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Structured Prediction

B Structured output:
Y=V x---x .
® Loss function: L: )Y X )V — R, decomposable.

* Example: Hamming loss.

1 [
— 72 Yk 7Y,

®* Example: edit-distance Ioss.

1

“dedit (Y1 YY1 Yp)-

L(y,y) = Z
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Examples

B Pronunciation modeling.
B Part-of-speech tagging.

B Named-entity recognition.
B (Context-free parsing.

B Dependency parsing.

® Machine translation.

B [mage segmentation.
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Examples: NLP Tasks

® Pronunciation: |  have formulated a
ay hhaev fowrmyaxleytihd ax

® POS tagging: The thief stole a car
D N V DN

B (Context-free parsing/Dependency parsing:

S
~
VP
/ \
NP NP
/" \ /\

D N V DN K\X/g\\‘

The thief stole a car root The thief stole a car
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Examples: Image Segmentation
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Predictors

B Family of scoring functions H mapping from X x ) to R.
B Forany h € ‘H, prediction based on highest score:
Ve € X, h(x) = argmax h(z,y).
yey

B Decomposition as a sum modeled by factor graphs.
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Factor Graph Examples

B Pairwise Markov network decomposition:

h(z,y) = hy (x,91,92) + by, (2,92, Y3).

® Other decomposition:

hy) = by @)+ (@)

hf2 ($ay17y27 y3)-
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Factor Graphs

® G = (V,F, E). factor graph.
B N(f): neighborhood of f.
B Yy = ]lken(s Ve substructure set cross-product at f.

® Decomposition:

Pz, y) = ) hyla,yp).

feF

B More generally, example-dependent factor graph,

G; = G(zi,y;) = (Vi, Fi, E;).
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Linear Hypotheses

B Feature decomposition — Hypothesis decomposition.

®* Example: bigram decomposition.

y. D N|V|D|N
x. his cat atelthe|fish
K: 4

¢($, 47 Ys, y4)

[

(P(Lt,y) — ZQb(CU, 87y8—17y8)~

s=1

h(CE,y) W - (I)Qﬁy ZW ¢xsyslys)°

hs(2,ys—1,Ys)
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Structured Prediction Problem

B Training data: sample drawn i.i.d. from X x Y according to
some distribution D,

S:((xlayl)v"'a(xmaym)) c X x).

B Problem: find hypothesis h: X x Y — R in ‘H with small
expected loss:

R(b)= E (L))l

® |earning guarantees?
® role of factor graph?

® petter algorithms?
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Outline

B Generalization bounds.

® Algorithms.
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Learning Guarantees

B Standard multi-class learning bounds:

* number of classes is exponential!

B Structured prediction bounds:

® covering number bounds: Hamming loss, linear
hypotheses (Taskar et al., 2003).

e PAC-Bayesian bounds (randomized algorithms) (David
McAllester, 2007).

- can we derive learning guarantees for general
hypothesis sets and general loss functions?
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Covering Number Bound

(Taskar et al., 2003)
® Theorem: fixp > 0. Then, with probability at least 1 —p over
the choice of sample S of size m, the following holds for
any hypothesis h: (z,y) — w - ®(z,y):

1 — 1 R?||w||?
E [Ly(h,xz,y)] < — sup Lyg(f,x;,y;)+0O — (logm + logl + log max | Vx|) | ,
B <23 s Lt ()£ L _
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Factor Graph Complexity

(Cortes, Kuznetsov, MM, Yang, 2016)
B Empirical factor graph complexity for hypothesis set H
and sample § = (xl, ey D)

-~ 1
iRg(,}_{):_ﬂi SUPS‘S‘ S‘ \/‘Flezfyhf Liy Y

T €
n 1= 1f€Fzy€yf

1 : :
sup — |:€7L,f,y:| | VI Filhg(Ti,y)
heH M : :

N J
-~

correlation with random noise

|
m =

B Factor graph complexity:

RE(H) = E {%g (H)].
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Margin

B Definition: the margin of h at a labeled point (z,y) € X x Y
IS
pr(z,y) = min h(z,y) — h(z,y').
Y'#Y
 error when pn(x,y) <O0.

