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Structured Prediction
Structured output: 

Loss function:                                 decomposable. 

• Example: Hamming loss. 

• Example: edit-distance loss.
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Y = Y1 ⇥ · · ·⇥ Yl.

L : Y ⇥ Y ! R+

L(y, y0) =
1

l

lX

k=1

1yk 6=y0
k

L(y, y0) =
1

l
dedit(y1 · · · yl, y01 · · · y0l).
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Examples
Pronunciation modeling. 

Part-of-speech tagging. 

Named-entity recognition. 

Context-free parsing. 

Dependency parsing. 

Machine translation. 

Image segmentation.

3
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Examples: NLP Tasks
Pronunciation: 

POS tagging: 

Context-free parsing/Dependency parsing:

4

The thief stole a car 
  D      N      V    D  N

 I       have            formulated                a 
ay  hh ae v   f ow r m y ax l ey t ih d   ax

 root The thief stole a car
  D      N      V    D  N 
The thief stole a car
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Examples: Image Segmentation

5
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Predictors
Family of scoring functions     mapping from             to    . 

For any            , prediction based on highest score: 

Decomposition as a sum modeled by factor graphs.

6

H X ⇥ Y R

h 2 H

8x 2 X , h(x) = argmax

y2Y
h(x, y).
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Factor Graph Examples
Pairwise Markov network decomposition: 

Other decomposition:

7

f1 f21 2 3

f1

f2

1

2

3

h(x, y) = hf1(x, y1, y2) + hf2(x, y2, y3).

h(x, y) = hf1(x, y1, y3)+

hf2(x, y1, y2, y3).
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Factor Graphs
                       : factor graph. 

         : neighborhood of   . 

                              : substructure set cross-product at   . 

Decomposition: 

More generally, example-dependent factor graph,

8

N(f) f

fYf =
Q

k2N(f) Yk

G = (V, F,E)

Gi = G(xi, yi) = (Vi, Fi, Ei).

h(x, y) =
X

f2F

hf (x, yf ).
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Linear Hypotheses
Feature decomposition         Hypothesis decomposition. 

• Example: bigram decomposition.

9

y:     D    N   V    D   N 
x:    his cat ate the fish 
k:                        4

�(x, 4, y3, y4)

�(x, y) =
lX

s=1

�(x, s, ys�1, ys).

h(x, y) = w ·�(x, y) =
lX

s=1

w · �(x, s, y
s�1, ys)| {z }

hs(x,ys�1,ys)

.
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Structured Prediction Problem
Training data: sample drawn i.i.d. from            according to 
some distribution    , 

Problem: find hypothesis                           in     with small 
expected loss: 

• learning guarantees? 

• role of factor graph? 

• better algorithms?

10

X ⇥ Y
D

S=((x1, y1), . . . , (xm, ym)) 2 X⇥Y.

h : X ⇥ Y ! R H

R(h) = E
(x,y)⇠D

[L(h(x), y)].
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Outline
Generalization bounds. 

Algorithms.

11
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Learning Guarantees
Standard multi-class learning bounds: 

• number of classes is exponential! 

Structured prediction bounds: 

• covering number bounds: Hamming loss, linear 
hypotheses (Taskar et al., 2003). 

• PAC-Bayesian bounds (randomized algorithms) (David 

McAllester, 2007). 

     can we derive learning guarantees for general 
hypothesis sets and general loss functions?

12
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Covering Number Bound
Theorem: fix         . Then, with probability at least          over 
the choice of sample    of size     , the following holds for 
any hypothesis                                             :

13

(Taskar et al., 2003)

⇢>0 1�⇢
S m

where

E

(x,y)⇠D
[LH(h, x, y)]  1

m

mX

i=1

sup

f2F⇢
S(h)

LH(f, xi, yi)+O

 s
1

m

R2kwk2
⇢2

(logm+ log l + logmax

k
|Yk|)

!
,

F ⇢
S(h) = {f : X ⇥ Y ! R | 8y 2 Y, 8i 2 [1,m], |f(xi, y)� h(xi, y)|  ⇢H(y, yi)} .

h : (x, y) ! w ·�(x, y)
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Factor Graph Complexity
Empirical factor graph complexity for hypothesis set                           
and sample                              : 

Factor graph complexity:

14

S = (x1, . . . , xm)

H

bRG

S
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✏
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f2Fi
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p
|F

i

| ✏
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...p
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5
.
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h
bRG
S (H)

i
.

correlation with random noise
| {z }

(Cortes, Kuznetsov, MM, Yang,  2016)
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Margin
Definition: the margin of    at a labeled point                          
is  

• error when  

• small margin interpreted as low confidence. 

