Outline

- Normal form games
- Nash equilibrium
- von Neumann’s minimax theorem
- Correlated equilibrium
- Swap regret
Normal Form Games: Example

Rock-Paper-Scissors.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0,0</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
<tr>
<td>P</td>
<td>1,-1</td>
<td>0,0</td>
<td>-1,1</td>
</tr>
<tr>
<td>S</td>
<td>-1,1</td>
<td>1,-1</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Be Truly Random

http://goo.gl/3sVFzN

Rock-Paper-Scissors: You vs. the Computer

Computers mimic human reasoning by building on simple rules and statistical averages. Test your strategy against the computer in this rock-paper-scissors game illustrating basic artificial intelligence. Choose from two different modes: novice, where the computer learns to play from scratch, and veteran, where the computer pits over 200,000 rounds of previous experience against you.

Note: A truly random game of rock-paper-scissors would result in a statistical tie with each player winning, tying and losing one-third of the time. However, people are not truly random and thus can be studied and analyzed. While this computer won't win all rounds, over time it can exploit a person's tendencies and patterns to gain an advantage over its opponent.

Play at least five rounds to see what the computer is thinking.
Normal Form Games

- \(p \) players.

- For each player \(k \in [1, p] \):
 - set of actions (or pure strategies) \(\mathcal{A}_k \).
 - payoff function \(u_k : \prod_{k=1}^{p} \mathcal{A}_k \rightarrow \mathbb{R} \).

- Goal of each player: maximize his payoff in a repeated game.
Prisoner’s Dilemma

- Silence/Betrayal.
 - for each player, the best action is B, regardless of the other player’s action.
 - but, with (B, B), both are worse off than (S, S).

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2,2</td>
<td>0,3</td>
</tr>
<tr>
<td>B</td>
<td>3,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>
Matching Pennies

- Player A wins when pennies match, player B otherwise.
 - other versions: penalty kick.
 - no pure strategy Nash equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1,-1</td>
<td>-1,1</td>
</tr>
<tr>
<td>T</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
</tbody>
</table>
Battle of The Sexes

- Opera/Football.
 - two pure strategy Nash equilibria.

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>3,2</td>
<td>0,0</td>
</tr>
<tr>
<td>F</td>
<td>0,0</td>
<td>2,3</td>
</tr>
</tbody>
</table>
Mixed Strategies

- **Strategies:**
 - pure strategies: elements of $\prod_{k=1}^{p} \mathcal{A}_k$.
 - mixed strategies: elements of $\prod_{k=1}^{p} \Delta_1(\mathcal{A}_k)$.

- **Payoff:** for each player $k \in [1, p]$, when players play mixed strategies (p_1, \ldots, p_p),

$$
\mathbb{E}_{a_j \sim p_j} [u_k(a)] = \sum_{a=(a_1, \ldots, a_p)} p_1(a_1) \cdots p_p(a_p) u_k(a).
$$
Nash Equilibrium

Definition: a mixed strategy \((p_1, \ldots, p_p)\) is a (mixed) Nash equilibrium if for all \(k \in [1, p]\) and \(q_k \in \Delta_1(A_k)\),

\[u_k(q_k, p_{-k}) \leq u_k(p_k, p_{-k}). \]

- if for all \(k\), \(p_k\) is a pure strategy, then \((p_1, \ldots, p_p)\) is said to be a pure Nash equilibrium.
Nash Equilibrium: Examples

- Prisoner’s dilemma: (B, B) is a pure Nash equilibrium. **Dominant strategy**: both better off playing B regardless of the other player’s action.

- Matching Pennies: no pure Nash equilibrium; clear mixed Nash equilibrium: uniform probability for both.

- Battle of The Sexes:
 - pure Nash equilibria: both (O, O) and (F, F).
 - mixed Nash equilibria: ((2/3, 1/3), (1/3, 2/3)).
 - payoff of 2/3 for both in mixed case: less than payoffs in pure cases!
Nash’s Theorem

Theorem: any normal form game with a finite set of players and finite set of actions admits a (mixed) Nash equilibrium.
Proof

- Define function $\Phi : \prod_{k=1}^{p} \Delta_1(A_k) \to \prod_{k=1}^{p} \Delta_1(A_k)$ by

 $$\Phi(p_1, \ldots, p_p) = (p'_1, \ldots, p'_p)$$

 with $\forall k \in [1, p], j \in [1, n_k], \quad p'_{kj} = \frac{p^j_k + c^j_k}{1 + \sum_{j=1}^{n_k} c^j_k}$,

 where $c^j_k = u_k(e_j, p_{-k}) - u_k(p_k, p_{-k}), \quad c^j_k^+ = \max(0, c^j_k)$.

