Advanced Machine Learning

Learning Kernels

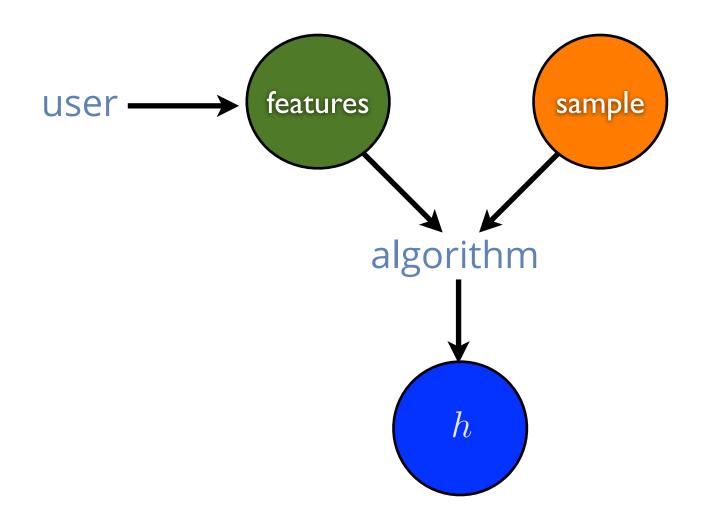
MEHRYAR MOHRI

MOHRI@

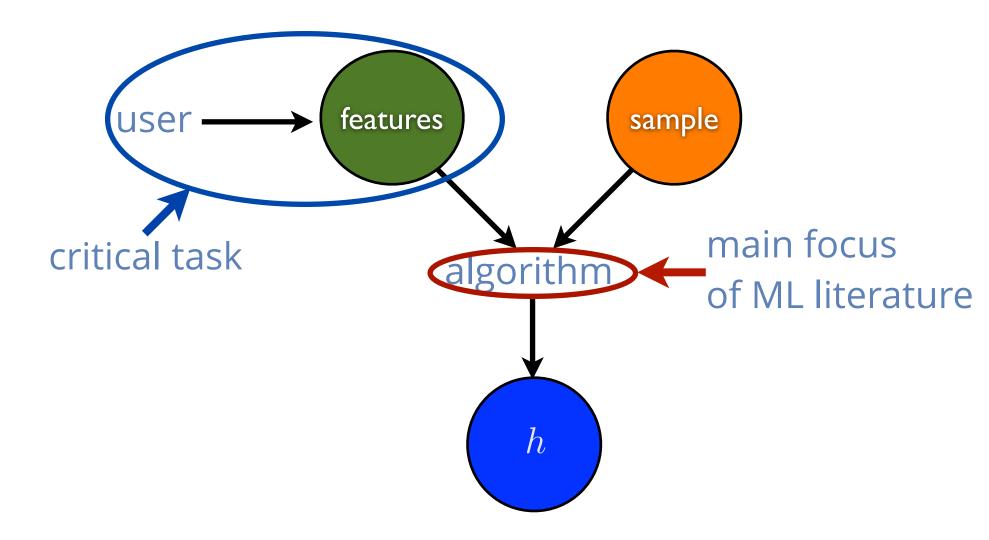
Outline

- Kernel methods.
- Learning kernels
 - scenario.
 - learning bounds.
 - algorithms.

Machine Learning Components



Machine Learning Components



Kernel Methods

Features $\Phi \colon X \to \mathbb{H}$ implicitly defined via the choice of a PDS kernel K

$$\forall x, y \in X, \quad \Phi(x) \cdot \Phi(y) = K(x, y).$$

- lacksquare interpreted as a similarity measure.
- Flexibility: PDS kernel can be chosen arbitrarily.
- Help extend a variety of algorithms to non-linear predictors, e.g., SVMs, KRR, SVR, KPCA.
- PDS condition directly related to convexity of optimization problem.

Example - Polynomial Kernels

Definition:

$$\forall x, y \in \mathbb{R}^N, \ K(x, y) = (x \cdot y + c)^d, \quad c > 0.$$

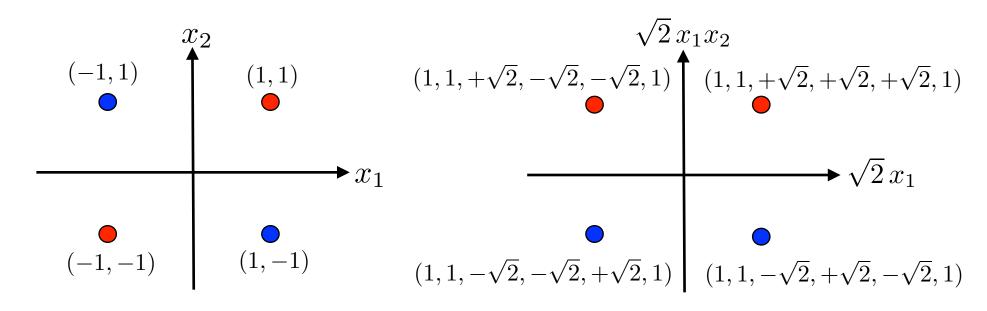
 \blacksquare Example: for N=2 and d=2,

$$K(x,y) = (x_1y_1 + x_2y_2 + c)^2$$

$$= \begin{bmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \\ \sqrt{2c}x_1 \\ \sqrt{2}cx_2 \end{bmatrix} \cdot \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1y_2 \\ \sqrt{2c}y_1 \\ \sqrt{2c}y_2 \end{bmatrix}.$$

XOR Problem

Use second-degree polynomial kernel with c=1:



Linearly non-separable Linearly separable by $x_1x_2 = 0$.

