Advanced Machine Learning

Structured Prediction

COURANT INSTITUTE & GOOGLE RESEARCH

Structured Prediction

Structured output:

$$\mathcal{Y} = \mathcal{Y}_1 \times \cdots \times \mathcal{Y}_l.$$

Loss function: $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$ decomposable.

• Example: Hamming loss.

$$L(y, y') = \frac{1}{l} \sum_{k=1}^{l} 1_{y_k \neq y'_k}$$

Example: edit-distance loss.

$$L(y,y') = \frac{1}{l} d_{\text{edit}}(y_1 \cdots y_l, y'_1 \cdots y'_l).$$

Examples

- Pronunciation modeling.
- Part-of-speech tagging.
- Named-entity recognition.
- Context-free parsing.
- Dependency parsing.
- Machine translation.
- Image segmentation.

Examples: NLP Tasks

- Pronunciation: I have formulated a a ay hhaev fowrmyaxleytihd ax
- POS tagging: The thief stole a car D N V D N
- Context-free parsing/Dependency parsing:

Advanced Machine Learning - Mohri@

Examples: Image Segmentation

Person

Predictors

- Family of scoring functions \mathcal{H} mapping from $\mathcal{X} \times \mathcal{Y}$ to \mathbb{R} .
- For any $h \in \mathcal{H}$, prediction based on highest score:

$$\forall x \in \mathcal{X}, \ \mathsf{h}(x) = \operatorname*{argmax}_{y \in \mathcal{Y}} h(x, y).$$

Decomposition as a sum modeled by factor graphs.

Factor Graph Examples

Pairwise Markov network decomposition:

Other decomposition:

 $h(x, y) = h_{f_1}(x, y_1, y_3) + h_{f_2}(x, y_1, y_2, y_3).$

Factor Graphs

- G = (V, F, E): factor graph.
- Solution $\mathcal{N}(f)$: neighborhood of f.
- $\mathcal{Y}_f = \prod_{k \in \mathcal{N}(f)} \mathcal{Y}_k$: substructure set cross-product at f.
- Decomposition:

$$h(x,y) = \sum_{f \in F} h_f(x,y_f).$$

More generally, example-dependent factor graph,

$$G_i = G(x_i, y_i) = (V_i, F_i, E_i).$$

Linear Hypotheses

Feature decomposition — Hypothesis decomposition.

• Example: bigram decomposition.

y:DNVDNx:his cat atethefishk:4
$$\phi(x, 4, y_3, y_4)$$

$$\Phi(x,y) = \sum_{s=1}^{l} \phi(x,s,y_{s-1},y_s).$$

$$h(x,y) = \mathbf{w} \cdot \Phi(x,y) = \sum_{s=1}^{l} \underbrace{\mathbf{w} \cdot \phi(x,s,y_{s-1},y_s)}_{h_s(x,y_{s-1},y_s)}.$$

Structured Prediction Problem

Training data: sample drawn i.i.d. from $\mathcal{X} \times \mathcal{Y}$ according to some distribution \mathcal{D} ,

$$S = ((x_1, y_1), \ldots, (x_m, y_m)) \in \mathcal{X} \times \mathcal{Y}.$$

Problem: find hypothesis $h: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ in \mathcal{H} with small expected loss:

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}[\mathsf{L}(\mathsf{h}(x),y)].$$

- Iearning guarantees?
- role of factor graph?
- better algorithms?

Outline

- Generalization bounds.
- Algorithms.

Learning Guarantees

- Standard multi-class learning bounds:
 - number of classes is exponential!
- Structured prediction bounds:
 - covering number bounds: Hamming loss, linear hypotheses (Taskar et al., 2003).
 - PAC-Bayesian bounds (randomized algorithms) (David McAllester, 2007).

can we derive learning guarantees for general hypothesis sets and general loss functions?

