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Induction vs Transduction

® |nductive scenario:

prediction all points

labeled —p |carner

training sample

(most unseen)

B Transductive scenario (vapnik, 1998):

labeled
training sample \
learner
unlabeled
R SN prediction
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Semi-Supervised Learning

® |nductive scenario:

prediction

all points

labeled —Pp |earner

training sample

(most unseen)

B Semi-supervised learning scenario:

labeled
training sample

prediction all points

learner

(most unseen)

unlabeled
sample
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Motivation

B Common scenario in many applications:
* network predictions in computational biology.
* web graph predictions.

* NLP applications.

B Seemingly more favorable scenario than induction:
® but can we (provably) benefit from that?
® analysis of generalization in transductive setting.

® transductive learning algorithms.
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Outline

B Transduction scenario.
B Generalization bounds.

B Examples of algorithms.
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Setting One

® A full sample Xof size (m + u)is fixed.

B The learner receives:

e asampleS = (z1,...,z,) drawn uniformly without
replacement from X as well as the labels (y1,...,ym).

* anunlabeled testsampleT = (zy41, .- -, Tm+s) fOormed
by the remaining points of X.

S T

VAR RN

X
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Setting One

B Loss function L taking values in |0, 1].
B Hypothesis set H.

B Errors: for a hypothesis h € H,
® training error: Rg(h) = 1 S L(h(x:), ui).

T m

o testerror:  Rp(h) =30 L(h(Tmsi), Ymti).

o full sample error (not a random variable):

m-+u
R(h) = — 1+ =3 L) w) = — 1+ ~[mRs(h) + uRr(h)].
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Setting Two

B Distribution Dover input space X.

B The learner receives:

® asample Sofsize mdrawn i.i.d. from D™as well as the
corresponding labels.

® asampleT of size v drawn i.i.d. from D",
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Relationship btw Settings

B Any generalization bound for setting one implies a
generalization bound for setting two by taking the

expectation:
E - E [ E

S~ D™ T~ Du [1{suph€H RT(h)—fis(h)>e}} X~Dmtu L(S,T)=X [1{suph€H RT(h)—I/:ES(h)>6}}} .

—p we will study generalization in setting one.
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Outline

B Transduction scenario.
B Generalization bounds.

B Examples of algorithms.
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Generalization Bounds

B VC-dimension bounds (vapnik, 1998; Cortes and MM 2007).
B PAC-Baeysian bounds (Derbeko, El-Yaniv, and Meir, 2004).

B Stability bounds (El-Raniv and Pechyony 2008; Cortes, MM, Pechyony,
Rastogi, 2008 and 2009).

B Rademacher complexity bounds (El-Raniv and Pechyony 2007).
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McDiarmid's Inequality

(McDiarmid, 1989; corollary 6.10)
B Theorem:let Xy,...,X,, be random variables taking values

inXand let®: X™ — R be a measurable function. Assume
that there exist constantsci, ..., ¢, such that

B[O X1 =21, Kooy = 21, X =

forall i € [1,m]and 21", 2} € X™. Then, for any e>0,

P{IR(XT) ~ ELB(XT)]| > d < 2exp | sz |
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Sampling w/o Replacement

(Cortes, MM, Pechyony, Rastogi, 2008 & 2009)
B Theorem:let X4,..., X,, be a sequence of r.v.'s distributed
according to the uniform distribution without replacement
from a set Xof size m +uandlet ®: X™ — Rbea
symmetric measurable function. Assume that there exists a
constant c such that

D) — By a0l )| < e

for alli € [1,m] and z!*, 2" € X™. Then, for any ¢>0,

P{IRCXT) ~ E[R(X")] > ] < 2exp | -2 |

with a(m, U) — m_|_7fzzjibl/2 1—1/(2 mlax{m,U}) '
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Proof

B Foranyi e [1,m],
E[®X)|X] =2 —E[®XM|X] =27 X, = 2]

- Z PriXh, = x| X] = 2] JCa iy T3y 1)

l—}—l
—ZPrXﬁl—sz\XZ P=2h X =2 e (et 2l )
:C%_i_l
m—1
{Hfmﬁ—u } Z(I) Ya,alty) Z(I) z—|—1):|
k=i 7 !,

On+u2[§:@ T Tk 22@ HO}
i1 z
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Proof

B Two cases:

o ;i contains x;: then there is (a unique) ;"\ ; such
that {z;z;" } = {=;z]",} and the corresponding terms
cancel out by the symmetry of o.

o ;7 does not contain z; : then there is (a unique) x;
such that {z;2;} } differs from {z;z}" |} by =; # x]. By
assumption, the corresponding terms differ in absolute
value by at mostec.