Other Standard PDS Kernels

Gaussian kernels:

$$K(x,y) = \exp\left(-\frac{||x-y||^2}{2\sigma^2}\right), \ \sigma \neq 0.$$

- Normalized kernel of $(\mathbf{x}, \mathbf{x}') \mapsto \exp\left(\frac{\mathbf{x} \cdot \mathbf{x}'}{\sigma^2}\right)$.
- Sigmoid Kernels:

$$K(x,y) = \tanh(a(x \cdot y) + b), \ a, b \ge 0.$$

SVM

(Cortes and Vapnik, 1995; Boser, Guyon, and Vapnik, 1992)

Primal:

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} \left(1 - y_i (\mathbf{w} \cdot \mathbf{\Phi}_K(x_i) + b) \right)_{+}.$$

Dual:

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$

subject to:
$$0 \le \alpha_i \le C \land \sum_{i=1}^m \alpha_i y_i = 0, i \in [1, m].$$

Kernel Ridge Regression

(Hoerl and Kennard, 1970; Sanders et al., 1998)

Primal:

$$\min_{\mathbf{w}} \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^m \left(\mathbf{w} \cdot \mathbf{\Phi}_K(x_i) + b - y_i\right)^2.$$

Dual:

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^m} -\boldsymbol{\alpha}^{\mathsf{T}} (\mathbf{K} + \lambda \mathbf{I}) \boldsymbol{\alpha} + 2\boldsymbol{\alpha}^{\mathsf{T}} \mathbf{y}.$$

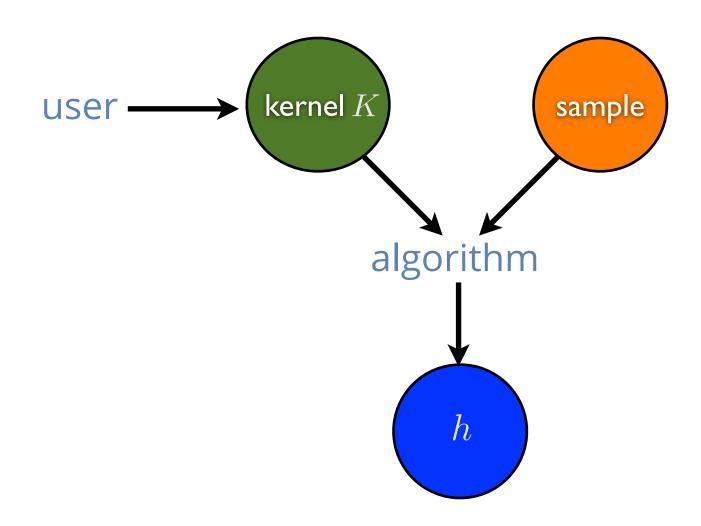
Questions

- How should the user choose the kernel?
 - problem similar to that of selecting features for other learning algorithms.
 - poor choice —>learning made very difficult.
 - good choice —> even poor learners could succeed.
- The requirement from the user is thus critical.
 - can this requirement be lessened?
 - is a more automatic selection of features possible?

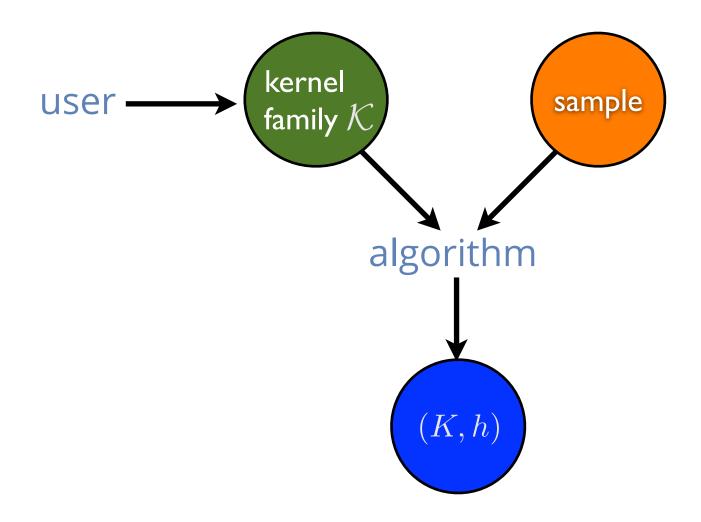
Outline

- Kernel methods.
- Learning kernels
 - scenario.
 - learning bounds.
 - algorithms.

