Mehryar Mohri Advanced Machine Learning 2025 Courant Institute of Mathematical Sciences Homework assignment 2 April 08, 2025 Due: April 22, 2025

A Weighted online-to-batch

Let ℓ be a loss function convex with respect to its first argument and bounded by one. Let h_1, \ldots, h_T be the hypotheses returned by an on-line learning algorithm \mathcal{A} with regret R_T when sequentially processing $(x_t, y_t)_{t=1}^T$, drawn i.i.d. according to some distribution \mathcal{D} .

1. Fix some arbitrary non-negative weights q_1, \ldots, q_T summing to one. Then, show that with probability at least $1 - \delta$, the hypothesis $h = \sum_{t=1}^{T} q_t h_t$ satisfies each of the following inequalities:

$$\begin{split} & \underset{(x,y)\sim\mathcal{D}}{\mathbb{E}}[\ell(h(x),y)] \leq \sum_{t=1}^{T} q_t \ell(h_t(x_t),y_t) + \|q\|_2 \sqrt{2\log(1/\delta)} \\ & \underset{(x,y)\sim\mathcal{D}}{\mathbb{E}}[\ell(h(x),y)] \leq \inf_{h\in\mathcal{H}} \underset{(x,y)\sim\mathcal{D}}{\mathbb{E}}[\ell(h(x),y)] + \frac{R_T}{T} \\ & + \|q - u\|_1 + 2\|q\|_2 \sqrt{2\log(1/\delta)}, \end{split}$$

where q is the vector with components q_t and u the uniform vector with all components equal to 1/T.

2. Here, we seek to prove a bound that holds uniformly for all weight vectors q in some set. To do so, we consider a weight vector p that serves as a *reference*. A natural reference in this context could be for example the uniform distribution. Show that, for any $\delta > 0$, the following holds with probability at least $1 - \delta$ for all $q \in \{q : ||q - p||_1 < 1\}$:

$$\begin{split} \mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell(h(x),y)] &\leq \sum_{t=1}^{T} q_t \ell(h_t(x_t),y_t) + 2\|q-p\|_1 \\ &+ (\|q\|_2 + 2\|q-p\|_1) \bigg[2\sqrt{\log\log_2 \frac{2}{1-\|q-p\|_1}} + \sqrt{2\log\frac{2}{\delta}} \bigg]. \end{split}$$

Hint: consider the first inequality proven above for a fixed weight vector q^k and approximation error ϵ_k , for any $k \ge 0$. Show that the inequality can be extended to hold uniformly for all $k \ge 0$ if you choose $\epsilon_k = \epsilon + \sqrt{2 \log(k+1)}$.

B Swap regret for large expert spaces

Leverage the results presented in class to give a swap regret algorithm tailored for large expert spaces. You should give a full description of your algorithm and provide a detailed proof of the corresponding regret guarantee.