Covering Number Bound

(Taskar et al., 2003)

Theorem: fix $\rho > 0$. Then, with probability at least $1 - \rho$ over the choice of sample S of size m, the following holds for any hypothesis $h: (x, y) \to \mathbf{w} \cdot \mathbf{\Phi}(x, y)$:

$$\mathop{\mathrm{E}}_{(x,y)\sim D}[L_H(h,x,y)] \le \frac{1}{m} \sum_{i=1}^m \sup_{f \in \mathcal{F}_S^{\rho}(h)} L_H(f,x_i,y_i) + O\left(\sqrt{\frac{1}{m} \frac{R^2 \|\mathbf{w}\|^2}{\rho^2}} (\log m + \log l + \log \max_k |\mathcal{Y}_k|)\right),$$

where $F_S^{\rho}(h) = \{f \colon X \times Y \to \mathbb{R} \mid \forall y \in Y, \forall i \in [1, m], |f(x_i, y) - h(x_i, y)| \le \rho H(y, y_i)\}$.

Factor Graph Complexity

(Cortes, Kuznetsov, MM, Yang, 2016)

Empirical factor graph complexity for hypothesis set \mathcal{H} and sample $S = (x_1, \dots, x_m)$:

$$\widehat{\mathfrak{R}}_{S}^{G}(\mathcal{H}) = \frac{1}{m} \mathop{\mathbb{E}}_{\epsilon} \left[\sup_{h \in \mathcal{H}} \sum_{i=1}^{m} \sum_{f \in F_{i}} \sum_{y \in \mathcal{Y}_{f}} \sqrt{|F_{i}|} \epsilon_{i,f,y} h_{f}(x_{i},y) \right]$$
$$= \mathop{\mathbb{E}}_{\epsilon} \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \left[\underbrace{\stackrel{\vdots}{\epsilon_{i,f,y}}}_{\vdots} \right] \cdot \left[\underbrace{\sqrt{|F_{i}|} h_{f}(x_{i},y)}_{\vdots} \right] \right].$$
correlation with random noise

Factor graph complexity:

$$\mathfrak{R}_m^G(\mathcal{H}) = \mathbb{E}_{S \sim \mathcal{D}^m} \Big[\widehat{\mathfrak{R}}_S^G(\mathcal{H}) \Big].$$

Margin

Definition: the margin of *h* at a labeled point $(x, y) \in \mathcal{X} \times \mathcal{Y}$ is

$$\rho_h(x,y) = \min_{y' \neq y} h(x,y) - h(x,y').$$

- error when $\rho_h(x,y) \leq 0$.
- small margin interpreted as low confidence.

Loss Function

Assumptions:

- bounded: $\max_{y,y'} L(y,y') \le M$ for some M > 0.
- definite: $L(y, y') = 0 \Rightarrow y = y'$.
- Consequence:

$$\mathsf{L}(\mathsf{h}(x), y) = \mathsf{L}(\mathsf{h}(x), y) \, \mathbf{1}_{\rho_h(x, y) \le 0}.$$

Empirical Margin Losses

For any $\rho > 0$,

$$\begin{split} &\widehat{R}_{S,\rho}^{\mathrm{add}}(h) = \mathop{\mathbb{E}}_{(x,y)\sim S} \left[\Phi_M \bigg(\max_{y' \neq y} \mathsf{L}(y',y) - \frac{h(x,y) - h(x,y')}{\rho} \bigg) \right] \\ &\widehat{R}_{S,\rho}^{\mathrm{mult}}(h) \! = \! \mathop{\mathbb{E}}_{(x,y)\sim S} \left[\Phi_M \bigg(\max_{y' \neq y} \mathsf{L}(y',y) \Big(1 - \frac{h(x,y) - h(x,y')}{\rho} \Big) \Big) \Big], \end{split}$$

Generalization Bounds

(Cortes, Kuznetsov, MM, Yang, 2016)

Theorem: for any $\delta > 0$, with probability at least $1 - \delta$, each of the following holds for all $h \in \mathcal{H}$:

$$\begin{aligned} R(h) &\leq \widehat{R}_{S,\rho}^{\text{add}}(h) + \frac{4\sqrt{2}}{\rho} \Re_m^G(\mathcal{H}) + M \sqrt{\frac{\log \frac{1}{\delta}}{2m}}, \\ R(h) &\leq \widehat{R}_{S,\rho}^{\text{mult}}(h) + \frac{4\sqrt{2}M}{\rho} \Re_m^G(\mathcal{H}) + M \sqrt{\frac{\log \frac{1}{\delta}}{2m}}. \end{aligned}$$

- tightest margin bounds for structured prediction.
- data-dependent.
- improves upon bound of (Taskar et al., 2003) by log terms (in the special case they study).