Standard Learning with Kernels



Learning Kernel Framework



Kernel Families

 \blacksquare Most frequently used kernel families, $q \ge 1$,

$$\mathcal{K}_{q} = \left\{ K_{\boldsymbol{\mu}} \colon K_{\boldsymbol{\mu}} = \sum_{k=1}^{p} \mu_{k} K_{k}, \boldsymbol{\mu} = \begin{bmatrix} \mu_{1} \\ \vdots \\ \mu_{p} \end{bmatrix} \in \Delta_{q} \right\}$$

with
$$\Delta_q = \Big\{ oldsymbol{\mu} : oldsymbol{\mu} \geq 0, \|oldsymbol{\mu}\|_q = 1 \Big\}.$$

Hypothesis sets:

$$H_q = \Big\{ h \in \mathbb{H}_K \colon K \in \mathcal{K}_q, \|h\|_{\mathbb{H}_K} \le 1 \Big\}.$$

Relation between Norms

Lemma: for $p, q \in (0, +\infty]$, the following holds:

$$\forall \mathbf{x} \in \mathbb{R}^N, p \le q \Rightarrow ||x||_q \le ||x||_p \le N^{\frac{1}{p} - \frac{1}{q}} ||x||_q.$$

Proof: for the left inequalities, observe that for $\mathbf{x} \neq 0$,

$$\left[\frac{\|\mathbf{x}\|_{p}}{\|\mathbf{x}\|_{q}}\right]^{p} = \sum_{i=1}^{N} \left[\frac{|x_{i}|}{\|\mathbf{x}\|_{q}}\right]^{p} \ge \sum_{i=1}^{N} \left[\frac{|x_{i}|}{\|\mathbf{x}\|_{q}}\right]^{q} = 1.$$

Right inequalities follow immediately Hölder's inequality:

$$\|\mathbf{x}\|_{p} = \left[\sum_{i=1}^{N} |x_{i}|^{p}\right]^{\frac{1}{p}} \leq \left[\left(\sum_{i=1}^{N} (|x_{i}|^{p})^{\frac{q}{p}}\right)^{\frac{p}{q}} \left(\sum_{i=1}^{N} (1)^{\frac{q}{q-p}}\right)^{1-\frac{p}{q}}\right]^{\frac{1}{p}} = \|\mathbf{x}\|_{q} N^{\frac{1}{p}-\frac{1}{q}}.$$

Single Kernel Guarantee

(Koltchinskii and Panchenko, 2002)

■ Theorem: fix ρ > 0. Then, for any δ > 0, with probability at least $1-\delta$, the following holds for all h ∈ H_1 ,

$$R(h) \le \widehat{R}_{\rho}(h) + \frac{2}{\rho} \frac{\sqrt{\text{Tr}[\mathbf{K}]}}{m} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.$$

Pseudo-Dimension Bound

(Srebro and Ben-David, 2006)

Assume that for all $k\in[1,p], K_k(x,x)\!\leq\!R^2$. Then, for any $\delta\!>\!0$, with probability at least $1\!-\!\delta$, for any $h\!\in\!H_1$,

$$R(h) \le \widehat{R}_{\rho}(h) + \sqrt{8 \frac{2 + p \log \frac{128em^{3}R^{2}}{\rho^{2}p} + 256 \frac{R^{2}}{\rho^{2}} \log \frac{\rho em}{8R} \log \frac{128mR^{2}}{\rho^{2}} + \log(1/\delta)}}{m}.$$

- bound additive in p (modulo log terms).
- not informative for p > m.
- based on pseudo-dimension of kernel family.
- similar guarantees for other families.

Multiple Kernel Guarantee

(Cortes, MM, and Rostamizadeh, 2010)

Theorem: fix $\rho > 0$. Let $q, r \geq 1$ with $\frac{1}{q} + \frac{1}{r} = 1$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following holds for all $h \in H_q$ and any integer $1 \leq s \leq r$:

$$R(h) \le \widehat{R}_{\rho}(h) + \frac{2}{\rho} \frac{\sqrt{s \|\mathbf{u}\|_s}}{m} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}},$$

with
$$\mathbf{u} = (\mathrm{Tr}[\mathbf{K}_1], \dots, \mathrm{Tr}[\mathbf{K}_p])^{\top}$$
.