* small margin interpreted as low confidence.
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Loss Function

® Assumptions:

* bounded: max L(y,y’') < M for some M > 0.
Yy’

o definite: L(y,y' ) =0=y=1'.
® (Consequence:

L(h(ib),y) — L(h(aj)vy) 1ph(:v,y)§0-
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Empirical Margin Losses

® Foranyp>0,

Rgi(h) = E &y (ryq%L(y’,y) — )>]

REM(h)= E |dy (max Ly ) (1 - h(‘”’y)‘ph(x’y')»],

y' £y

A
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Generalization Bounds

(Cortes, Kuznetsov, MM, Yang, 2016)

B Theorem: for any ¢ > 0, with probability at least 1 — §, each
of the following holds for all h € H:

® tightest margin bounds for structured prediction.

* data-dependent.

®* improves upon bound of (Taskar et al., 2003) by log terms (in
the special case they study).
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Linear Hypotheses

B Hypothesis set used by most convex structured prediction
algorithms (StructSVM, M3N, CRF):

Hy = {(2,9) > W ®(z,y): w e RV, |wl|, <A, },

withp > 1 and ®(z,y) = Y ¥s(z,yy).
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Complexity Bounds

B Bounds on factor graph complexity of linear hypothesis
sets:

A7 \/8 log(2N)
m

Ao \/ZZL Zfem— Zyeyf |E3]

m

{)\%g(IHl) <

RS (Hs) <

with r, = max [ (i, y)llq

5= max 7 > 2 Fillug iz

1=1 fGFzyEyf
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Key Term

B Sparsity parameter:

s<§‘$‘ M yFy<ZyFy2d <mmaX]F]2dz,

1=1 feF; yeYy

where d; = max |V¢]|.
feF;

— o factor graph complexity in O(y/log(N) max; |F;|?d;/m) for
hypothesis set H;.

* keyterm: average factor graph size.
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NLP Applications

B [eatures:

e W, ,isoften a binary function, non-zero for a single
pair (z,y) € X x Vs.

e example: presence of n-gram (indexed by j) at position f
of the output with input sentence x;.

o complexity term only in O(max\F\\/log )/m).
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Theory Takeaways

B Key generalization terms:
® average size of factor graphs.
®* empirical margin loss.

B But, is learning with very complex hypothesis sets (factor
graph complexity) possible?
* richer families needed for difficult NLP tasks.

® but generalization bound indicates risk of overfitting.

=P \/oted Risk Minimization (VRM) theory
(Cortes, Kuznetsov, MM, Yang, 2016).
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Outline

B Generalization bounds.

B Algorithms.
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Surrogate Loss

B Lemma:foranyue Ry, let ®,: R — Rbean upper bound
on v — ul,<p. Then, the following upper bound holds for
any h € Hand (z,y) € X x ).

L(h(2),y) < max 8y ) ({2, ) — Az, y)).

B Proof:if h(xz) # y, then the following holds:

L(h(ﬂ?),y) — L(h(x)ay)lph(x,y)gO
< DL (h(z),y) (on(2,Y))

= O (). (R(2,y) — max h(x, 1’
L(h( ),y)(( Y) ' (z,9))

= @ (h(z),y) (M2, y) = h(z, h(z)))

< max (I)L(y’,y) (h<33, y) — h(CC, y/))7
y'#Fy
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d-Choices

B Different algorithms:
® StructSVM: &, (v) = max(0,u(1 —v)).
¢ M3N: &, (v) = max(0,u — v).
* CRF:®,(v)=log(l+¢e“").

e StructBoost: @, (v) = ue Y (Cortes, Kuznetsov, MM, Yang, 2016).
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Algorithms

B StructSVM
B Maximum Margin Markov Networks (M3N)
B Conditional Random Fields (CRF)

B Regression for Learning Transducers (RLT)
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Linear Prediction

B Features: function®: X xY —RY.

B Hypothesis set: functions h: X — Yof the form
h(x) = argmax w - ®(x,y),
yey

where the vector wis learned from data.

B Formulation:
® scoring functions.

e multi-class classification.

° margin: pw(zi, yi) = w - ®(z;,y;) — maxw - ®(z;,y).