Linear Hypotheses

Hypothesis set used by most convex structured prediction algorithms (StructSVM, M3N, CRF):

$$\mathcal{H}_p = \Big\{ (x, y) \mapsto \mathbf{w} \cdot \mathbf{\Psi}(x, y) \colon \mathbf{w} \in \mathbb{R}^N, \|\mathbf{w}\|_p \le \Lambda_p \Big\},\$$

with
$$p \ge 1$$
 and $\Psi(x, y) = \sum_{f \in F} \Psi_f(x, y_f)$.

Complexity Bounds

Bounds on factor graph complexity of linear hypothesis sets:

$$\widehat{\mathfrak{R}}_{S}^{G}(\mathcal{H}_{1}) \leq \frac{\Lambda_{1} r_{\infty} \sqrt{s \log(2N)}}{m}$$

$$\widehat{\mathfrak{R}}_{S}^{G}(\mathcal{H}_{2}) \leq \frac{\Lambda_{2} r_{2} \sqrt{\sum_{i=1}^{m} \sum_{f \in F_{i}} \sum_{y \in \mathcal{Y}_{f}} |F_{i}|}}{m}$$

with
$$r_q = \max_{i,f,y} \|\Psi_f(x_i, y)\|_q$$

 $s = \max_{j \in [1,N]} \sum_{i=1}^m \sum_{f \in F_i} \sum_{y \in \mathcal{Y}_f} |F_i| \mathbb{1}_{\Psi_{f,j}(x_i, y) \neq 0}.$

Key Term

Sparsity parameter:

$$s \le \sum_{i=1}^{m} \sum_{f \in F_i} \sum_{y \in \mathcal{Y}_f} |F_i| \le \sum_{i=1}^{m} |F_i|^2 d_i \le m \max_i |F_i|^2 d_i,$$

where $d_i = \max_{f \in F_i} |\mathcal{Y}_f|$.

- factor graph complexity in $O(\sqrt{\log(N) \max_i |F_i|^2 d_i/m})$ for hypothesis set \mathcal{H}_1 .
 - key term: average factor graph size.

NLP Applications

Features:

- $\Psi_{f,j}$ is often a binary function, non-zero for a single pair $(x, y) \in \mathcal{X} \times \mathcal{Y}_f$.
- example: presence of n-gram (indexed by j) at position f
 of the output with input sentence x_i.
- complexity term only in $O(\max_i |F_i| \sqrt{\log(N)/m})$.

Theory Takeaways

- Key generalization terms:
 - average size of factor graphs.
 - empirical margin loss.
- But, is learning with very complex hypothesis sets (factor graph complexity) possible?
 - richer families needed for difficult NLP tasks.
 - but generalization bound indicates risk of overfitting.

Outline

- Generalization bounds.
- Algorithms.

Surrogate Loss

Lemma: for any $u \in \mathbb{R}_+$, let $\Phi_u : \mathbb{R} \to \mathbb{R}$ be an upper bound on $v \mapsto u \mathbb{1}_{v \leq 0}$. Then, the following upper bound holds for any $h \in \mathcal{H}$ and $(x, y) \in \mathcal{X} \times \mathcal{Y}$:

$$\mathsf{L}(\mathsf{h}(x), y) \le \max_{y' \ne y} \Phi_{\mathsf{L}(y', y)}(h(x, y) - h(x, y')).$$

Proof: if $h(x) \neq y$, then the following holds:

$$\begin{split} \mathsf{L}(\mathsf{h}(x), y) &= \mathsf{L}(\mathsf{h}(x), y) \mathbf{1}_{\rho_h(x, y) \le 0} \\ &\leq \Phi_{\mathsf{L}(\mathsf{h}(x), y)}(\rho_h(x, y)) \\ &= \Phi_{\mathsf{L}(\mathsf{h}(x), y)}(h(x, y) - \max_{y' \neq y} h(x, y')) \\ &= \Phi_{\mathsf{L}(\mathsf{h}(x), y)}(h(x, y) - h(x, \mathsf{h}(x))) \\ &\leq \max_{y' \neq y} \Phi_{\mathsf{L}(y', y)}(h(x, y) - h(x, y')), \end{split}$$

Φ-Choices

- Different algorithms:
 - StructSVM: $\Phi_u(v) = \max(0, u(1-v))$.
 - M3N: $\Phi_u(v) = \max(0, u v)$.
 - CRF: $\Phi_u(v) = \log(1 + e^{u-v})$.
 - StructBoost: $\Phi_u(v) = ue^{-v}$ (Cortes, Kuznetsov, MM, Yang, 2016).

