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Outline

B Prediction with expert advice
B Weighted Majority algorithm (WM)
B Randomized Majority algorithm (RWM)

B Online-to-batch conversion
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Motivation

B PAC |learning:
e distribution fixed over time (training and test).

e |[ID assumption.

B On-line learning:
* no distributional assumption.
* worst-case analysis (adversarial).
* mixed training and test.

e Performance measure: mistake model, regret.
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General Online Setting

® Fort=1tol'do
® receiveinstance r;y € X.
o predicty; €Y.
* receive label y; €Y.

o incurloss L(y, y:).
B Classification: Y ={0,1}, L(y,y') =y —y|.
m Regression: Y CR, L(y, v )= (v —y)=

B Objective: minimize total loss Zle L(yt, yz)-
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Prediction with Expert Advice

® Fort=1tol'do
® receiveinstance r; € X and advice @\t,z’ cY,i€[l, N].
o predicty; €Y.
* receive label y; €Y.
o incurloss L(y, y:).

B Objective: minimize regret, i.e., difference of total loss

incurred and that of the best expert,
T

Regret(T Z Ly, yt) mlﬂ L(Yt,iyt)-
t=1
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Halving Algorithm

[see (Mitchell, 1997)]

HALVING(H)
1 H{+— H
2 fort«<—1toT do
3 RECEIVE(xy)
4 Y: — MAJORITYVOTE(Hy, x¢)
5 RECEIVE (1)
6 if y; # y; then
7 Hiiy «—{ce€ Hy: c(xs) = ys}
8 return Hrpq
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Halving Algorithm - Bound

(Littlestone, 1988)

B Theorem: Let H be a finite hypothesis set, then the number

of mistakes made by the Halving algorithm is bounded as
follows:

MHalfving(H) < 1Og2 ’H‘

B Proof: At each mistake, the hypothesis set is reduced at
least by half.
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Weighted Majority Algorithm

(Littlestone and Warmuth, 1988)

WEIGHTED-MAJORITY (N experts) > 1, v, €{0,1}.

1 fori<— 1to N do Bel0,1).
2 Wi, < 1
3 fort«—1to71 do
4 RECEIVE(xt)
5 Yp 1251 weeEN _w, > weighted majority vote
6 RECEIVE(y;)
7 if ?/J\t # Yt then
8 for 2+ 1to N do
9 if (yt,i 7& yt) then
10 Wt41,5 < 5wt,z’
11 else w414 «— wye

12 return wpig
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Weighted Majority - Bound

B Theorem: Let mbe the number of mistakes made by the
WM algorithm till time ¢ and m; that of the best expert.
Then, for all ¢,

log N + mj log %

log 15

mt<

o Thus, m; < O(log N) + constant x best expert.
* Realizable case: m; < O(log N).

e Halving algorithm: 3 = 0.
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Weighted Majority - Proof

B Potential: ®; = Z,ﬁil Wt ;.-

® Upper bound: after each error,

_ 1
O < |1/2+ 1/2@(1% = {%ﬁ} O,
ThUS, b, < #} N.

m Lower bound: for any expertz, @, > w; ; =["4%.
B Comparison: 5"”75 < [#} . N
= my log B < log N 4+ my log [Hﬁ}

= my log {HB} <log N + mj logﬁ
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Weighted Majority - Notes

B Advantage: remarkable bound requiring no assumption.

B Disadvantage: no deterministic algorithm can achieve a
regret R = o(T') with the binary loss.
® Dpetter guarantee with randomized WM.

® Detter guarantee for WM with convex losses.
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Exponential Weighted Average

total loss incurred by
B Algorithm: expert i up to time i

* weight update: Wi41,5 < W, 6_77L(yt’i’yt) — e—nL

N ~
o prediction: J; = ZZ’L—]%, thyf’ .
=1 T

B Theorem: assume thatLis convex in its first argument and
takes values in|0, 1]. Then, for any >0 and any
sequenceyYi, ..., YT € Y the regret at time I 'satisfies

log N 1
Regret(T) < LRI

7 8
Forn = v/8log N/T.
Regret(T) < +/(T/2)log N|
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EW - Proof

® Potential: ®; = log Zi\il Wt ;.

® Upper bound:

N L7
=1 wt—l,ie n (yt,%yt)

27];\;1 Wt—1,4

_ log( E [e—nL(@s,i,yt)])

wt—1

(I)t — (I)t—l = lOg Z

—tog (B lexp (<n(LGris) = B [LGow)) ~n B [LGrswn)])|)

Wt—1 Wt—1
0>
<-n E L ye)] + o (Hoeffding’s ineq.)
Wt—1
2
< -—nL( E [Yi],y) + % (convexity of first arg. of L)
Wt—1
2
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EW - Proof

B Upper bound: summing up the inequalities yields

R n*T
Op — P < —nZL(yt,yt) | .

8
& |ower bound:
O — &y = log Z e~ T _log N > log m%lx e~ T _log N
i=1 I\,
= —7 m_nla Lt ;—logN.

B Comparison:
N n>T

_nmmLTz log N < nZLyt’yt)_l_T
t=1

logN 0T

n 8
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EW - Proof

B Advantage: bound on regret per bound is of the form

G =o(y5)

® Disadvantage: choice of n requires knowledge of horizon.
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Doubling Trick

m |dea: divide time into periods [2¥, 25T —1]of length 2*
with k=0,...,n,T > 2" —1, and choose 1, = SIZ%N

in each period.