15

(x, y) 2 X ⇥ Yh

⇢h(x, y) = min
y0 6=y

h(x, y)� h(x, y0).

⇢h(x, y)  0.
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Loss Function
Assumptions: 

• bounded:                                for some            . 

• definite:                                     . 

Consequence:

16

max

y,y0
L(y, y0)  M M > 0

L(y, y0) = 0 ) y = y0

L(h(x), y) = L(h(x), y) 1
⇢h(x,y)0.
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Empirical Margin Losses
For any           ,

17

⇢ > 0

bRadd
S,⇢

(h) = E
(x,y)⇠S


�

M

✓
max

y

0 6=y

L(y0, y)� h(x,y)�h(x,y0)
⇢

◆�

bRmult
S,⇢

(h)= E
(x,y)⇠S


�

M

✓
max

y

0 6=y
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Generalization Bounds
Theorem: for any          , with probability at least          , each 
of the following holds for all           : 

• tightest margin bounds for structured prediction. 

• data-dependent. 

• improves upon bound of (Taskar et al., 2003) by log terms (in 
the special case they study).
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� > 0 1� �

h 2 H

R(h)  bRadd
S,⇢ (h) +

4

p
2

⇢
RG

m(H) +M

s
log

1
�

2m
,

R(h)  bRmult
S,⇢ (h) +

4

p
2M

⇢
RG

m(H) +M

s
log

1
�

2m
.

(Cortes, Kuznetsov, MM, Yang,  2016)



pageAdvanced Machine Learning - Mohri@

Linear Hypotheses
Hypothesis set used by most convex structured prediction 
algorithms (StructSVM, M3N, CRF):

19

with  (x, y) =
X

f2F

 f (x, yf ).p � 1 and

Hp =
n

(x, y) 7! w · (x, y) : w 2 RN
, kwkp  ⇤p

o

,
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Complexity Bounds
Bounds on factor graph complexity of linear hypothesis 
sets:

20

bRG
S (H1)  ⇤1r1

p
s log(2N)

m

bRG
S (H2) 

⇤2r2
qPm

i=1

P
f2Fi

P
y2Yf

|Fi|
m

with
rq = max

i,f,y
k f (xi, y)kq

s = max

j2[1,N ]

mX

i=1

X

f2Fi

X

y2Yf

|F
i

|1 f,j(xi,y) 6=0.
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Key Term
Sparsity parameter: 

• factor graph complexity in                                                 for 
hypothesis set      . 

• key term: average factor graph size.

21

s 
mX

i=1

X

f2Fi

X

y2Yf

|Fi| 
mX

i=1

|Fi|2di  mmax

i
|Fi|2di,

where di = max

f2Fi

|Yf |.

O
�p

log(N)maxi |Fi|2di/m
�

H1
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NLP Applications
Features: 

•         is often a binary function, non-zero for a single     
pair                           . 

• example: presence of n-gram (indexed by   ) at position   
of the output with input sentence    . 

• complexity term only in                                          .

22

 f,j

(x, y) 2 X ⇥ Yf

j f

xi

O
�
max

i
|Fi|

p
log(N)/m

�
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Theory Takeaways
Key generalization terms: 

• average size of factor graphs. 

• empirical margin loss. 

But, is learning with very complex hypothesis sets (factor 
graph complexity) possible? 

• richer families needed for difficult NLP tasks. 

• but generalization bound indicates risk of overfitting.

23

Voted Risk Minimization (VRM) theory  
(Cortes, Kuznetsov, MM, Yang,  2016).
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Outline
Generalization bounds. 

Algorithms.