Algorithms

StructSVM

- Maximum Margin Markov Networks (M3N)
- Conditional Random Fields (CRF)
- Regression for Learning Transducers (RLT)

Linear Prediction

- Features: function $\Phi: X \times Y \rightarrow \mathbb{R}^N$.
- **Hypothesis set:** functions $h: X \to Y$ of the form

$$h(x) = \underset{y \in Y}{\operatorname{argmax}} \mathbf{w} \cdot \mathbf{\Phi}(x, y),$$

where the vector \mathbf{w} is learned from data.

Formulation:

- scoring functions.
- multi-class classification.

• margin:
$$\rho_{\mathbf{w}}(x_i, y_i) = \mathbf{w} \cdot \mathbf{\Phi}(x_i, y_i) - \max_{y \neq y_i} \mathbf{w} \cdot \mathbf{\Phi}(x_i, y).$$

Multi-Class SVM

Optimization problem:

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \max_{y \neq y_i} \left(0, 1 - \mathbf{w} \cdot \left[\mathbf{\Phi}(\mathbf{x}_i, y_i) - \mathbf{\Phi}(\mathbf{x}_i, y) \right] \right)_+.$$

Decision function:

$$x \mapsto \operatorname*{argmax}_{y \in \mathcal{Y}} \mathbf{w} \cdot \mathbf{\Phi}(x, y).$$

SVMStruct

(Tsochantaridis et al., 2005)

Optimization problem (StructSVM):

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \max_{y \neq y_i} L(y_i, y) \max\left(0, 1 - \underbrace{\mathbf{w} \cdot \left[\mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, y)\right]}_{=\rho(x_i, y_i, y)}\right).$$

- solution based on iteratively solving QP and adding most violating constraint.
- no specific assumption on loss.
- use of kernels.

M3N

(Taskar et al., 2003)

Optimization problem:

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \max_{y \neq y_i} \max\left(0, L(y_i, y) - \underbrace{\mathbf{w} \cdot \left[\mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, y)\right]}_{=\rho(x_i, y_i, y)}\right).$$

- \mathcal{Y} assumed to have a graph structure with a Markov property, typically a chain or a tree.
- loss assumed decomposable in the same way.
- polynomial-time algorithm using graphical model structure.
- use of kernels.

Equivalent Formulations

Optimization problems:

$$\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \xi_i$$

s.t. $\mathbf{w} \cdot [\mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, y)] \ge 1 - \frac{\xi_i}{L(y, y_i)}, \xi_i \ge 0, \forall i \in [1, m], y \neq y_i.$

$$\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \xi_i$$

s.t. $\mathbf{w} \cdot [\mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, y)] \ge L(y, y_i) - \xi_i, \xi_i \ge 0, \forall i \in [1, m], y \ne y_i.$

Dual Problem

• Optimization problem: $\Delta \Psi_i(y) = \Phi(x_i, y_i) - \Phi(x_i, y)$

$$\max_{\boldsymbol{\alpha} \ge 0} \sum_{i, y \neq y_i} \alpha_{iy} - \frac{1}{2} \sum_{\substack{i, y \neq y_i \\ j, y' \neq y_j}} \alpha_{iy} \alpha_{jy'} \langle \Delta \Psi_i(y), \Delta \Psi_j(y') \rangle$$

s.t.
$$\sum_{y \neq y_i} \frac{\alpha_{iy}}{L(y_i, y)} \le \frac{C}{m}, \forall i \in [1, m].$$

Optimization Solution

(Tsochantaridis et al., 2005)

Cutting plane method: number of steps $poly(\frac{1}{\epsilon}, C, \max_{y,i} L(y, y_i))$.