B Theorem: with the same assumptions as before, for any I,
the following holds:

V2
V2 -1

Regret(T') < vV (T/2)1log N + /log N/2.
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Doubling Trick - Proof

B By the previous theorem, for any [;. = [2’“, of+l_ 1],

N

Ly, —min Ly, ; < 1/2/2 log N

k

n

n N n
Thus, Ly = ];)Lfk gk Or?:i{lLfk,z- + ;;)\/Qk (log N)/2

N .
ngl:l{lLT,iﬂLkZO?Q\/(lOgN)/?-
with
"L V2T o1 22 AT FI-1 V2T +1) -1 V2T
D R B B R, R S N RS IR
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Notes

® Doubling trick used in a variety of other contexts and
proofs.

B More general method, learning parameter function of
time: n; = 1/ (8log V) /t. Constant factor improvement:

Regret(T) < 2+/(T/2)log N + +/(1/8)log N.
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General Setting

® Adversarial model with action set X ={1,..., N}.

m Fort=1tol'do
e player selects distribution p; over X.
o adversary selectslossl; = (l¢.1,...,ltN).

e player receives l;.
. N
o playerincursloss ) ., pe.ile.

B Objective: minimize (external) regret

T
Z ;] Izm? Z Lt

1~Pt
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Different Setups

B Deterministic vs. randomized.

® Full information vs. partial information (e.g. bandit setting).
B More general competitor class (e.g., swap regret).

B Oblivious vs. non-oblivious (or adaptive).

® Bounded memory.
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Randomized Weighted Majority

(Littlestone and Warmuth, 1988)
RANDOMIZED-WEIGHTED-MAJORITY (V)

1 fori:<+1to NN do

2 W14 < 1
3 D1, < 1/N
4 fort<+1to71 do
5 for 2+ 1to N do
6 if (I;; = 1) then
7 Wit1,i < PWwe
8 else w1 ; < Wy
9 Wiy1 < Zfll W41,
10 for: <+ 1to N do
11 Piti1,i < Wi,/ Wi

12 return wrq
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RWM - Bound

B Theorem:fixg & [%, 1). Then, for any T'> 1, the expected
cumulative loss of RWM can be bounded as follows:

log N
Lp <

1 log N
For 8 = —, 1 —

LT < ,C%in 2\/T10gN.

+ (2 = B) L,
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RWM - Proof

B Potential: Wy = 320wy

® Upper bound:
Wig1 = Z we; + 5 Z we; =W+ (6—1) Z Wy ;

7. lt,i:O 7. ltz:]- 7. lt,i:]-

T
Thus, Wri1 =N [ - (1 - 8)Ly).
t=1

& [ower bound: Wri, > IAX Wy = ger™,
1e|l,

Advanced Machine Learning - Mohri@ page 23



RWM - Proof

B Comparison:
: T T
BET < NTJ(1— (1= B)Li) = L3 logB <logN + > log(1 — (1 — B)Ly)

t=1 t=1
T
(Vx < 1,log(1 —z) < —x) — LM og 8 <logN — (1 — j3) ZLt
t=1

— L0 og B <logN — (1 - B)Lr

log N log B . uin
—— < _
logN log(l_(l_B» min
— < _
log N .
(Vo € [0,1/2], —log(l — ) < o + 2?) — L1 < 1og_; 3 + (2 - B)LP™.

B For the second statement, use

log N
1-p

log N

<
Lr< 15

+ (2 — B)Lmin < + (1= B)T + Lim,
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L ower Bound

B Theorem:let/N = 2. There is a stochastic sequence of
losses for which the expected regret of any algorithm

verifies E|Rp| > /T/8.
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Lower Bound - Proof

| et 1; take valuesly; = (9 )or 1o = () )with equal
probability. Then

T
1 1
~E[Yn 1t] I S
t=1
B Since L7114+ L1 =
Lmin

min L T
LO0 T2 — Loy —T/2. e

B Thus, by the Khintchine-Kahane ineq.,

E[Rr] = E[Lr] — E[LF"] = E[|L1,1 — T/QH

=[]y 5 - <3

M

|| 2 V78
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Online-to-Batch Conversion

B Problem:

o sample((z1,91),...,(x7r,y7r)) € (X x Y)I drawn
i.i.d. according to D.

e loss function L bounded by M > 0,

* how do we combine the sequence i1, ..., hry1of
nypotheses generated by a regret minimization
algorithm to achieve a small generalization error?
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Average Generalization

m Lemma: for any d >0, with probability at least1 — ¢, the
following holds

2log +
% Zle R(h) < % Zle L(hi(xe),ye) + M ﬁ 5

m Proof:forany ¢t € [1,T] letVy = R(ht) — L(he(x4), yt)

® Then,
E[Vi|z14-1] = R(he) — E[L(he(xt), ye)|z1:4-1] = R(he) — R(ht) = 0.

® By Azuma’s inequality,

PrL 7, Vi > o < exp(—2T¢2/(2M)2)).
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Online-to-Batch Guarantee

m Theorem: for anyo >0, with probability at least1l — 9, the
following holds for a convex loss:

1 1 < 2log 1
_ ) <« L(h: (1) . 0
R<T E hz> <= E Lhi(@i), yi) + M| —

T 2

1 : R 210g3

N Th) < | | .
R(T : hz) < jnf B0+ 77 2M\/ T
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m convexity: L( % X1, hi2),y) <+ S, L(hi(2),y).
Thus, T
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Proof

B Assume that the infimum is reached at h™. By Hoeffding's
inequality with probability at least1 — 6 /2,

21
—ZL (h™(xi),y:) < R(h") —I—M\/ og5

® Thus, W|th probablllty atleast1l — 9,

1 & 1 R 2log 2
N h ) < =S LW (), ) + =+ M 2

2log2 Ry 2log 2
< R(h)+ M S+ + M 0
< R(h") + . =
Rr QIOg%
=R(h")+ — +2M :
(h*) + 7 T
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