24
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Surrogate Loss
Lemma: for any             , let                     be an upper bound 
on                   . Then, the following upper bound holds for 
any            and                         : 

Proof: if                , then the following holds:

25

u 2 R+ �u : R ! R
v 7! u1v0

h 2 H (x, y) 2 X ⇥ Y

L(h(x), y)  max

y0 6=y
�L(y0,y)(h(x, y)� h(x, y

0
)).

h(x) 6= y

L(h(x), y) = L(h(x), y)1
⇢h(x,y)0

 �L(h(x),y)(⇢h(x, y))

= �L(h(x),y)(h(x, y)�max

y

0 6=y

h(x, y

0
))

= �L(h(x),y)(h(x, y)� h(x, h(x)))

 max

y

0 6=y

�L(y0
,y)(h(x, y)� h(x, y

0
)),
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Φ-Choices
Different algorithms: 

• StructSVM:                                            . 

• M3N:                                      . 

• CRF:                                      . 

• StructBoost:                          (Cortes, Kuznetsov, MM, Yang,  2016).

26

�u(v) = max(0, u(1� v))

�u(v) = max(0, u� v)

�u(v) = log(1 + eu�v
)

�u(v) = ue�v
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Algorithms
StructSVM 

Maximum Margin Markov Networks (M3N) 

Conditional Random Fields (CRF) 

Regression for Learning Transducers (RLT)

27
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Linear Prediction
Features: function                               . 

Hypothesis set: functions                     of the form 

Formulation:  

• scoring functions. 

• multi-class classification. 

• margin: 

28

� : X�Y �RN

h(x) = argmax
y�Y

w · �(x, y),

where the vector     is learned from data.w

h : X ! Y

⇢w(xi, yi) = w ·�(xi, yi)�max

y 6=yi

w ·�(xi, y).
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Multi-Class SVM
Optimization problem: 

Decision function:

29

min

w

1

2

kwk2 + C
mX

i=1

max

y 6=yi

⇣
0, 1�w ·

⇥
�(xi, yi)��(xi, y)

⇤⌘

+
.

x 7! argmax

y2Y
w ·�(x, y).
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SVMStruct
Optimization problem (StructSVM): 

• solution based on iteratively solving QP and adding most 
violating constraint. 

• no specific assumption on loss. 

• use of kernels.

30

(Tsochantaridis et al., 2005)

min
w

1
2
�w�2+C

m�

i=1

max
y �=yi

L(yi, y)max
�
0, 1�w · [�(xi, yi)��(xi, y)]� �� �

=�(xi,yi,y)

�
.
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M3N
Optimization problem: 

•     assumed to have a graph structure with a Markov 
property, typically a chain or a tree. 

• loss assumed decomposable in the same way. 

• polynomial-time algorithm using graphical model 
structure. 

• use of kernels.

31

min
w

1
2
�w�2+C

m�

i=1

max
y �=yi

max
�
0, L(yi, y)�w · [�(xi, yi)��(xi, y)]� �� �

=�(xi,yi,y)

�
.

(Taskar et al., 2003)

Y
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Equivalent Formulations
Optimization problems:

32

min
w,⇠

1

2
kwk2+C

mX

i=1

⇠i

s.t. w · [�(xi, yi)��(xi, y)] � 1� ⇠i

L(y, yi)
, ⇠i � 0, 8i 2 [1,m], y 6= yi.

min
w,⇠

1

2
kwk2+C

mX

i=1

⇠i

s.t. w · [�(xi, yi)��(xi, y)] � L(y, yi)� ⇠i, ⇠i � 0, 8i 2 [1,m], y 6= yi.
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Dual Problem
Optimization problem: 

        can use PDS kernel.

33

max

↵�0

X

i,y 6=yi

↵iy �
1

2

X

i,y 6=yi

j,y06=yj

↵iy↵jy0h� i(y),� j(y
0
)i

s.t.
X

y 6=yi

↵iy

L(yi, y)
 C

m
, 8i 2 [1,m].

� i(y) = �(xi, yi)��(xi, y)
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Optimization Solution
Cutting plane method: number of steps                                     . 

• start with empty constraints                             . 

