dagard–Derrida–Hu–Lifshits–Shi 2019+): If ν is supported by \mathbb{N}^* and $\int_0^\infty x^3 2^x \nu(dx) < \infty$, then as $p \downarrow p_c$

$$F_\infty(p) = \exp\left(-\frac{1}{(p - p_c)^{1/2} + o(1)}\right).$$

▷ CDDFLS deal also with the case where $p_c > 0$ and $\int_0^\infty x^3 2^x \nu(dx) = \infty$.

$\nu = \delta_2$
$p_c = \frac{1}{5}$
Conjecture (Derrida–Retaux 2014): If $p_c > 0$, then as $p \downarrow p_c$

$$F_\infty(p) = \exp\left(-\frac{K + o(1)}{(p - p_c)^{1/2}}\right).$$

Theorem (Chen–Dagard–Derrida–Hu–Lifshits–Shi 2019+): If ν is supported by \mathbb{N}^* and $\int_0^\infty x^{3/2} x^2 \nu(dx) < \infty$, then as $p \downarrow p_c$

$$F_\infty(p) = \exp\left(-\frac{1}{(p - p_c)^{1/2} + o(1)}\right).$$

▷ CDDFLS deal also with the case where $p_c > 0$ and $\int_0^\infty x^{3/2} x^2 \nu(dx) = \infty$.
▷ Hu–Shi 2018: case $p_c = 0$.

$\nu = \delta_2$

$p_c = \frac{1}{5}$
Critical case for \(X_0 \in \mathbb{N} \): \(E[X_0 2^{X_0}] = E[2^{X_0}] < \infty \).
Behavior at criticality

- Critical case for $X_0 \in \mathbb{N}$: $\mathbb{E}[X_0 2^{X_0}] = \mathbb{E}[2^{X_0}] < \infty$.
- Recall that $X_n \to 0$ in probability.
Behavior at criticality

▷ **Critical case** for $X_0 \in \mathbb{N}$: $\mathbb{E}[X_0 2^{X_0}] = \mathbb{E}[2^{X_0}] < \infty$.

▷ Recall that $X_n \to 0$ in probability.

▷ **Theorem (Chen–Derrida–Hu–Lifshits–Shi 2017):** If $\mathbb{E}[X_0^3 2^{X_0}] < \infty$, then

$$\frac{c_1}{n} \leq \mathbb{E}[2^{X_n}] - 1 \leq \frac{c_2}{n}.$$

In particular, $\mathbb{P}(X_n > 0) \leq \frac{c_2}{n}$.
Critical case for $X_0 \in \mathbb{N}$: $\mathbb{E}[X_0 2^{X_0}] = \mathbb{E}[2^{X_0}] < \infty$.

Recall that $X_n \xrightarrow{} 0$ in probability.

Theorem (Chen–Derrida–Hu–Lifshits–Shi 2017): If $\mathbb{E}[X_0^3 2^{X_0}] < \infty$, then

$$\frac{c_1}{n} \leq \mathbb{E}[2^{X_n}] - 1 \leq \frac{c_2}{n}.$$

In particular, $\mathbb{P}(X_n > 0) \leq \frac{c_2}{n}$.

Conjecture (Chen–Derrida–Hu–Lifshits–Shi 2017): If $\mathbb{E}[X_0^3 2^{X_0}] < \infty$, then

$$\mathbb{P}(X_n > 0) \sim \frac{4}{n^2}.$$

Moreover, given $X_n > 0$, X_n converges in law to a geometric distribution with parameter $\frac{1}{2}$.

Given that $X_n > 0$, we color in red the paths from a leaf to the root, where the operation “positive part” was not needed.
Given that $X_n > 0$, we color in red the paths from a leaf to the root, where the operation “positive part” was not needed.

The red vertices form a subtree, called the red tree.
Questions concerning the red tree

Question: Given $X_n > 0$, what does the red tree look like for large n?

$n = 200$

$X_0 \overset{(d)}{=} \frac{4}{5} \delta_0 + \frac{1}{5} \delta_2$
Questions concerning the red tree

Question: Given $X_n > 0$, what does the red tree look like for large n?