YF£Y;
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Multi-Class SVM

B Optimization problem:

m

mm 1HWH2 +C ) max (O l—w- [(I)(Xiayz') - (I)(Xivy)])

Y#Yi

1=1 T

B Decision function:

r — argmax w - ®(x,y).
yey
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SVMStruct

B Optimization problem (StructSVM):

(Tsochantaridis et al., 2005)

7

1 m
min —|[w|?+C " max L(y:, y) max (o, ] —w- [(I)(xi,yi)—i)(wi,y)]).
i—1 7Y ~ ~
:p(3317y%7y)

e solution based on iteratively solving QP and adding most
violating constraint.

® no specific assumption on loss.

e use of kernels.
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M3N

B Optimization problem:

(Taskar et al., 2003)

Ve

1 m
min <||w[*+C )  maxmax (0, L(yi,y) — w - [®(z4, y5) — P(z4,9)] )
2 — yFy - o
:p(xiayiay)
* Yassumed to have a graph structure with a Markov
property, typically a chain or a tree.
® |oss assumed decomposable in the same way.

® polynomial-time algorithm using graphical model
structure.

e use of kernels.
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Equivalent Formulations

B Optimization problems:

1 ) m
min —|(|w||“+C ;
mip Gl +O 3¢

§i

st.w- | P(x,y;)—P(x,y)] > 1 - & > 0,Vi € [1,m],y # ;.

1 ) m
min —(|w||“+C ;
i g IwIP+C ¢

s.it. w |®(zi,y:) —P(zi,y)] > Ly, y:) — &, & > 0,Vi € [1,m], y # y.
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Dual Problem
B Optimization problem: AW, (y) = ®(x,y:) — P(wi,y)

max  »  ayy — Z iy (AW (y), A¥;(y'))

a>0 :
7y Y; /L?y#y’i
7Y’ #Y;
Stz QLiy <€VZE[1m]
yz,
YF£Yi

—p can use PDS kernel.
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Optimization Solution

(Tsochantaridis et al., 2005)
®m Cutting plane method: number of steps poly (2, C,max L(y, y;)).
Y,

® start with empty constraints S, =0,i=1...m.
® do until no new constraint:
e fori=1...m do

¢ find most violating constraint:

§ = argmax L(y,y,)|1 —w - [8(z;,5) -8 (w:.p)]| = &()
yey

o if(&(y) > max §i(y) +¢€)

o S, S, U{y}

¢ o <+ dual solution for U™, S;
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CRF = Cond. Maxent Model

(Lafferty et al., 2001)
B Definition: conditional probability distribution over the

outputsy € ):
exp (w - ®(x,y)
pu () = — (ZW(X) )
with Zw(X) = Z exp (w - ®(x,y)).

yey

® 7Yassumed to have a graph structure with a Markov
property, typically a chain or a tree.
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CRF

B Optimization problem (CRFs):

min [[w +ozlogzexp( Yiry) = W+ [B(@i, )~ @ (i, )] ).
yey zp(iﬂzyi,y)
A/_/

max (M3N) —soft-max (CRF)

® comparison with M3N.

* smooth optimization problem, O(C'log(1/¢))solutions.
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Features

B Definitions:

Al =r.

® input: Xx =x1---2;.

e output alphabet A,

o output y =y ---y; € Al

B Decomposition: bigram case.

[

(I)(X7 Y) — Z ¢(X7 ka Yk—1, yk)

k=1
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Prediction

@ Computation: l

argmacew - B(x,y) = argmax Y w - B, b, g1, 48).
yEA! yEA! —1

* exponentially many possible outputs.

®m Solution:

® cast as single-source shortest-distance problem in acyclic
directed graph with (r*l + ) edges.

* linear-time algorithms: standard acyclic shortest-
distance algorithm (Lawler) or the Viterbi algorithm.
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Directed Graph

(y1,1) >

Yo — €.
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Estimation

B Keyterm in gradient computation:
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Flow Computation

B Decomposition:
CXP (W ) (I)(X?Jy))

Zw (X;)

pw (Y|xi) =

-~

l
with exp (w b (x;,y ) He D (%, K, Yr—1, yk))

a(k,Yr—1,Yk)

B Flow: sum of the weights of all paths going through a given
transition.