B Second case instances: number of z;7'; permutations
chosen out of the set X — {z**, z;, 2}

(m+u—i—1)! _ (m4u—i—1)!
(m4+u—i—1—(m—1i))! (u—1)!
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Proof

® Thus,
B [0(X)]X] = at] - B [0(XT) X[ = o7 X = o]

1

- u! (m+u—1i—1)! uc
c= .
~(m4u—1)! (u—1)! m4u—1

B The term in McDiarmid's inequality is bounded as follows:

<

12 2 mAu—1/2u—1/2

m m—+u—1 —1/2
u?c? / mtu—1/2 2.2 1. muc? U
u

y2
m —|— U Z
1=1 j:u ‘7

B The theorem follows by observing that mand « can be
permuted by the symmetry of ®.
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Generalization Bound

B Theorem: for any >0, with probability at least1—4, for

allh € H,
Ry(h) < Rs(h) + E[®(S)] + 1~ R FH
—_ —_— J— O R
A= 2t 2lm " w| B
where n = —2+tu =

m—|—u—% 1—

2 max{m,u}

B Proof: apply concentration bound to

B(9) = sup Rr(h) — Rs(h).

® observe that

(S57) — @(9)] <
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Rademacher Complexity

B Define random variable o; as taking value

o mxuwith probability

m-+u °

o —mEuwith probability

m—+u *

B Definition: the transductive Rademacher complexity of G'is

1
Riniu(G) = E |sup Z o:9(x;)

mtue gEGz 1

e note: simpler definition than (El-vaniv and Pechyony 2007).
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Analysis

2 2
B Forany N € [—(m;u) ,u(m:u) ],define

1 m-+u m-+u

R(N) = Blsup }  aig(ai)| ) oi=N

B Observe thatif 3" o; = 0and no;s take value ™+, then

u

m + u m + u
—(m+4+u—n)
U m

n =0 n=u.

Thus, Eg[®(S)] = R(0).
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Analysis

B Foranyn
m-+u 2
m —+ u m+u  (m+u)
N: i = — — p— — .
;0 n— (m+u—n) - — (n — u)
| LetRQZTLl,
1 = m + u Ay m + u
(M) = Blsup ) = —g(en) = ), g(x)}
1=1 1=n1+1
1 = m + u Ay m + u
R(N5) = E i) — i
(Ng) = ——— sgg; —— (i) ._Z g(z;)
1= 1=n1+1
2 m + u m + u
by T T gy |

1—=ni1+1
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Analysis

B Lipschitz property:

1 1Y\ |Ny— DNy
m  u/) '

R(N;) = R(N)| < [ns — ma (— e

m + u

m Thus, for N =Y """ gy,

Pr UR(N) — R(E[N])| > e} < Pr []N ~E[N]| > (m + u)e]
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Transductive Rad. Comp. Bound

B Theorem: letH;denote{z — L(h(x), f(z)): h € H}. Then,
for any 6 >0, with probability at least 1—4, for all h € H,

_ , 11 n[1 17, 1
< 4= L -
Rr(h) < Rs(h)4+Rpmauw(Hp)+O (\/mm{m,u} [m + u})—l—\/Q [m + u} log 5
_ m-u 1
where n = It o T

2 & 2max{m,u}
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Notes

® For large m, the bound varies only as O(\/La): quite different
from the induction scenario.

B [ can be selected after measuring R+ (Hr)since the full
sample is accessible.
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Transductive Stability Bounad

B Theorem: let Lbe a loss function taking values in[0, 1] and
let A be a uniformly g-stable algorithm returning hs € H
when trained using labeled sample S. Then, forany § >0,
with probability at least 14,

RT(hS) < ﬁs(hg) + 8+ (25_'_ %)\/a(m,uglogg.
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Proof

m Define foranyh € H, ®(S,h) = Rr(h) — Rg(h).
® Assume that Sand S’ differ by one point. Then,

B(S', hs') — B(S, hs)

B % i L(hs' (Tm+i), Ym+i) — L(hs(Tmi), Ym+i)
i % - L(hs/(x;),y:) — L(hs(:), yi)
i %(L(hS, (Q;;n_H.),y;n_H) — L(hs(ﬂ?m+z‘)aym+i))
+ %(L(hsf (%) Y) = Lhis (Tm), Yim))-
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Proof

