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Machine Learning Components

critical task — main focus
of ML literature
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Kernel Methods

B Features ®: X — H implicitly defined via the choice of a
PDS kernel K

Vr,ye X, @(x)- P(y) = K(z,y).
B Kinterpreted as a similarity measure.
B Flexibility: PDS kernel can be chosen arbitrarily.

B Help extend a variety of algorithms to non-linear
predictors, e.g., SVMs, KRR, SVR, KPCA.

B PDS condition directly related to convexity of optimization
problem.
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Example - Polynomial Kernels

B Definition:
Ve, y € RY, K(x,y) = (z-y+c)% ¢>0.
B Example:forN=2andd=2,

K(z,y) = (x1y1 + T2y2 + 0)2
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XOR Problem

B Use second-degree polynomial kernel withc = 1:

L9 \/§561£U2
Ly 1wy (11 4vE—vE VI T (11,412, +vE V2, 1)
@ @ @ @
> 1 V\/iﬂ?l
@ @ @ @
(—=1,—1) (1,-1) (1,1, -2, —v2,+vV2,1) | (1,1,—v2,+V2,—v2,1)

Linearly non-separable Linearly separable by z1z2 = 0.
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Other Standard PDS Kernels

B Gaussian kernels:

T — 2
K(x,y) = exp (—H il ) o # 0.

202

* Normalized kernel of (x,x’) s exp (XX°).

o)

B Sigmoid Kernels:

K(x,y) =tanh(a(z -y) +b), a,b > 0.
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SVM

(Cortes and Vapnik, 1995; Boser, Guyon, and Vapnik, 1992)
® Primal:

min —HWH2—|—CZ(1—yZ(W <I>K(:BZ)+b))

w,b
1=1

max E ozz—— E ;oYY K (i, x5)

1,7=1

_|_.

B Dual:

subject to: 0 < a; < C A Zaiyi = 0,7 € [1,m].
i=1
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Kernel Ridge Regression

(Hoerl and Kennard, 1970; Sanders et al., 1998)
B Primal:

min Al|wl|* + > (W Prc(ai) +b—yi)”
1=1
@ Dual:

max —ao' (K + \)a + 2a'y.
aclR™
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Questions

B How should the user choose the kernel?

* problem similar to that of selecting features for other
learning algorithms.

® poor choice—»learning made very difficult.

¢ good choice—even poor learners could succeed.

B The requirement from the user is thus critical.
® can this requirement be lessened?

® isamore automatic selection of features possible?
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Learning Kernel Framework
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Kernel Families

® Most frequently used kernel families, ¢ > 1,
( - 1 ] )

p
ICq:<K”IK“:ZILLkKk,,U,: EAq>
k=1 | Mp | J

with A, = {u >0, ||l = 1}.
B Hypothesis sets:

Hq:{h cHg: K € Ko, |hlu, g1}.
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Relation between Norms

B Lemma: for p,q € (0, +0o0], the following holds:
vx €RY,p < g = |zfy < llall, < N7~ 7|zl
®m Proof: for the left inequalities, observe that for x # 0,

][] = 5[ -

2 2 {ix,

<1
e Rightinequalities follow immediately Holder’s inequality:
- % (& g % l q e % 1_ 1
x|, = Z’%’p} < (ZO%‘P);}) (Z (1)“?) = ||x|[(NP " a.
L 1=1 i=1 i=1

Advanced Machine Learning - Mohri@ page 16



Single Kernel Guarantee

(Koltchinskii and Panchenko, 2002)
B Theorem: fix p>0. Then, for any 0 >0, with probability at

least 1 — ¢, the following holds for all he€ H1,
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Pseudo-Dimension Bound

(Srebro and Ben-David, 2006)

® Assume that for allk € [1,p], Ki(z, z) < R*. Then, for
any 0 >0, with probability at least 1 —9, for any h € H;,

2 + plog 12822;’93R2 + 25615—22 log 57 log 128:§R2 + log(1/9)

R(h) < R,(h) + \/ 8

m

* bound additive in p(modulo log terms).
® notinformative for p>m.
* pased on pseudo-dimension of kernel family.

e similar guarantees for other families.
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Multiple Kernel Guarantee

(Cortes, MM, and Rostamizadeh, 2010)
B Theorem:fixp>0.Letqg,r > 1with %—l—%: 1.Then, for
any 0 >0, with probability at least1 — 9, the following holds
forallh€ H, and any integerl <s<r:

withu = (Tr[K4],..., Tr[K,])".
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Proof

B Letq,r > lwith%—l—%zl.