Proof

Let $q, r \ge 1$ with $\frac{1}{q} + \frac{1}{r} = 1$.

$$\widehat{\mathfrak{R}}_{S}(H_{q}) = \frac{1}{m} \operatorname{E} \left[\sup_{h \in H_{q}} \sum_{i=1}^{m} \sigma_{i} h(x_{i}) \right]$$

$$= \frac{1}{m} \operatorname{E} \left[\sup_{\mu \in \Delta_{q}, \boldsymbol{\alpha}^{\top} \mathbf{K}_{\mu} \boldsymbol{\alpha} \leq 1} \sum_{i,j=1}^{m} \sigma_{i} \alpha_{j} K_{\mu}(x_{i}, x_{j}) \right]$$

$$= \frac{1}{m} \operatorname{E} \left[\sup_{\mu \in \Delta_{q}, \boldsymbol{\alpha}^{\top} \mathbf{K}_{\mu} \boldsymbol{\alpha} \leq 1} \boldsymbol{\sigma}^{\top} \mathbf{K}_{\mu} \boldsymbol{\alpha} \right] = \frac{1}{m} \operatorname{E} \left[\sup_{\mu \in \Delta_{q}, \|\boldsymbol{\alpha}\|_{\mathbf{K}_{\mu}^{1/2}} \leq 1} \langle \boldsymbol{\sigma}, \boldsymbol{\alpha} \rangle_{\mathbf{K}_{\mu}^{1/2}} \right]$$

$$= \frac{1}{m} \operatorname{E} \left[\sup_{\mu \in \Delta_{q}} \sqrt{\boldsymbol{\sigma}^{\top} \mathbf{K}_{\mu} \boldsymbol{\sigma}} \right] \qquad (Cauchy-Schwarz)$$

$$= \frac{1}{m} \operatorname{E} \left[\sup_{\mu \in \Delta_{q}} \sqrt{\boldsymbol{\mu} \cdot \mathbf{u}_{\sigma}} \right] \qquad \left[\mathbf{u}_{\sigma} = (\boldsymbol{\sigma}^{\top} \mathbf{K}_{1} \boldsymbol{\sigma}, \dots, \boldsymbol{\sigma}^{\top} \mathbf{K}_{p} \boldsymbol{\sigma})^{\top} \right]$$

$$= \frac{1}{m} \operatorname{E} \left[\sqrt{\|\mathbf{u}_{\sigma}\|_{r}} \right]. \qquad (definition of dual norm)$$

Lemma

(Cortes, MM, and Rostamizadeh, 2010)

Lemma: Let \mathbf{K} be a kernel matrix for a finite sample. Then, for any integer r,

$$\operatorname{E}_{\boldsymbol{\sigma}}\left[(\boldsymbol{\sigma}^{\top}\mathbf{K}\boldsymbol{\sigma})^{r}\right] \leq \left(r\operatorname{Tr}[\mathbf{K}]\right)^{r}.$$

Proof: combinatorial argument.

Proof

 \blacksquare For any $1 \le s \le r$,

$$\widehat{\mathfrak{R}}_{S}(H_{q}) = \frac{1}{m} \operatorname{E}_{\sigma} \left[\sqrt{\|\mathbf{u}_{\sigma}\|_{r}} \right]
\leq \frac{1}{m} \operatorname{E}_{\sigma} \left[\sqrt{\|\mathbf{u}_{\sigma}\|_{s}} \right]
= \frac{1}{m} \operatorname{E}_{\sigma} \left[\left[\sum_{k=1}^{p} (\boldsymbol{\sigma}^{\top} \mathbf{K}_{k} \boldsymbol{\sigma})^{s} \right]^{\frac{1}{2s}} \right]
\leq \frac{1}{m} \left[\operatorname{E}_{\sigma} \left[\sum_{k=1}^{p} (\boldsymbol{\sigma}^{\top} \mathbf{K}_{k} \boldsymbol{\sigma})^{s} \right] \right]^{\frac{1}{2s}}$$
(Jensen's inequality)
$$= \frac{1}{m} \left[\sum_{k=1}^{p} \operatorname{E}_{\sigma} \left[(\boldsymbol{\sigma}^{\top} \mathbf{K}_{k} \boldsymbol{\sigma})^{s} \right] \right]^{\frac{1}{2s}}
\leq \frac{1}{m} \left[\sum_{k=1}^{p} \left(s \operatorname{Tr}[\mathbf{K}_{k}] \right)^{s} \right]^{\frac{1}{2s}} = \frac{\sqrt{s \|\mathbf{u}\|_{s}}}{m}.$$
(lemma)

L₁ Learning Bound

(Cortes, MM, and Rostamizadeh, 2010)

Corollary: fix $\rho > 0$. For any $\delta > 0$, with probability $1 - \delta$, the following holds for all $h \in H_1$:

$$R(h) \le \widehat{R}_{\rho}(h) + \frac{2}{\rho} \frac{\sqrt{e \lceil \log p \rceil \max_{k=1}^{p} \operatorname{Tr}[\mathbf{K}_{k}]}}{m} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}}.$$

- weak dependency on p.
- bound valid for $p\gg m$.
- $\operatorname{Tr}[\mathbf{K}_k] \leq m \max_{x} K_k(x, x)$.