• do until no new constraint: 

• for                   do 

• find most violating constraint: 

• if                                     

•   

•          dual solution for 

34

by = argmax

y2Y
L(y, yi)

h
1�w · [�(xi, yi)��(xi, y)]

i
= ⇠i(y)

Si = ;, i = 1 . . .m

i = 1 . . .m

(⇠i(by) > max

y2Si

⇠i(y) + ✏)

Si  Si [ {by}

↵ [m
i=1Si

(Tsochantaridis et al., 2005)

poly

�
1
✏ , C,max

y,i
L(y, yi)

�
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CRF = Cond. Maxent Model
Definition: conditional probability distribution over the 
outputs           : 

•     assumed to have a graph structure with a Markov 
property, typically a chain or a tree.

35

(Lafferty et al., 2001)

with

Y

pw(y|x) =
exp

⇣
w ·�(x,y)

⌘

Zw(x)

,

Zw(x) =

X

y2Y
exp

�
w ·�(x,y)

�
.

y2Y
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CRF
Optimization problem (CRFs): 

• comparison with M3N. 

• smooth optimization problem,                            solutions.

36

min
w

1
2
�w�2+C

m�

i=1

log
�

y�Y
exp

�
L(yi, y)�w · [�(xi, yi)��(xi, y)]� �� �

=�(xi,yi,y)

�
.

� �� �
max (M3N)        soft-max (CRF)

O(C log(1/✏))
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Features
Definitions:  

• output alphabet     ,               . 

• input:                          . 

• output:                                   . 

Decomposition: bigram case.

37

x = x1 · · ·xl

� |�| = r

y = y1 · · · yl 2 �l

�(x,y) =
lX

k=1

�(x, k, yk�1, yk).
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Prediction
Computation: 

• exponentially many possible outputs. 

Solution: 

• cast as single-source shortest-distance problem in acyclic 
directed graph with                  edges. 

• linear-time algorithms: standard acyclic shortest-
distance algorithm (Lawler) or the Viterbi algorithm.

38

argmax

y2�l

w ·�(x,y) = argmax

y2�l

lX

k=1

w · �(x, k, yk�1, yk).

(r2l + r)
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Directed Graph

39

...

...

...

...

...

...

· · ·

· · ·

· · ·

· · ·

· · ·

...

...

(y1, 1)

(yk�1, 1)

(yr, 1)

(yk�1, k � 1)

(yk, k)

(y0, 1)

w·�(x, k, yk�1, yk)

w·�(x, 1, y0, y1)

w·�(x, 1, y0, yr)

y0 = ✏.
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Estimation
Key term in gradient computation: 

Computation:

40

r
w

F (w) =
1

m

mX

i=1

E
y⇠pw[·|xi]

[�(xi,y)]� E
(x,y)⇠S

[�(x,y)] + �w.

E
y⇠pw[·|xi]

[�(xi,y)] =
X

y2�l

p
w

[y|w]�(xi,y)

=
X

y2�l

p
w

[y|w]
h lX

k=1

�(xi, k, yk�1, yk)
i

=
lX

k=1

X

(y,y0)2�2

2

664
X

yk�1=y
yk=y0

p
w

[y|w]

3

775�(xi, k, y, y
0).
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Flow Computation
Decomposition: 

Flow: sum of the weights of all paths going through a given 
transition. 

• linear-time computation. 

• two single-source shortest-distance algorithms. 

• computational cost in             .
41

pw(y|xi) =

exp

⇣
w ·�(xi,y)

⌘

Zw(xi)

with

O(r2l)

exp

⇣
w ·�(xi,y)

⌘
=

lY

k=1

exp

�
w · �(xi, k, yk�1, yk)

�
| {z }

a(k,yk�1,yk)

.
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Directed Graph

42

...

...

...

...

...

...

· · ·

· · ·

· · ·

· · ·

· · ·

...

...

(y1, 1)

(yk�1, 1)

(yr, 1)

(yk�1, k � 1)

(yk, k)

(y0, 1)

�((yk, k))

↵((yk�1, k � 1))

a(k, yk�1, yk)
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Computation
Single-source shortest distance problems in             : 

•          : sum of the weights of all paths from initial to    . 

•          : sum of the weights of all paths from final to    . 

• linear-time algorithms for acyclic graphs. 