~ 1 - m
Rs(H,) = EE _hseug Zazh(xz)}
q:=1
Lo > iy
= — sup ;0 Ti, X
1 i 1
= —E5 sup O'TK“(X} = —
m o

mo L peEA,,aTK, a<l

1 _
= —E| sup O'TKMO'}
mo Lueh,

:—E_ sup \/u-ua}

m o LueA,

- LBVl
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<0', a>K1/2}
pElg|lall 1/2<1
v

(Cauchy-Schwarz)
(c'Kio,... ,O'TKPO')T)]

(definition of dual norm)
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Lemma

(Cortes, MM, and Rostamizadeh, 2010)
B [emma: Let K be a kernel matrix for a finite sample. Then,

for any integer r,

E|(0TKo)'| < (r Tr[K])T.

(o

B Proof: combinatorial argument.
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Proof

B Foranyl<s<r,

N 1 _
%S(HQ):EE_V U ||
1
= _E Ug || s
m o
- T RES
= —E [Z(O’ KkO') } }
me =
1 £ 35
< — [E [Z(O‘TK]{G)S}} " (Jensen’s inequality)
Mo =
1 r a1
_ - E |: TK s i| 2s
- kz::l D (o' Kro)
<1 _i (s Tr[K ])S} s _ yslull, (lemma)
s - k =
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L1 Learning Bound

(Cortes, MM, and Rostamizadeh, 2010)
®m Corollary: fix p>0. For any 0 > 0, with probability 1 — 9, the
following holds for all h € H;:

p
R(h) < R,(h) + — I

0 m 2m

* weak dependencyonp.

e boundvalid forp > m.
o Tr|Ki| < mmax Ki(z,x).
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Proof

® For g = 1, the bound holds for any integer s > 1

. 2 g+
R(h) < R ( SHu 5

)

,0 2m

- 1
s

p
with s||ul|s = s ZTr[Kk]S < sp I}?%i(TI'[Kk]-

1
B The function s — sp=reaches it minimum at log p.
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L ower Bound

B Tight bound:
* dependency+/logp cannot be improved.

* argument based on VC dimension or example.

B Observations: case X={-1, +1}”.
 canonical projection kernels K (x,x') =z},
o Hjcontains J,={x—sxi: ke[l,p],se{-1,+1}}.
o VCdim(J,)=0(logp).
o forp=1landh€J,, R,(h)=R(h).
* VC lower bound: Q(/VCdim(J?)/m).
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Comparison

100 -

[Srebro & Ben-David, 2006]

10 -

0.01 & [our bound, 2010]

| 1 1 I
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Ly Learning Bound

(Cortes, MM, and Rostamizadeh, 2010)
B Corollary: fixp>0. Let g, > 1with %—l—%zl . Then, for
any 0 >0, with probability at least1 — 9, the following holds
forall he Hy:

1 p
~ 9 \/rpr max;_, Tr|Kj] log 1
R(h) < R,(h) + = V — Yk

0 m 2m

>

ild dependencyon p.

o Tr|Kg| < mmax Ki(z,x).

T
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L ower Bound

B Tight bound:
¢ dependency p% cannot be improved.

® in particular pi tight for Lo regularization.

B Observations: equal kernels.
© D p1 /“ka:( 1 Mk)Kl.
Dl = (3 hey ) 1]l for 22—y ke 70
1 1
o D ne1 Mk < prllpllg = pT(Holder's inequality).
* H,coincides with{h € H,: [|h|lm,, < par }.

e thus,
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General LK Formulation - SVMs

@ Notation:
o [Cset of PDS kernel functions.
o K kernel matrices associated to K, assumed convex.
o Y eR™*™diagonal matrix withY;; =y;.

B Optimization problem:

minmax 2a'l—a' Y'KYa
Kel ©

subject to: 0 < a < CAa'y =0.

e convex problem: function linear in K, convexity of
pointwise maximum.
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Parameterized LK Formulation

& Notation:
* (K, )uen parameterized set of PDS kernel functions.
o Aconvex set, ;— K, concave function.
o YR diagonal matrix withY;; =y;.

B Optimization problem:

minmax 2o ' 1 — aTYTKH,Ya
UEA o

subject to: 0 < a < C A aTy — 0.