Proof

For q=1 , the bound holds for any integer $s\geq 1$

$$R(h) \le \widehat{R}_{\rho}(h) + \frac{2}{\rho} \frac{\sqrt{s \|\mathbf{u}\|_s}}{m} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}},$$

with
$$s\|\mathbf{u}\|_s = s\left[\sum_{k=1}^p \mathrm{Tr}[\mathbf{K}_k]^s\right]^{\frac{1}{s}} \le sp^{\frac{1}{s}} \max_{k=1}^p \mathrm{Tr}[\mathbf{K}_k].$$

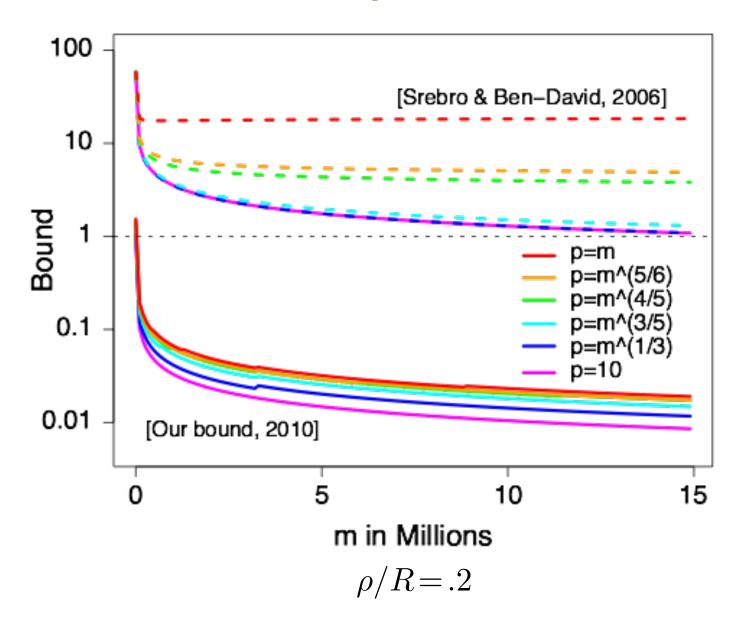
lacksquare The function $s\mapsto sp^{rac{1}{s}}$ reaches it minimum at $\log p$.

Lower Bound

Tight bound:

- dependency $\sqrt{\log p}$ cannot be improved.
- argument based on VC dimension or example.
- Observations: case $\mathcal{X} = \{-1, +1\}^p$.
 - canonical projection kernels $K_k(\mathbf{x},\mathbf{x}') = x_k x_k'$.
 - H_1 contains $J_p = \{ \mathbf{x} \mapsto sx_k : k \in [1, p], s \in \{-1, +1\} \}.$
 - $\operatorname{VCdim}(J_p) = \Omega(\log p)$.
 - for $\rho = 1$ and $h \in J_p$, $\widehat{R}_{\rho}(h) = \widehat{R}(h)$.
 - VC lower bound: $\Omega(\sqrt{\mathrm{VCdim}(J^p)/m})$.

Comparison



Lq Learning Bound

(Cortes, MM, and Rostamizadeh, 2010)

Corollary: fix $\rho > 0$. Let $q, r \geq 1$ with $\frac{1}{q} + \frac{1}{r} = 1$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following holds for all $h \in H_q$:

$$R(h) \le \widehat{R}_{\rho}(h) + \frac{2}{\rho} \frac{\sqrt{rp^{\frac{1}{r}} \max_{k=1}^{p} \operatorname{Tr}[\mathbf{K}_{k}]}}{m} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}},$$

- mild dependency on p.
- $\operatorname{Tr}[\mathbf{K}_k] \leq m \max_{x} K_k(x, x)$.

Lower Bound

Tight bound:

- dependency $p^{\frac{1}{2r}}$ cannot be improved.
- in particular $p^{\frac{1}{4}}$ tight for L_2 regularization.
- Observations: equal kernels.
 - $\sum_{k=1}^{p} \mu_k K_k = (\sum_{k=1}^{p} \mu_k) K_1$.
 - thus, $||h||_{\mathbb{H}_{K_1}}^2 = (\sum_{k=1}^p \mu_k) ||h||_{\mathbb{H}_K}^2$ for $\sum_{k=1}^p \mu_k \neq 0$.
 - $\sum_{k=1}^p \mu_k \leq p^{\frac{1}{r}} \| \boldsymbol{\mu} \|_q = p^{\frac{1}{r}}$ (Hölder's inequality).
 - H_q coincides with $\{h \in \mathbb{H}_{K_1} : \|h\|_{\mathbb{H}_{K_1}} \le p^{\frac{1}{2r}}\}$.

Outline

- Kernel methods.
- Learning kernels
 - scenario.
 - learning bounds.
 - algorithms.