B Thus,
‘(I)(S,,hsf) —(I)(S,hs)| < Blu—1) + flm = 1) + l —|—i <206+ l + i
u m u m u m
® Bounding the expectation'
1 m
S[ S hS ZE hS xm—i—z ym—l—i)] o E ;E}[L(h;g(xz)vyz)]
— Sggg-[/(hs( )7%:’)] S,:z]?eS[L(h ( ) ya:)]
—SZ%S L(hs—{zyu{e} (%), yz) — L(hs(z),yz)] < B
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Outline

B Transduction scenario.
B Generalization bounds.

B Examples of algorithms.
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Transductive SVM (TSVM)

(Vapnik, 2008), see also (Joachims, 1999)
B Optimization problem:

1 - -
min §HWH2 + CZL(W X+ b,y;) +C’ Z L(W - Xm4i + b, Ymti)

m-+u

Wabvym_|_1 1=1 1=1

e classification: hinge loss.

® regression: trivial solution, last term vanishes! (Cortes and
MM, 2007).

® theoretical guarantee: unclear.
® computational complexity: exponential.

® experiments: issue of uniform labeling of test points in
high dimension (Joachims, 1999); poor results (Tong and Oles,

1999).
Advanced Machine Learning - Mohri@ page28



Local Transductive Regression

(Cortes, MM, Pechyony, Rastogi, 2008 & 2009)
B Optimization problem (LTR):

h C L z ) C/ L mfiaNmz'a
%ﬁ” I% + Z (i), yi) + ; (Tmti)s Ym+i)

with K a PDS kernel, and

Um+:S pSeudo-labels obtained via local
weighted average or any other local

regression algorithm from neighborhood of
radius r.
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Stability Guarantee

B Theorem: assume that forall z€ X, |y(x)| < M and that the
local estimator has score-stability 3,,.. Then, LTR has
uniform stability

/ s\ 2 ,
B<2(COM)2T2[€—|—Q_|_\/<Q+Q> 4+ 20610(: ],

m U m U CoMr?u

withr* = sup,.y K(z,z)and Cy = 1 +r/C + C" .
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Graph Regularization Algo.

| Set-up:
* weighted directed graph G = (X, E).
®* hypothesis h: X — R in H identified with vector

h(z1)
hzl ; ]
h(mm—l—U)

e PSD matrix L € Rm*Twx(m+u) (similarity matrix).
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Graph Regularization Algo.

B Optimization problem:

C
min h'Lh + — (hs — YS)T(hS —¥s)
he H
s.t.:h'u= 0,

where hg is the restriction of h to the training sample S
and ys the vector of training labels, and u a constant
vector in R™*,
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Graph Regularization Algo.

B Example (Belkin et al., 2004):
® graph assumed connected.
* L isthe graph LaplacianL =D — W, where
D = dlag (Zwlz,,Zwm)
=1 1=1

1=

Then, h'Lh = Zz’rvj ww(h(mz) — h(ﬂﬁj))z .
e u=(1,...,1)"
e data assumed centered:u'y = 0, and graph connected.

o —p zero eigenvalue of Laplacian has multiplicity one and
the solutionsh in range(L).
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Graph Regularization Algo.

B [agrangian:

C
L=h"Lh+ E(hs — yS)T(hS — yS) + BhTu.

B Differentiating and applying orthogonal projection tou:

P (L -+ gls) h = QPyS — BPu = 9Pys
m m m

—~h = [P (%L + IS)] " Py, (P (%L 4 IS) invertible)
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Stability Guarantee

(Cortes, MM, Pechyony, Rastogi, 2009)
B Theorem: assume that forallhe Handx e X |h(x) — y.| < M.

Then, the graph Laplacian regularization algorithm has
uniform stability

4CM* . 1
6 S mln{_7pG}7
m )\2

where Xz is the smallest non-trivial eigenvalue of Land
pcthe diameter of the graph (longest shortest path).
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Proof

B The graph Laplacian algorithm can be shown to coincide
with LTR with the kernel matrix K = L*: for all h € range(L),

KLh=LtLh=h
h''LKLh = h''Lh.

B The result follows by applying the stability bound for LTR
with the bound on the K (z,z)in terms of A2 and pa.
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Notes

B For a hypercube, \; = 2.

B Does not perform well in experiments in comparison with
LTR.
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