▷ Scaling limit?

\[
x_0 \overset{(d)}{=} \frac{4}{5} \delta_0 + \frac{1}{5} \delta_2
\]

$n = 200$

order n
Question: Given $X_n > 0$, what does the red tree look like for large n?

- Scaling limit?
- Number of red leaves?

$n = 200$

$X_0 \overset{(d)}{=} \frac{4}{5} \delta_0 + \frac{1}{5} \delta_2$

order n
Continuous-time Derrida–Retaux model
Initial condition: a nonnegative random variable X_0. For $t > 0$, X_t is defined using a painting procedure:
Initial condition: a nonnegative random variable X_0.

For $t > 0$, X_t is defined using a **painting procedure**:

1. Consider a **Yule tree** of height t (binary tree with i.i.d. exponentially distributed lifetimes).
Definition

Initial condition: a nonnegative random variable X_0.

For $t > 0$, X_t is defined using a **painting procedure**:

- Consider a **Yule tree** of height t (binary tree with i.i.d. exponentially distributed lifetimes).
- **Initially**: painters start on the leaves with i.i.d. amount of paint chosen according to the law of X_0.
 - Then, painters climb down the tree, painting the branches with a quantity 1 of paint per unit of branch length.
 - When two painters meet, they put their remaining paint in common.
 - X_t is the remaining paint at the root.
Definition

Initial condition: a nonnegative random variable X_0.

For $t > 0$, X_t is defined using a **painting procedure**:

- Consider a **Yule tree** of height t (binary tree with i.i.d. exponentially distributed lifetimes).
- **Initially:** painters start on the leaves with i.i.d. amount of paint chosen according to the law of X_0.
- Then, painters climb down the tree, painting the branches with a quantity 1 of paint per unit of branch length.
Initial condition: a nonnegative random variable X_0.

For $t > 0$, X_t is defined using a painting procedure:

- Consider a Yule tree of height t (binary tree with i.i.d. exponentially distributed lifetimes).
- **Initially:** painters start on the leaves with i.i.d. amount of paint chosen according to the law of X_0.
- Then, painters climb down the tree, painting the branches with a quantity 1 of paint per unit of branch length.
- When two painters meet, they put their remaining paint in common.
Initial condition: a nonnegative random variable X_0.

For $t > 0$, X_t is defined using a **painting procedure**:

- Consider a **Yule tree** of height t (binary tree with i.i.d. exponentially distributed lifetimes).
- **Initially:** painters start on the leaves with i.i.d. amount of paint chosen according to the law of X_0.
- Then, painters climb down the tree, painting the branches with a quantity 1 of paint per unit of branch length.
- When two painters meet, they put their remaining paint in common.
- X_t is the remaining paint at the root.
General properties

▷ Free energy: \(F_\infty := \lim_{t \to \infty} e^{-t} \mathbb{E}[X_t] \).
Free energy: \(F_\infty := \lim_{t \to \infty} e^{-t} \mathbb{E}[X_t] \).

Theorem: If \(F_\infty > 0 \), then \(e^{-t}X_t \xrightarrow{\text{law}} \text{Exp}(F_\infty^{-1}) \).
General properties

- Free energy: $F_\infty := \lim_{t \to \infty} e^{-t} \mathbb{E}[X_t]$.

- Theorem: If $F_\infty > 0$, then $e^{-t}X_t \xrightarrow{\text{law}} \text{Exp}(F_\infty^{-1})$.

- Open question: If $F_\infty = 0$, then prove that $X_t \xrightarrow{\text{probability}} 0$.
General properties

▷ **Free energy:** $F_\infty := \lim_{t \to \infty} e^{-t} \mathbb{E}[X_t]$.

▷ **Theorem:** If $F_\infty > 0$, then $e^{-t} X_t \xrightarrow{\text{law}} \text{Exp}(F_\infty^{-1})$.

▷ **Open question:** If $F_\infty = 0$, then prove that $X_t \xrightarrow{\text{probability}} 0$.