General LK Formulation - SVMs

Notation:

- K set of PDS kernel functions.
- $\overline{\mathcal{K}}$ kernel matrices associated to \mathcal{K} , assumed convex.
- $\mathbf{Y} \in \mathbb{R}^{m \times m}$ diagonal matrix with $\mathbf{Y}_{ii} = \mathbf{y}_i$.
- Optimization problem:

$$\min_{\mathbf{K} \in \overline{\mathcal{K}}} \max_{\boldsymbol{\alpha}} \ 2 \, \boldsymbol{\alpha}^{\top} \mathbf{1} - \boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K} \mathbf{Y} \boldsymbol{\alpha}$$
subject to: $\mathbf{0} \le \boldsymbol{\alpha} \le \mathbf{C} \wedge \boldsymbol{\alpha}^{\top} \mathbf{y} = 0$.

• convex problem: function linear in \mathbf{K} , convexity of pointwise maximum.

Parameterized LK Formulation

Notation:

- $(K_{\mu})_{\mu \in \Delta}$ parameterized set of PDS kernel functions.
- Δ convex set, $\mu \mapsto \mathbf{K}_{\mu}$ concave function.
- $\mathbf{Y} \in \mathbb{R}^{m \times m}$ diagonal matrix with $\mathbf{Y}_{ii} = \mathbf{y}_i$.
- Optimization problem:

$$\min_{\mu \in \Delta} \max_{\alpha} 2 \boldsymbol{\alpha}^{\top} \mathbf{1} - \boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{\mu} \mathbf{Y} \boldsymbol{\alpha}$$
subject to: $\mathbf{0} \leq \boldsymbol{\alpha} \leq \mathbf{C} \wedge \boldsymbol{\alpha}^{\top} \mathbf{y} = 0$.

• convex problem: function convex in μ , convexity of pointwise maximum.

Non-Negative Combinations

- $K_{\mu} = \sum_{k=1}^{p} \mu_k K_k$, $\mu \in \Delta_1$.
- By von Neumann's generalized minimax theorem (convexity wrt μ , concavity wrt α , Δ_1 convex and compact, $\mathcal A$ convex and compact):

$$\min_{\boldsymbol{\mu} \in \Delta_1} \max_{\boldsymbol{\alpha} \in \mathcal{A}} 2 \boldsymbol{\alpha}^{\top} \mathbf{1} - \boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{\boldsymbol{\mu}} \mathbf{Y} \boldsymbol{\alpha}$$

$$= \max_{\boldsymbol{\alpha} \in \mathcal{A}} \min_{\boldsymbol{\mu} \in \Delta_1} 2 \boldsymbol{\alpha}^{\top} \mathbf{1} - \boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{\boldsymbol{\mu}} \mathbf{Y} \boldsymbol{\alpha}$$

$$= \max_{\boldsymbol{\alpha} \in \mathcal{A}} 2 \boldsymbol{\alpha}^{\top} \mathbf{1} - \max_{\boldsymbol{\mu} \in \Delta_1} \boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{\boldsymbol{\mu}} \mathbf{Y} \boldsymbol{\alpha}$$

$$= \max_{\boldsymbol{\alpha} \in \mathcal{A}} 2 \boldsymbol{\alpha}^{\top} \mathbf{1} - \max_{\boldsymbol{\mu} \in \Delta_1} \boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{\boldsymbol{\mu}} \mathbf{Y} \boldsymbol{\alpha}$$

$$= \max_{\boldsymbol{\alpha} \in \mathcal{A}} 2 \boldsymbol{\alpha}^{\top} \mathbf{1} - \max_{\boldsymbol{k} \in [1, p]} \boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{\boldsymbol{k}} \mathbf{Y} \boldsymbol{\alpha}.$$

Non-Negative Combinations

(Lanckriet et al., 2004)

Optimization problem: in view of the previous analysis, the problem can be rewritten as the following QCQP.

$$\max_{\boldsymbol{\alpha},t} \ 2\boldsymbol{\alpha}^{\top} \mathbf{1} - t$$
subject to: $\forall k \in [1, p], t \geq \boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{k} \mathbf{Y} \boldsymbol{\alpha};$
$$\mathbf{0} \leq \boldsymbol{\alpha} \leq \mathbf{C} \wedge \boldsymbol{\alpha}^{\top} \mathbf{y} = 0.$$

ullet complexity (interior-point methods): $O(pm^3)$.

Equivalent Primal Formulation

Optimization problem:

$$\min_{w,\mu \in \Delta_q} \frac{1}{2} \sum_{k=1}^p \frac{\|\mathbf{w}_k\|_2^2}{\mu_k} + C \sum_{i=1}^m \max \left\{ 0, 1 - y_i \left(\sum_{k=1}^p \mathbf{w}_k \cdot \mathbf{\Phi}_k(x_i) \right) \right\}.$$

Lots of Optimization Solutions

- QCQP (Lanckriet et al., 2004).
- Wrapper methods interleaving call to SVM solver and update of μ :
 - SILP (Sonnenburg et al., 2006).
 - Reduced gradient (SimpleML) (Rakotomamonjy et al., 2008).
 - Newton's method (Kloft et al., 2009).
 - Mirror descent (Nath et al., 2009).
- On-line method (Orabona & Jie, 2011).
- Many other methods proposed.

Does It Work?