- start with empty constraints $S_i = \emptyset, i = 1 \dots m$.
- do until no new constraint:
 - for $i = 1 \dots m$ do
 - find most violating constraint:

$$\widehat{y} = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} L(y, y_i) \left[1 - \mathbf{w} \cdot \left[\mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, y) \right] \right] = \xi_i(y)$$

• if
$$(\xi_i(\widehat{y}) > \max_{y \in S_i} \xi_i(y) + \epsilon)$$

- $S_i \leftarrow S_i \cup \{\widehat{y}\}$
- $\alpha \leftarrow \text{dual solution for } \cup_{i=1}^m S_i$

CRF = Cond. Maxent Model

(Lafferty et al., 2001)

Definition: conditional probability distribution over the outputs $\mathbf{y} \in \mathcal{Y}$:

$$\label{eq:pw} \begin{split} \mathsf{p}_{\mathbf{w}}(\mathbf{y}|\mathbf{x}) &= \frac{\exp\left(\mathbf{w}\cdot\mathbf{\Phi}(\mathbf{x},\mathbf{y})\right)}{Z_{\mathbf{w}}(\mathbf{x})}, \\ \text{with} \quad \ \ Z_{\mathbf{w}}(\mathbf{x}) &= \sum_{\mathbf{y}\in\mathcal{Y}}\exp\left(\mathbf{w}\cdot\mathbf{\Phi}(\mathbf{x},\mathbf{y})\right). \end{split}$$

• \mathcal{Y} assumed to have a graph structure with a Markov property, typically a chain or a tree.

CRF

Optimization problem (CRFs):

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \log \sum_{y \in \mathcal{Y}} \exp\left(L(y_i, y) - \underbrace{\mathbf{w} \cdot \left[\mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, y)\right]}_{=\rho(x_i, y_i, y)}\right).$$
max (M3N) \longrightarrow soft-max (CRF)

- comparison with M3N.
- smooth optimization problem, $O(C \log(1/\epsilon))$ solutions.

Features

Definitions:

• output alphabet Δ , $|\Delta| = r$.

• input:
$$\mathbf{x} = x_1 \cdots x_l$$
.

• output:
$$\mathbf{y} = y_1 \cdots y_l \in \Delta^l$$
.

Decomposition: bigram case.

$$\Phi(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{l} \boldsymbol{\phi}(\mathbf{x}, k, y_{k-1}, y_k).$$

Prediction

Computation:

$$\operatorname*{argmax}_{\mathbf{y}\in\Delta^{l}}\mathbf{w}\cdot\mathbf{\Phi}(\mathbf{x},\mathbf{y}) = \operatorname*{argmax}_{\mathbf{y}\in\Delta^{l}}\sum_{k=1}^{l}\mathbf{w}\cdot\boldsymbol{\phi}(\mathbf{x},k,y_{k-1},y_{k}).$$

• exponentially many possible outputs.

Solution:

- cast as single-source shortest-distance problem in acyclic directed graph with $(r^2l + r)$ edges.
- linear-time algorithms: standard acyclic shortestdistance algorithm (Lawler) or the Viterbi algorithm.

Directed Graph

$$y_0 = \epsilon$$
.

Advanced Machine Learning - Mohri@

Estimation

Key term in gradient computation:

$$\nabla_{\mathbf{w}} F(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \sum_{\mathbf{y} \sim \mathsf{p}_{\mathbf{w}}[\cdot | \mathbf{x}_i]} [\mathbf{\Phi}(\mathbf{x}_i, \mathbf{y})] - \sum_{(\mathbf{x}, \mathbf{y}) \sim S} [\mathbf{\Phi}(\mathbf{x}, \mathbf{y})] + \lambda \mathbf{w}.$$