▷ **Proposition:** Let μ_t denote the distribution of X_t for each $t \geq 0$. Then, $(\mu_t)_{t \geq 0}$ is the unique family of positive measures on \mathbb{R} solution (in the weak sense) of the PDE

$$
\partial_t \mu_t = \partial_x (1_{\{x>0\}} \mu_t) + \mu_t * \mu_t - \mu_t,
$$

with initial condition μ_0.
An exactly solvable family of solutions

\[\partial_t \mu_t = \partial_x \left(\mathbb{1}_{x>0} \mu_t \right) + \mu_t * \mu_t - \mu_t \]

▷ From now on, consider \(\mu_0 = p_0 \delta_0(dx) + (1 - p_0) \lambda_0 e^{-\lambda_0 x} \ dx. \)
An exactly solvable family of solutions

\[\partial_t \mu_t = \partial_x (\mathbb{1}_{\{x>0\}} \mu_t) + \mu_t * \mu_t - \mu_t \]

▷ From now on, consider \(\mu_0 = p_0 \delta_0(dx) + (1 - p_0) \lambda_0 e^{-\lambda_0 x} dx. \)

▷ **Proposition:** For any \(t \geq 0 \), \(\mu_t = p(t) \delta_0(dx) + (1 - p(t)) \lambda(t) e^{-\lambda(t) x} dx \), where \(p: \mathbb{R}_+ \rightarrow [0, 1] \) and \(\lambda: \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) are the unique solutions of the ODE

\[
\begin{align*}
p' &= (1 - p)(\lambda - p) \\
\lambda' &= -\lambda(1 - p)
\end{align*}
\]

with \(\begin{align*} p(0) &= p_0 \\
\lambda(0) &= \lambda_0. \end{align*} \)
An exactly solvable family of solutions

\[\partial_t \mu_t = \partial_x(\mathbb{1}_{\{x>0\}} \mu_t) + \mu_t \ast \mu_t - \mu_t \]

- From now on, consider \(\mu_0 = p_0 \delta_0(dx) + (1 - p_0)\lambda_0 e^{-\lambda_0 x} dx \).
- **Proposition:** For any \(t \geq 0 \), \(\mu_t = p(t)\delta_0(dx) + (1 - p(t))\lambda(t)e^{-\lambda(t)x} dx \), where \(p: \mathbb{R}_+ \to [0,1] \) and \(\lambda: \mathbb{R}_+ \to \mathbb{R}_+ \) are the unique solutions of the ODE
 \[
 \begin{aligned}
 p' &= (1 - p)(\lambda - p) \\
 \lambda' &= -\lambda(1 - p)
 \end{aligned}
 \]
 with \(\begin{cases} p(0) = p_0 \\ \lambda(0) = \lambda_0. \end{cases} \)
- \(H := \frac{p(t)}{\lambda(t)} + \log \lambda(t) \) is an invariant of the dynamics.
The phase transition

\[X_t^{(d)} = \mu_t = p(t)\delta_0(dx) + (1 - p(t))\lambda(t)e^{-\lambda(t)x} \, dx \]

We have \(p(t) = H\lambda(t) - \lambda(t)\log\lambda(t) \) with \(H = \frac{p_0}{\lambda_0} + \log\lambda_0 \).
The phase transition

\[X_t \overset{(d)}{=} \mu_t = p(t)\delta_0(dx) + (1 - p(t))\lambda(t)e^{-\lambda(t)x} dx \]

We have \(p(t) = H\lambda(t) - \lambda(t)\log\lambda(t) \) with \(H = \frac{p_0}{\lambda_0} + \log\lambda_0 \).
The phase transition

\[X_t^{(d)} = \mu_t = p(t)\delta_0(dx) + (1 - p(t))\lambda(t)e^{-\lambda(t)x} \, dx \]

We have \(p(t) = H\lambda(t) - \lambda(t) \log \lambda(t) \) with \(H = \frac{p_0}{\lambda_0} + \log \lambda_0 \).
The phase transition

\[X_t^{(d)} = \mu_t = p(t)\delta_0(dx) + (1 - p(t))\lambda(t)e^{-\lambda(t)x} \, dx \]

We have \(p(t) = H\lambda(t) - \lambda(t)\log \lambda(t) \) with \(H = \frac{p_0}{\lambda_0} + \log \lambda_0 \).