® convex problem: function convex in t, convexity of
pointwise maximum.
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Non-Negative Combinations

K, =>_ K, pe Al

® Byvon Neumann's generalized minimax theorem
(convexity wrt @, concavity wrt o, A1 convex and
compact, A convex and compact):

min max 2o ' 1 — aTYTKMYa

pEA] a€ A

—max min 2o ' 1 — aTYTK“Ya
ac A peAq

—max 2a' 1 — max aTYTK Yo
acA HEA1

—max 2a' 1 — max aTYTKkYa
acA ke[l,p]
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Non-Negative Combinations

(Lanckriet et al., 2004)

B Optimization problem: in view of the previous analysis, the
problem can be rewritten as the following QCQP.

max 2o 1 — ¢
ot

subject to: Vk € [1,p],t > o' Y'K.Ya:
0<a<CAa'y=0.

 complexity (interior-point methods): O(pm?).
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Equivalent Primal Formulation

B Optimization problem:

1 w3 . :
w%é%q§]; +C;max 0,1 —wy; ];Wk-@k(xi) .

Mk
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Lots of Optimization Solutions

B QCQP (Lanckriet et al., 2004).

® Wrapper methods — interleaving call to SVM solver and
update of u :

 SILP (Sonnenburg et al., 2006).

¢ Reduced gradient (SimpleML) (Rakotomamonjy et al.,
2008).

e Newton's method (Kloft et al., 2009).
e Mirror descent (Nath et al., 2009).

® On-line method (Orabona & Jie, 2011).

B Many other methods proposed.
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Does It Work?

B Experiments:

e this algorithm and its different optimization solutions

often do not significantly outperform the simple uniform
combination kernel in practice!

® observations corroborated by NIPS workshops.
B Alternative algorithms: significant improvement (see
empirical results of (Gonen and Alpaydin, 2011)).

e centered alignment-based LK algorithms (Cortes, MM,
and Rostamizadeh, 2010 and 2012).

e non-linear combination of kernels (Cortes, MM, and
Rostamizadeh, 2009).
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LK Formulation - KRR

(Cortes, MM, and Rostamizadeh, 2009)
B Kernel family:

® non-negative combinations.

® Lqregularization.

B Optimization problem:

p
minmax — A\ ' o — E ,ukaTKka + 2aTy
v (0%
k=1

subject to: p >0 A || — pgllq < A

® convex optimization: linearity in g and convexity of
pointwise maximum.
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Projected Gradient

B Solving maximization problem in o, closed-form
solution & = (K, + M) 'y, reduces problem to

min y' (K, + M)y
7
subject to: p > 0A || — pgll2 < A.

B Convex optimization problem, one solution using
projection-based gradient descent:

JF - oy (K, + )71y 0(K,, + )\I)]
=—Tr |(K, + I tyy ' (K, +AI)™* 8(K5M+ )\I)]
k

=—Tr (K, + AI) lyy ' (K + M) 'Ky

=~y (K, + D) 'Kp(K, + M) 'y = —a'Kpa.
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Proj. Grad. KRR - L, Reg.

PROJECTIONBASEDGRADIENTDESCENT((K)ke[1,p]5 Ho)
1 p— py
p' — 0o
while ||p/ — p|| > € do
po— pf
a— (K, + )"y
p—p+na'Kia,...,a K,a)
for £k <— 1 to pdo
py, — max(0, py )

T

O© 00 J O O = W N

—_
-

return p’
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Interpolated Step KRR - L, Reg.

INTERPOLATEDITERATIVEALGORITHM (K )ie(1,p]5 Mo)

QL +— 00
o' — (K, + )"y
while ||[a’ — af| > € do
o — o
ve— (a'Kia,...,a'K,a)'
Mo o+ Aﬁ
a' —no+ (1 —-n) (K, + )"y
return o’

O J O Ui W DN =

Simple and very efficient: few iterations (less thanl5).
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L>-Regularized Combinations

(Cortes, MM, and Rostamizadeh, 2009)

B Dense combinations are beneficial when using many
kernels.

B Combining kernels based on single features, can be viewed
as principled feature weighting.
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Conclusion

B Solid theoretical guarantees suggesting the use of a large
number of base kernels.

B Broad literature on optimization techniques but often no
significant improvement over uniform combination.

B Recent algorithms with significant improvements, in
particular non-linear combinations.

B Still many theoretical and algorithmic questions left to
explore.
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