Computation:

$$\begin{split} \mathbf{E}_{\mathbf{y} \sim \mathsf{p}_{\mathbf{w}}[\cdot | \mathbf{x}_{i}]} [\mathbf{\Phi}(\mathbf{x}_{i}, \mathbf{y})] &= \sum_{\mathbf{y} \in \Delta^{l}} \mathsf{p}_{\mathbf{w}}[\mathbf{y} | \mathbf{w}] \mathbf{\Phi}(\mathbf{x}_{i}, \mathbf{y}) \\ &= \sum_{\mathbf{y} \in \Delta^{l}} \mathsf{p}_{\mathbf{w}}[\mathbf{y} | \mathbf{w}] \Big[\sum_{k=1}^{l} \phi(\mathbf{x}_{i}, k, y_{k-1}, y_{k}) \Big] \\ &= \sum_{k=1}^{l} \sum_{(y, y') \in \Delta^{2}} \left[\left[\sum_{\substack{y_{k-1} = y \\ y_{k} = y'}} \mathsf{p}_{\mathbf{w}}[\mathbf{y} | \mathbf{w}] \right] \phi(\mathbf{x}_{i}, k, y, y'). \end{split}$$

Flow Computation

• Decomposition:

$$p_{\mathbf{w}}(\mathbf{y}|\mathbf{x}_{i}) = \frac{\exp\left(\mathbf{w} \cdot \mathbf{\Phi}(\mathbf{x}_{i}, \mathbf{y})\right)}{Z_{\mathbf{w}}(\mathbf{x}_{i})}$$
with $\exp\left(\mathbf{w} \cdot \mathbf{\Phi}(\mathbf{x}_{i}, \mathbf{y})\right) = \prod_{k=1}^{l} \underbrace{\exp\left(\mathbf{w} \cdot \mathbf{\phi}(\mathbf{x}_{i}, k, y_{k-1}, y_{k})\right)}_{a(k, y_{k-1}, y_{k})}.$

- Flow: sum of the weights of all paths going through a given transition.
 - linear-time computation.
 - two single-source shortest-distance algorithms.
 - computational cost in $O(r^2 l)$.

Advanced Machine Learning - Mohri@

Directed Graph

Computation

Single-source shortest distance problems in $(+, \times)$:

- $\alpha(q)$: sum of the weights of all paths from initial to q.
- $\beta(q)$: sum of the weights of all paths from final to q.
- linear-time algorithms for acyclic graphs.
- Partition function $Z_{\mathbf{w}}(\mathbf{x}_i)$: sum of the weights of all accepting paths, $\beta((y_0, 0))$.
- Formula:

$$\sum_{\substack{y_{k-1}=y\\y_k=y'}} \mathsf{p}_{\mathbf{w}}[\mathbf{y}|\mathbf{w}] = \frac{\alpha((y,k-1)) \cdot a(k,y,y') \cdot \beta((y',k))}{\beta((y_0,0))}$$

RLT

(Cortes, MM, Weston, 2005)

Definition: formulated as a regression problem.

- learning transduction (regression).
- prediction: finding pre-image.

RLT

Optimization problem:

$$\underset{\mathbf{W}\in\mathbb{R}^{N_{2}\times N_{1}}}{\operatorname{argmin}} F(\mathbf{W}) = \gamma \|\mathbf{W}\|_{F}^{2} + \sum_{i=1}^{m} \|\mathbf{W}\mathbf{M}_{x_{i}} - \mathbf{M}_{y_{i}}\|^{2}.$$

- generalized ridge regression problem.
- closed-form solution, single matrix inversion.
- can be generalized to encoding constraints.
- use of kernels.

Solution

Primal:

$$\mathbf{W} = \mathbf{M}_Y \mathbf{M}_X^{\top} (\mathbf{M}_X \mathbf{M}_X^{\top} + \gamma \mathbf{I})^{-1}.$$

Dual:

$$\mathbf{W} = \mathbf{M}_Y (\mathbf{K}_X + \gamma \mathbf{I})^{-1} \mathbf{M}_X^{\top}.$$

Regression solution:

$$g(x) = \mathbf{W}\mathbf{M}_x.$$

Prediction

Prediction using kernels:

$$f(x) = \underset{y \in Y^{*}}{\operatorname{argmin}} \| \mathbf{W} \mathbf{M}_{x} - \mathbf{M}_{y} \|^{2}$$

$$= \underset{y \in Y^{*}}{\operatorname{argmin}} \left(\mathbf{M}_{y}^{\top} \mathbf{M}_{y} - 2\mathbf{M}_{y}^{\top} \mathbf{W} \mathbf{M}_{x} \right)$$