Infinite order transition for the free energy with exponent \(1/2 \).

Precise asymptotic behavior of \(p(t) \) and \(\lambda(t) \) in each phase.

F_{\infty} = 0 and \(X_t \to 0 \)
The phase transition

\[X_t^{(d)} = \mu_t = p(t)\delta_0(dx) + (1 - p(t))\lambda(t)e^{-\lambda(t)x} \, dx \]

We have \(p(t) = H\lambda(t) - \lambda(t)\log\lambda(t) \) with \(H = \frac{p_0}{\lambda_0} + \log\lambda_0 \).
The phase transition

\[X_t^{(d)} = \mu_t = p(t)\delta_0(dx) + (1 - p(t))\lambda(t)e^{-\lambda(t)x} \, dx \]

We have \(p(t) = H\lambda(t) - \lambda(t)\log\lambda(t) \) with \(H = \frac{p_0}{\lambda_0} + \log\lambda_0 \).

One can make explicit computations:
The phase transition

\[X_t^{(d)} = \mu_t = p(t)\delta_0(dx) + (1 - p(t))\lambda(t)e^{-\lambda(t)x} \, dx \]

We have \(p(t) = H\lambda(t) - \lambda(t)\log\lambda(t) \) with \(H = \frac{p_0}{\lambda_0} + \log\lambda_0 \).

One can make explicit computations:

- Infinite order transition for the free energy with exponent \(\frac{1}{2} \).
The phase transition

\[X_t^{(d)} = \mu_t = p(t)\delta_0(dx) + (1 - p(t))\lambda(t)e^{-\lambda(t)x} \, dx \]

We have \(p(t) = H\lambda(t) - \lambda(t)\log\lambda(t) \) with \(H = \frac{p_0}{\lambda_0} + \log\lambda_0 \).

One can make explicit computations:

- Infinite order transition for the free energy with exponent \(\frac{1}{2} \).
- Precise asymptotic behavior of \(p(t) \) and \(\lambda(t) \) in each phase.
Theorem: With a critical initial condition ($\lambda_0 > 1$ and $p_0 = \lambda_0 - \lambda_0 \log \lambda_0$),

$$ \mathbb{P}(X_t > 0) = 1 - p(t) = \frac{2}{t^2} + \frac{16 \log t}{3t^3} + o\left(\frac{\log t}{t^3}\right).$$

Moreover, given $X_t > 0$, X_t converges in law to $\text{Exp}(1)$.
Theorem: With a critical initial condition ($\lambda_0 > 1$ and $p_0 = \lambda_0 - \lambda_0 \log \lambda_0$),

$$\mathbb{P}(X_t > 0) = 1 - p(t) = \frac{2}{t^2} + \frac{16 \log t}{3t^3} + o\left(\frac{\log t}{t^3}\right).$$

Moreover, given $X_t > 0$, X_t converges in law to Exp(1).

Our goal: Given $X_t > 0$, what does the subtree bringing paint to the root look like?
Given that $X(t) = x$, the red tree of height t is a time-inhomogeneous branching Markov process defined on $[0, t]$ such that:

- It starts at time 0 with a single particle with mass x.
- The mass of each particle grows linearly at speed 1.
- A particle of mass m at time s splits at rate $p(t - s)(1 - \lambda(t - s))m$ into two children, the mass m being split uniformly.
- Particles behave independently after their splitting time.
Given that $X_t = x$, the red tree of height t is a time-inhomogeneous branching Markov process defined on $[0, t]$ such that:

- It starts at time 0 with a single particle with mass x.
- The mass of each particle grows linearly at speed 1.
- A particle of mass m at time s splits at rate $p(t-s)(1-\lambda(t-s))m$ into two children, the mass m being split uniformly.
- Particles behave independently after their splitting time.
Given that $X_t = x$, the red tree of height t is a time-inhomogeneous branching Markov process defined on $[0, t]$ such that:

▷ It starts at time 0 with a single particle with mass x.