® [inear-time computation.
® two single-source shortest-distance algorithms.

» computational costin O(r?1).
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Directed Graph

(y1,1) >

\ o((ge1. = 1))

(Yo, 1) — (Yp—1, N — - (Yr—1,k —1)---

\ . a(k,yk% (yk7 k) .
(Yry 1)

B((Yks k)
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Computation

B Single-source shortest distance problems in (+, X):
* «a(q): sum of the weights of all paths from initial to q.
o [3(q): sum of the weights of all paths from final to ¢.

* linear-time algorithms for acyclic graphs.

B Partition function Zy (X;) : sum of the weights of all
accepting paths, 5((yo, 0)).

®m Formula:
_ally,k—1)) -alk,y,y) - By k)
Z: P ¥ B((%,0)) |
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RLT

(Cortes, MM, Weston, 2005)

B Definition: formulated as a regression problem.

® |earning transduction (regression).

* prediction: finding pre-image.

Advanced Machine Learning - Mohri@
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RLT

B Optimization problem:

argmin | F(W) = 7|W[%+ 3 [WM,, - M, |2

WeRN2 XNy i—1 Px(ri) Py(yi)

®* generalized ridge regression problem.
® closed-form solution, single matrix inversion.
® can be generalized to encoding constraints.

e use of kernels.
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Solution

® Primal:
W =MyM;(MxMy +~I)7L.

® Dual:
W =My (Kx +~I) M.

B Regression solution:

g(x) = WM,.
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Prediction

B Prediction using kernels:

f(z) = argmin |[WM, — M, ||?

yey*
= argmin (M, M, — 2M, WM,,)
yey*
= argmin (M, M, — 2M My (Kx +71)""MyM,)
yey*
— argrélin (Ky (y,y) — 2(K?{,)T(Kx - WI)_le?() :
yer-
Ky (y,y1) Kx (z,z1)
with K7, = : and K% = : .
Ky (Y,ym) Kx (,%m)
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Example: N-gram kernel

B Definition: for any two strings yi1and ys,

yl y2 Z |y1’u|92|u

Ju|=
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Pre-lmage Problem

B Example: pre-image for n-gram features.
* find sequence xwith matching n-gram counts.

® use de Bruijn graph, Euler circuit.
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Existence

B Theorem: the vector of n-gram counts z admits a pre-image
iff for any vertex ¢ the directed graph (5,

in-degree(q) = out-degree(q).

B Proof: direct consequence of theorem of Euler (1736).
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Pre-Image Problem

B Example: bigram count vector predicted

z =(0,1,0,0,0,2,1,1,0) ".

e de Bruijn graph G:

e FEuler circuit: x = bebea.
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Algorithm

(Cortes, MM, Weston, 2005)

B Algorithm:
EULER(q)
1 path < €
2 for each unmarked edge e leaving ¢ do
3 MARK(e)
4 path < e EULER(dest(e)) path
5 return path

® proof of correctness non-trivial.

® [inear-time algorithm.
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Uniqueness

B |n general not unique.

B Set of strings with unique pre-image regular (ontorovich, 2004).

x = bebeca /beebea.
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Generalized Euler Circuit

B Extensions:
®* round components of vector.

® cost of one extra or missing count for an n-gram: one
local insertion or deletion.

® potentially more pre-image candidates: potentially use
n-gram model to select most likely candidate.

® regression errors and potential absence of pre-image:
restart Euler at every vertex for which not all edges are
marked.
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lllustration

x = beebea /bebeca.

OO0

xr = bcba.
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RLT

B Benefits:
® regression formulation structured prediction problems.
* simple algorithm.
® can be generalized to regression with constraints (Cortes,
MM, Weston, 2007).
® Drawbacks:
* input-output features not natural (but constraints).

* pre-image problem for arbitrary PDS kernels?
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Conclusion

B Structured prediction theory:
* tightest margin guarantees for structured prediction.
* general loss functions, data-dependent.
* key notion of factor graph complexity.

® additionally, tightest margin bounds for standard
classification.
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