Partition function               : sum of the weights of all 
accepting paths,                   . 

Formula:

43

Zw(xi)

↵(q)

(+,⇥)

q

�(q) q

X

yk�1=y
yk=y0

pw[y|w] =
↵((y, k � 1)) · a(k, y, y0) · �((y0, k))

�((y0, 0))
.

�((y0, 0))
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RLT
Definition: formulated as a regression problem. 

• learning transduction (regression). 

• prediction: finding pre-image.

44

(Cortes, MM, Weston, 2005)

X* Y*
f

FX FY

g
ΦX ΦY ΦY

-1
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RLT
Optimization problem: 

• generalized ridge regression problem. 

• closed-form solution, single matrix inversion. 

• can be generalized to encoding constraints. 

• use of kernels.

45

argmin
W�RN2�N1

F (W) = ��W�2
F +

m�

i=1

�WMxi �Myi�2.
�X(xi) �Y (yi)
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Solution
Primal: 

Dual: 

Regression solution:

46

W = MY M
>
X(MXM>

X + �I)�1.

W = MY (KX + �I)�1M>
X .

g(x) = WM
x

.
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Prediction
Prediction using kernels:

47

f(x) = argmin
y2Y

⇤
kWM

x

�M
y

k2

= argmin
y2Y

⇤

�
M>

y

M
y

� 2M>
y

WM
x

�

= argmin
y2Y

⇤

�
M>

y

M
y

� 2M>
y

M
Y

(K
X

+ �I)�1M>
X

M
x

�

= argmin
y2Y

⇤

�
K

Y

(y, y)� 2(Ky

Y

)>(KX + �I)�1Kx

X

�
,

with Ky
Y =

 KY (y,y1)...
KY (y,ym)

�
Kx

X

=


KX(x,x1)...
KX(x,xm)

�
.and
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Example: N-gram kernel
Definition: for any two strings     and     ,

48

kn(y1, y2) =
X

|u|=n

|y1|u |y2|u.

y1 y2
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Pre-Image Problem
Example: pre-image for n-gram features. 

• find sequence    with matching n-gram counts. 

• use de Bruijn graph, Euler circuit.

49

ab

bc|abc| = 2

bb

|abb| = 3 ab

bc

bb

x
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Existence
Theorem: the vector of n-gram counts    admits a pre-image 
iff for any vertex    the directed graph  

Proof: direct consequence of theorem of Euler (1736).

50

z
q Gz

in-degree(q) = out-degree(q).
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Pre-Image Problem
Example: bigram count vector predicted 

• de Bruijn graph      : 

• Euler circuit:                    .

51

a b c

x = bcbca

z = (0, 1, 0, 0, 0, 2, 1, 1, 0)>.

Gz
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Algorithm
Algorithm: 

• proof of correctness non-trivial. 

• linear-time algorithm.

52

Euler(q)
1 path ✏
2 for each unmarked edge e leaving q do

3 Mark(e)
4 path e Euler(dest(e)) path
5 return path

(Cortes, MM, Weston, 2005)
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Uniqueness
In general not unique. 

Set of strings with unique pre-image regular (Kontorovich, 2004).

53

a b c

x = bcbcca/bccbca.
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Generalized Euler Circuit
Extensions: 

• round components of vector. 

• cost of one extra or missing count for an n-gram: one 
local insertion or deletion. 

• potentially more pre-image candidates: potentially use 
n-gram model to select most likely candidate. 

• regression errors and potential absence of pre-image: 
restart Euler at every vertex for which not all edges are 
marked.

54
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Illustration

55

a b c

a b c

x = bccbca/bcbcca.

x = bcba.
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RLT
Benefits: 

• regression formulation structured prediction problems. 

• simple algorithm. 

• can be generalized to regression with constraints (Cortes, 

MM, Weston, 2007). 

Drawbacks: 

• input-output features not natural (but constraints). 

• pre-image problem for arbitrary PDS kernels?

56
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Conclusion
Structured prediction theory: 

• tightest margin guarantees for structured prediction. 

• general loss functions, data-dependent. 

• key notion of factor graph complexity. 

• additionally, tightest margin bounds for standard 
classification.
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