Description of the red tree
Given that $X_t = x$, the red tree of height t is a time-inhomogeneous branching Markov process defined on $[0, t]$ such that:

- It starts at time 0 with a single particle with mass x.
- The mass of each particle grows linearly at speed 1.
Given that $X_t = x$, the red tree of height t is a time-inhomogeneous branching Markov process defined on $[0, t]$ such that:

- It starts at time 0 with a single particle with mass x.
- The mass of each particle grows linearly at speed 1.
- A particle of mass m at time s splits at rate $p(t - s)(1 - \lambda(t - s))m$ into two children, the mass m being split uniformly.
Description of the red tree

Given that $X_t = x$, the red tree of height t is a time-inhomogeneous branching Markov process defined on $[0, t]$ such that:

- It starts at time 0 with a single particle with mass x.
- The mass of each particle grows linearly at speed 1.
- A particle of mass m at time s splits at rate $p(t - s)(1 - \lambda(t - s))m$ into two children, the mass m being split uniformly.
- Particles behave independently after their splitting time.
The scaling limit of the red tree

Let \((x_t)_{t \geq 0}\) be positive numbers such that \(\frac{x_t}{t} \to x \geq 0\).
The scaling limit of the red tree

Let \((x_t)_{t \geq 0}\) be positive numbers such that \(\frac{x_t}{t} \to x \geq 0\).

Theorem: Given that \(X_t = x_t\), the red tree of height \(t\), with time and masses rescaled by \(t\), converges locally in distribution to a time-inhomogeneous branching Markov process defined on \([0, 1)\) such that:

- It starts at time 0 with a single particle with mass \(x\).
- The mass of each particle grows linearly at speed 1.
- A particle of mass \(m\) at time \(s\) splits at rate \(\frac{2m}{(1 - s)^2}\) into two children, the mass \(m\) being split uniformly.
- Particles behave independently after their splitting time.

Simulations: the limit should be the same for the discrete-time model.

Wide open question: universality among other hierarchical renormalization models?
The scaling limit of the red tree

Let \((x_t)_{t \geq 0}\) be positive numbers such that \(\frac{x_t}{t} \to x \geq 0\).

Theorem: Given that \(X_t = x_t\), the red tree of height \(t\), with time and masses rescaled by \(t\), converges locally in distribution to a time-inhomogeneous branching Markov process defined on \([0, 1)\) such that:

- It starts at time 0 with a single particle with mass \(x\).
- The mass of each particle grows linearly at speed 1.
- A particle of mass \(m\) at time \(s\) splits at rate \(\frac{2m}{(1 - s)^2}\) into two children, the mass \(m\) being split uniformly.
- Particles behave independently after their splitting time.

Simulations: the limit should be the same for the discrete-time model.
The scaling limit of the red tree

Let \((x_t)_{t \geq 0}\) be positive numbers such that \(\frac{x_t}{t} \to x \geq 0\).

Theorem: Given that \(X_t = x_t\), the red tree of height \(t\), with time and masses rescaled by \(t\), converges locally in distribution to a time-inhomogeneous branching Markov process defined on \([0, 1)\) such that:

- It starts at time 0 with a single particle with mass \(x\).
- The mass of each particle grows linearly at speed 1.
- A particle of mass \(m\) at time \(s\) splits at rate \(2m/(1 - s)^2\) into two children, the mass \(m\) being split uniformly.
- Particles behave independently after their splitting time.

Simulations: the limit should be the same for the discrete-time model.

Wide open question: universality among other hierarchical renormalization models?
Let N_t be the number of leaves in the red tree of height t.

Let M_t be their total mass.
Let N_t be the number of leaves in the red tree of height t.
Let M_t be their total mass.

Theorem: There exist $\gamma_1, \gamma_2 > 0$ such that, for any positive numbers $(x_t)_{t \geq 0}$ such that $x_t/t \to x \geq 0$, we have

$$\left(\frac{N_t}{t^2}, \frac{M_t}{t^2} \right) \text{ given } X_t = x_t \xrightarrow{\text{d}}_{t \to \infty} (\gamma_1 \eta_x, \gamma_2 \eta_x),$$

with $\eta_x := \int_0^1 r^2(s) \, ds$ and r a 4-dimensional Bessel bridge from 0 to $2\sqrt{x}$.