Experiments:

- this algorithm and its different optimization solutions often do not significantly outperform the simple uniform combination kernel in practice!
- observations corroborated by NIPS workshops.
- Alternative algorithms: significant improvement (see empirical results of (Gönen and Alpaydin, 2011)).
 - centered alignment-based LK algorithms (Cortes, MM, and Rostamizadeh, 2010 and 2012).
 - non-linear combination of kernels (Cortes, MM, and Rostamizadeh, 2009).

LK Formulation - KRR

(Cortes, MM, and Rostamizadeh, 2009)

- Kernel family:
 - non-negative combinations.
 - L_q regularization.
- Optimization problem:

$$\min_{\boldsymbol{\mu}} \max_{\boldsymbol{\alpha}} \ -\lambda \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha} - \sum_{k=1}^{p} \mu_{k} \boldsymbol{\alpha}^{\top} \mathbf{K}_{k} \boldsymbol{\alpha} + 2 \boldsymbol{\alpha}^{\top} \mathbf{y}$$
subject to: $\boldsymbol{\mu} \geq 0 \wedge \|\boldsymbol{\mu} - \boldsymbol{\mu}_{0}\|_{q} \leq \Lambda$.

• convex optimization: linearity in μ and convexity of pointwise maximum.

Projected Gradient

Solving maximization problem in $m{lpha}$, closed-form solution $m{lpha}=({f K_{\mu}}+\lambda{f I})^{-1}{f y}$, reduces problem to

$$\min_{\boldsymbol{\mu}} \ \mathbf{y}^{\top} (\mathbf{K}_{\boldsymbol{\mu}} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

subject to:
$$\mu \geq 0 \wedge \|\mu - \mu_0\|_2 \leq \Lambda$$
.

Convex optimization problem, one solution using projection-based gradient descent:

$$\frac{\partial F}{\partial \mu_{k}} = \operatorname{Tr} \left[\frac{\partial \mathbf{y}^{\top} (\mathbf{K}_{\mu} + \lambda \mathbf{I})^{-1} \mathbf{y}}{\partial (\mathbf{K}_{\mu} + \lambda \mathbf{I})} \frac{\partial (\mathbf{K}_{\mu} + \lambda \mathbf{I})}{\partial \mu_{k}} \right]
= - \operatorname{Tr} \left[(\mathbf{K}_{\mu} + \lambda \mathbf{I})^{-1} \mathbf{y} \mathbf{y}^{\top} (\mathbf{K}_{\mu} + \lambda \mathbf{I})^{-1} \frac{\partial (\mathbf{K}_{\mu} + \lambda \mathbf{I})}{\partial \mu_{k}} \right]
= - \operatorname{Tr} \left[(\mathbf{K}_{\mu} + \lambda \mathbf{I})^{-1} \mathbf{y} \mathbf{y}^{\top} (\mathbf{K}_{\mu} + \lambda \mathbf{I})^{-1} \mathbf{K}_{k} \right]
= - \mathbf{y}^{\top} (\mathbf{K}_{\mu} + \lambda \mathbf{I})^{-1} \mathbf{K}_{k} (\mathbf{K}_{\mu} + \lambda \mathbf{I})^{-1} \mathbf{y} = -\alpha^{\top} \mathbf{K}_{k} \alpha.$$

Proj. Grad. KRR - L₂ Reg.

ProjectionBasedGradientDescent $((\mathbf{K}_k)_{k\in[1,p]},\boldsymbol{\mu}_0)$

```
1 \mu \leftarrow \mu_0
  2 \quad \boldsymbol{\mu}' \leftarrow \infty
  3 while \|\mu' - \mu\| > \epsilon do
  4 \mu \leftarrow \mu'
  \mathbf{5} \qquad \mathbf{\alpha} \leftarrow (\mathbf{K}_{\boldsymbol{\mu}} + \lambda \mathbf{I})^{-1} \mathbf{y}
  6 \boldsymbol{\mu}' \leftarrow \boldsymbol{\mu} + \eta \left( \boldsymbol{\alpha}^{\top} \mathbf{K}_1 \boldsymbol{\alpha}, \dots, \boldsymbol{\alpha}^{\top} \mathbf{K}_p \boldsymbol{\alpha} \right)^{\top}
        for k \leftarrow 1 to p do
                                      \boldsymbol{\mu}_k' \leftarrow \max(0, \boldsymbol{\mu}_k')
                            \boldsymbol{\mu}' \leftarrow \boldsymbol{\mu}_0 + \Lambda \frac{\boldsymbol{\mu}' - \boldsymbol{\mu}_0}{\|\boldsymbol{\mu}' - \boldsymbol{\mu}_0\|}
   9
10
             return \mu'
```

Interpolated Step KRR - L2 Reg.

