
Advanced Machine Learning

MEHRYAR MOHRI      MOHRI@ 
COURANT INSTITUTE & GOOGLE RESEARCH..

Transduction



pageAdvanced Machine Learning - Mohri@

Induction vs Transduction
Inductive scenario: 

Transductive scenario (Vapnik, 1998):
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Semi-Supervised Learning
Inductive scenario: 

Semi-supervised learning scenario:
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Motivation
Common scenario in many applications: 

• network predictions in computational biology. 

• web graph predictions. 

• NLP applications. 

Seemingly more favorable scenario than induction: 

• but can we (provably) benefit from that? 

• analysis of generalization in transductive setting. 

• transductive learning algorithms.
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Outline
Transduction scenario. 

Generalization bounds. 

Examples of algorithms.
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Setting One
A full sample    of size              is fixed. 

The learner receives: 

• a sample                              drawn uniformly without 
replacement from    as well as the labels                     . 

• an unlabeled test sample                                       formed 
by the remaining points of    .
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Setting One
Loss function    taking values in         . 

Hypothesis set    . 

Errors: for a hypothesis           , 

• training error: 

• test error: 

• full sample error (not a random variable):
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Setting Two
Distribution    over input space    . 

The learner receives: 

• a sample    of size     drawn i.i.d. from       as well as the 
corresponding labels. 

• a sample    of size    drawn i.i.d. from      .
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Relationship btw Settings
Any generalization bound for setting one implies a 
generalization bound for setting two by taking the 
expectation: 

      we will study generalization in setting one.
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Outline
Transduction scenario. 

Generalization bounds. 

Examples of algorithms.
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Generalization Bounds
VC-dimension bounds (Vapnik, 1998; Cortes and MM 2007). 

PAC-Baeysian bounds (Derbeko, El-Yaniv, and Meir, 2004). 

Stability bounds (El-Raniv and Pechyony 2008; Cortes, MM, Pechyony, 

Rastogi, 2008 and 2009). 

Rademacher complexity bounds (El-Raniv and Pechyony 2007).
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McDiarmid’s Inequality
Theorem: let                     be random variables taking values 
in    and let                       be a measurable function. Assume 
that there exist constants                  such that 

for all                 and                         . Then, for any         ,
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Sampling w/o Replacement
Theorem: let                     be a sequence of r.v.’s distributed 
according to the uniform distribution without replacement 
from a set    of size            and let                       be a 
symmetric measurable function. Assume that there exists a 
constant    such that  

for all                 and                         . Then, for any         , 

with
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Proof
For any                ,
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Proof
Two cases: 

•         contains     : then there is (a unique)         such      
that                                    and the corresponding terms 
cancel out by the symmetry of    . 

•         does not contain     : then there is (a unique)         
such that                differs from                by              . By 
assumption, the corresponding terms differ in absolute 
value by at most   . 

Second case instances: number of         permutations 
chosen out of the set                               :
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Proof
Thus, 

The term in McDiarmid’s inequality is bounded as follows: 

The theorem follows by observing that     and    can be 
permuted by the symmetry of    .
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Generalization Bound
Theorem: for any         , with probability at least        , for    
all           , 

where  

Proof: apply concentration bound to  

• observe that 
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Rademacher Complexity
Define random variable     as taking value 

•           with probability         . 

•           with probability         . 

Definition: the transductive Rademacher complexity of     is 

• note: simpler definition than (El-Yaniv and Pechyony 2007).
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Analysis
For any                                                    , define 

Observe that if                        and       s take value        , then 

Thus,
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Analysis
For any 

Let              , 
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Analysis
Lipschitz property: 

Thus, for                         ,
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Transductive Rad. Comp. Bound
Theorem: let      denote                                                . Then, 
for any         , with probability at least        , for all           , 

where 
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Notes
For large     , the bound varies only as            : quite different 
from the induction scenario. 

    can be selected after measuring                    since the full 
sample is accessible.
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Transductive Stability Bound
Theorem: let    be a loss function taking values in         and 
let     be a uniformly   -stable algorithm returning           
when trained using labeled sample   . Then, for any         , 
with probability at least        ,
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Proof
Define for any           ,                                            . 

Assume that    and     differ by one point. Then,
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Proof
Thus,  

Bounding the expectation:
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Outline
Transduction scenario. 

Generalization bounds. 

Examples of algorithms.
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Transductive SVM (TSVM)
Optimization problem: 

• classification: hinge loss. 

• regression: trivial solution, last term vanishes! (Cortes and 

MM, 2007). 

• theoretical guarantee: unclear. 

• computational complexity: exponential. 

• experiments: issue of uniform labeling of test points in 
high dimension (Joachims, 1999); poor results (Tong and Oles, 

1999).
28
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Local Transductive Regression
Optimization problem (LTR): 

with     a PDS kernel, and 
        s pseudo-labels obtained via local 
weighted average or any other local 
regression algorithm from neighborhood of 
radius   .
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Stability Guarantee
Theorem: assume that for all          ,                    and that the 
local estimator has score-stability       . Then, LTR has 
uniform stability
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Graph Regularization Algo.
Set-up: 

• weighted directed graph                    . 

• hypothesis                   in     identified with vector 

• PSD matrix                                 (similarity matrix).
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Graph Regularization Algo.
Optimization problem: 

where      is the restriction of    to the training sample    
and      the vector of training labels, and    a constant 
vector in           .
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Graph Regularization Algo.
Example (Belkin et al., 2004):  

• graph assumed connected. 

•     is the graph Laplacian                      , where 

•                         . 

• data assumed centered:               , and graph connected. 

•          zero eigenvalue of Laplacian has multiplicity one and 
the solutions    in                .

33

L

u>y = 0

L = D�W

D = diag
⇣ nX

i=1

w1i, . . . ,
nX

i=1

wni

⌘
.

u = (1, . . . , 1)>

h range(L)

Then,                                                            .h>Lh =
P

i⇠j wij(h(xi)� h(xj))2



pageAdvanced Machine Learning - Mohri@

Graph Regularization Algo.
Lagrangian: 

Differentiating and applying orthogonal projection to   :
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Stability Guarantee
Theorem: assume that for all          and         ,                         . 
Then, the graph Laplacian regularization algorithm has 
uniform stability
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Proof
The graph Laplacian algorithm can be shown to coincide 
with LTR with the kernel matrix              : for all                       , 

The result follows by applying the stability bound for LTR 
with the bound on the              in terms of      and     .
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Notes
For a hypercube,  

Does not perform well in experiments in comparison with 
LTR.

37
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