Idea of proof: The Laplace transform of (N_t, M_t) given $X_t = x$ is solution of the following PDE, as a function of t and x:

$$\partial_t \phi = \partial_x \phi + p(t)(1 - \lambda(t))(\phi^* \phi - x \phi).$$

It takes the particular form

$$\phi(t, x) = e^{-\left(\theta_1(t) + x \theta_2(t)\right)},$$

with $\theta_1' = \theta_2$ and $\theta_2' = p(1 - \lambda)\left(1 - e^{-\theta_1}\right)$.

Last open question: What is the law of the mass of a typical red leaf?
Let N_t be the number of leaves in the red tree of height t.
Let M_t be their total mass.

Theorem: There exist $\gamma_1, \gamma_2 > 0$ such that, for any positive numbers $(x_t)_{t \geq 0}$ such that $x_t/t \to x \geq 0$, we have

\[
\left(\frac{N_t}{t^2}, \frac{M_t}{t^2} \right) \text{ given } X_t = x_t \xrightarrow{(d)\ t \to \infty} (\gamma_1 \eta_x, \gamma_2 \eta_x),
\]

with $\eta_x := \int_0^1 r^2(s) \, ds$ and r a 4-dimensional Bessel bridge from 0 to $2\sqrt{x}$.

Idea of proof: The Laplace transform of (N_t, M_t) given $X_t = x$ is solution of the following PDE, as a function of t and x:

\[
\partial_t \varphi = \partial_x \varphi + p(t)(1 - \lambda(t))(\varphi \ast \varphi - x \varphi).
\]
Let N_t be the number of leaves in the red tree of height t. Let M_t be their total mass.

Theorem: There exist $\gamma_1, \gamma_2 > 0$ such that, for any positive numbers $(x_t)_{t \geq 0}$ such that $x_t/t \to x \geq 0$, we have

$$
\left(\frac{N_t}{t^2}, \frac{M_t}{t^2} \right) \text{ given } X_t = x_t \xrightarrow{(d)} \left(\gamma_1 \eta_x, \gamma_2 \eta_x \right),
$$

with $\eta_x := \int_0^1 r^2(s) \, ds$ and r a 4-dimensional Bessel bridge from 0 to $2\sqrt{x}$.

Idea of proof: The Laplace transform of (N_t, M_t) given $X_t = x$ is solution of the following PDE, as a function of t and x:

$$
\partial_t \varphi = \partial_x \varphi + p(t)(1 - \lambda(t))(\varphi \ast \varphi - x \varphi).
$$

It takes the particular form $\varphi(t, x) = e^{-\left(\theta_1(t) + x \theta_2(t)\right)}$, with

$$
\theta'_1 = \theta_2 \quad \text{and} \quad \theta'_2 = p(1 - \lambda)(1 - e^{-\theta_1}).
$$
Let N_t be the number of leaves in the red tree of height t.

Let M_t be their total mass.

Theorem: There exist $\gamma_1, \gamma_2 > 0$ such that, for any positive numbers $(x_t)_{t \geq 0}$ such that $x_t/t \to x \geq 0$, we have

$$
\left(\frac{N_t}{t^2}, \frac{M_t}{t^2} \right) \text{ given } X_t = x_t \xrightarrow{t \to \infty} (\gamma_1 \eta_x, \gamma_2 \eta_x),
$$

with $\eta_x := \int_0^1 r^2(s) \, ds$ and r a 4-dimensional Bessel bridge from 0 to $2\sqrt{x}$.

Idea of proof: The Laplace transform of (N_t, M_t) given $X_t = x$ is solution of the following PDE, as a function of t and x:

$$
\partial_t \varphi = \partial_x \varphi + p(t)(1 - \lambda(t))(\varphi \star \varphi - x \varphi).
$$

It takes the particular form $\varphi(t, x) = e^{-\left(\theta_1(t) + x \theta_2(t)\right)}$, with

$$
\theta_1' = \theta_2 \quad \text{and} \quad \theta_2' = p(1 - \lambda)(1 - e^{-\theta_1}).
$$

Last open question: What is the law of the mass of a typical red leaf?
Thanks for your attention!