InterpolatedIterativeAlgorithm $((\mathbf{K}_k)_{k\in[1,p]},\boldsymbol{\mu}_0)$

```
1 \boldsymbol{\alpha} \leftarrow \infty

2 \boldsymbol{\alpha}' \leftarrow (\mathbf{K}_{\boldsymbol{\mu}_0} + \lambda \mathbf{I})^{-1} \mathbf{y}

3 while \|\boldsymbol{\alpha}' - \boldsymbol{\alpha}\| > \epsilon do

4 \boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha}'

5 \mathbf{v} \leftarrow (\boldsymbol{\alpha}^{\top} \mathbf{K}_1 \boldsymbol{\alpha}, \dots, \boldsymbol{\alpha}^{\top} \mathbf{K}_p \boldsymbol{\alpha})^{\top}

6 \boldsymbol{\mu} \leftarrow \boldsymbol{\mu}_0 + \Lambda \frac{\mathbf{v}}{\|\mathbf{v}\|}

7 \boldsymbol{\alpha}' \leftarrow \eta \boldsymbol{\alpha} + (1 - \eta)(\mathbf{K}_{\boldsymbol{\mu}} + \lambda \mathbf{I})^{-1} \mathbf{y}

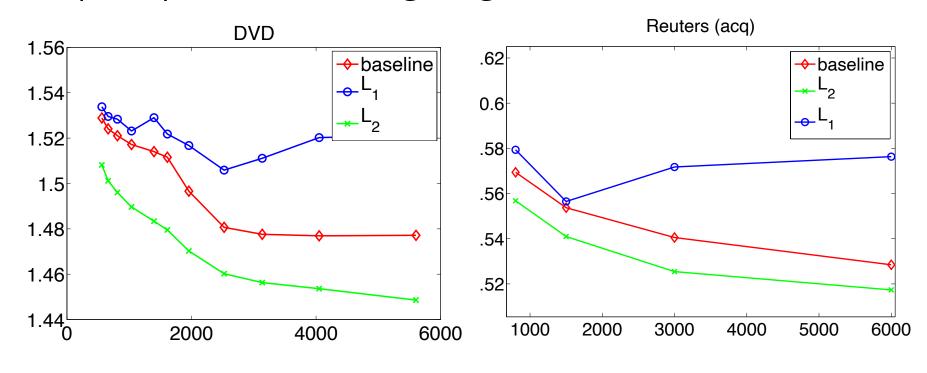
8 return \boldsymbol{\alpha}'
```

Simple and very efficient: few iterations (less than I 5).

L₂-Regularized Combinations

(Cortes, MM, and Rostamizadeh, 2009)

- Dense combinations are beneficial when using many kernels.
- Combining kernels based on single features, can be viewed as principled feature weighting.



Conclusion

- Solid theoretical guarantees suggesting the use of a large number of base kernels.
- Broad literature on optimization techniques but often no significant improvement over uniform combination.
- Recent algorithms with significant improvements, in particular non-linear combinations.
- Still many theoretical and algorithmic questions left to explore.

References

- Bousquet, Olivier and Herrmann, Daniel J. L. On the complexity of learning the kernel matrix. In NIPS, 2002.
- Corinna Cortes, Marius Kloft, and Mehryar Mohri. Learning kernels using local Rademacher complexity. In Proceedings of NIPS, 2013.
- Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Learning non-linear combinations of kernels. In NIPS, 2009.
- Cortes, Corinna, Mohri, Mehryar, and Rostamizadeh, Afshin. Generalization Bounds for Learning Kernels. In ICML, 2010.
- Cortes, Corinna, Mohri, Mehryar, and Rostamizadeh, Afshin. Two-stage learning kernel methods. In ICML, 2010.
- Corinna Cortes, Mehryar Mohri, Afshin Rostamizadeh. Algorithms for Learning Kernels Based on Centered Alignment. JMLR 13: 795-828, 2012.

References

- Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Tutorial: Learning Kernels. ICML 2011, Bellevue, Washington, July 2011.
- Zakria Hussain, John Shawe-Taylor. Improved Loss Bounds For Multiple Kernel Learning. In AISTATS, 2011 [see arxiv for corrected version].
- Sham M. Kakade, Shai Shalev-Shwartz, Ambuj Tewari: Regularization Techniques for Learning with Matrices. JMLR 13: 1865-1890, 2012.
- Koltchinskii, V. and Panchenko, D. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30, 2002.
- Koltchinskii, Vladimir and Yuan, Ming. Sparse recovery in large ensembles of kernel machines on-line learning and bandits. In COLT, 2008.
- Lanckriet, Gert, Cristianini, Nello, Bartlett, Peter, Ghaoui, Laurent El, and Jordan, Michael. Learning the kernel matrix with semidefinite programming. JMLR, 5, 2004.

References

- Mehmet Gönen, Ethem Alpaydin: Multiple Kernel Learning Algorithms. JMLR 12: 2211-2268 (2011).
- Srebro, Nathan and Ben-David, Shai. Learning bounds for support vector machines with learned kernels. In COLT, 2006.
- Ying, Yiming and Campbell, Colin. Generalization bounds for learning the kernel problem. In COLT, 2009.