$$= \underset{y \in Y^{*}}{\operatorname{argmin}} \left(\mathbf{M}_{y}^{\top} \mathbf{M}_{y} - 2\mathbf{M}_{y}^{\top} \mathbf{M}_{Y} (\mathbf{K}_{X} + \gamma \mathbf{I})^{-1} \mathbf{M}_{X}^{\top} \mathbf{M}_{x} \right)$$

$$= \underset{y \in Y^{*}}{\operatorname{argmin}} \left(K_{Y}(y, y) - 2(\mathbf{K}_{Y}^{y})^{\top} (\mathbf{K}_{X} + \gamma \mathbf{I})^{-1} \mathbf{K}_{X}^{x} \right),$$
with $\mathbf{K}_{Y}^{y} = \begin{bmatrix} K_{Y}(y, y_{1}) \\ \vdots \\ K_{Y}(y, y_{m}) \end{bmatrix}$ and $\mathbf{K}_{X}^{x} = \begin{bmatrix} K_{X}(x, x_{1}) \\ \vdots \\ K_{X}(x, x_{m}) \end{bmatrix}$

٠

Example: N-gram kernel

Definition: for any two strings y_1 and y_2 ,

$$k_n(y_1, y_2) = \sum_{|u|=n} |y_1|_u |y_2|_u.$$

Pre-Image Problem

Example: pre-image for n-gram features.

- find sequence **x** with matching n-gram counts.
- use de Bruijn graph, Euler circuit.

Existence

Theorem: the vector of n-gram counts z admits a pre-image iff for any vertex q the directed graph G_z

 $\operatorname{in-degree}(q) = \operatorname{out-degree}(q).$

Proof: direct consequence of theorem of Euler (1736).

Pre-Image Problem

Example: bigram count vector predicted

$$\mathbf{z} = (0, 1, 0, 0, 0, 2, 1, 1, 0)^{\top}.$$

• de Bruijn graph $G_{\mathbf{z}}$:

• Euler circuit: x = bcbca.

Algorithm

(Cortes, MM, Weston, 2005)

Algorithm:

$\operatorname{Euler}(q)$

- 1 path $\leftarrow \epsilon$
- 2 for each unmarked edge e leaving q do
- 3 Mark(e)
- 4 path $\leftarrow e \text{ EULER}(dest(e))$ path
- 5 return path
- proof of correctness non-trivial.
- linear-time algorithm.

Uniqueness

- In general not unique.
- Set of strings with unique pre-image regular (Kontorovich, 2004).

x = bcbcca/bccbca.

Generalized Euler Circuit

Extensions:

- round components of vector.
- cost of one extra or missing count for an n-gram: one local insertion or deletion.
- potentially more pre-image candidates: potentially use n-gram model to select most likely candidate.
- regression errors and potential absence of pre-image: restart Euler at every vertex for which not all edges are marked.

Illustration

$$x = bccbca/bcbcca.$$

RLT

- Benefits:
 - regression formulation structured prediction problems.
 - simple algorithm.
 - can be generalized to regression with constraints (Cortes, MM, Weston, 2007).
- Drawbacks:
 - input-output features not natural (but constraints).
 - pre-image problem for arbitrary PDS kernels?

Conclusion

- Structured prediction theory:
 - tightest margin guarantees for structured prediction.
 - general loss functions, data-dependent.
 - key notion of factor graph complexity.
 - additionally, tightest margin bounds for standard classification.

References

- Corinna Cortes, Vitaly Kuznetsov, and Mehryar Mohri. Ensemble Methods for Structured Prediction. In ICML, 2014.
- Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. Structured Prediction Theory Based on Factor Graph Complexity. In NIPS, 2016.
- Corinna Cortes, Mehryar Mohri, and Jason Weston. A General Regression Framework for Learning String-to-String Mappings. In Predicting Structured Data. The MIT Press, 2007.
- John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional Random Fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
- David McAllester. Generalization Bounds and Consistency. In Predicting Structured Data. The MIT Press, 2007.

References

- Mehryar Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Problems. Journal of Automata, Languages and Combinatorics 7(3), 2002.
- Ben Taskar and Carlos Guestrin and Daphne Koller. Max-Margin Markov Networks. In NIPS, 2003.
- Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large Margin Methods for Structured and Interdependent Output Variables, JMLR, 6, 2005.