- Φ is a continuous function mapping from a non-empty compact convex set to itself, thus, by Brouwer’s fixed-point theorem, there exists (p_1, \ldots, p_p) such that

 $$\Phi(p_1, \ldots, p_p) = (p_1, \ldots, p_p).$$
Proof

Observe that for any $k \in [1, p]$,

$$\sum_{j=1}^{n_k} p_k^j c_k^j = \sum_{j=1}^{n_k} p_k^j u_k(e_j, p_{-k}) - u_k(p_k, p_{-k}) = 0.$$

Thus, for any $k \in [1, p]$, there exists at least one j such that $c_k^j \leq 0$ with $p_k^j > 0$. For that j, $c_k^{j+} = 0$ and

$$p_k^j = \frac{p_k^j}{1 + \sum_{j=1}^{n_k} c_k^{j+}} \Rightarrow 1 + \sum_{j=1}^{n_k} c_k^{j+} = 1$$

$$\Rightarrow c_k^{j+} = 0, \forall j$$

$$\Rightarrow u_k(e_j, p_{-k}) \leq u_k(p_k, p_{-k}), \forall j$$

$$\Rightarrow u_k(q_k, p_{-k}) \leq u_k(p_k, p_{-k}), \forall q_k.$$
Nash Equilibrium: Problems

- Different equilibria:
 - not clear which one will be selected.
 - different payoffs.

- Circular definition.

- Finding any Nash equilibrium is a PPAD-complete (polynomial parity argument on directed graphs) problem (Daskalakis et al., 2009).

- Not a natural model of rationality if computationally hard.
Zero-Sum Games: Order of Play

- If row player plays p then column player plays q solution of

$$\min_{q \in \Delta_1(A_2)} \max_{a_1 \sim p} \min_{a_2 \sim q} E\left[u_1(a)\right].$$

- Thus, if row player starts, he plays p to maximize that quantity and the payoff is

$$\max_{p \in \Delta_1(A_1)} \min_{q \in \Delta_1(A_2)} \max_{a_1 \sim p} \min_{a_2 \sim q} E\left[u_1(a)\right].$$

- Similarly, if column player plays first, the expected payoff is

$$\min_{q \in \Delta_1(A_2)} \max_{p \in \Delta_1(A_1)} \max_{a_1 \sim p} \min_{a_2 \sim q} E\left[u_1(a)\right].$$
von Neumann’s Theorem

Theorem (von Neumann’s minimax theorem): for any two-player zero-sum game with finite action sets,

$\max_{p \in \Delta_1(A_1)} \min_{q \in \Delta_1(A_2)} \mathbb{E}_{a_1 \sim p, a_2 \sim q} [u_1(a)] = \min_{q \in \Delta_1(A_2)} \max_{p \in \Delta_1(A_1)} \mathbb{E}_{a_1 \sim p, a_2 \sim q} [u_1(a)].$

- common value called value of the game.
- mixed Nash equilibria coincide with maximizing and minimizing pairs and they all have the same payoff.
Proof

Playing second is never worse:

\[
\max_{p \in \Delta_1(A_1)} \min_{q \in \Delta_1(A_2)} \mathbb{E} \left[u_1(a) \right] \leq \min_{q \in \Delta_1(A_2)} \max_{p \in \Delta_1(A_1)} \mathbb{E} \left[u_1(a) \right].
\]

- straightforward:

\[
\forall p \in \Delta_1(A_1), \forall q \in \Delta_1(A_2), \quad \min_{q \in \Delta_1(A_2)} \mathbb{E} \left[u_1(a) \right] \leq \mathbb{E} \left[u_1(a) \right]
\]

\[
\Rightarrow \quad \forall q \in \Delta_1(A_2), \quad \max_{p \in \Delta_1(A_1)} \min_{q \in \Delta_1(A_2)} \mathbb{E} \left[u_1(a) \right] \leq \max_{p \in \Delta_1(A_1)} \mathbb{E} \left[u_1(a) \right]
\]

\[
\Rightarrow \quad \max_{p \in \Delta_1(A_1)} \min_{q \in \Delta_1(A_2)} \mathbb{E} \left[u_1(a) \right] \leq \min_{q \in \Delta_1(A_2)} \max_{p \in \Delta_1(A_1)} \mathbb{E} \left[u_1(a) \right].
\]
Proof

- **Set-up:** at reach round,
 - column player selects q_t using RWM.
 - row player selects $p_t = \max_{p \in \Delta_1(A_1)} p^\top U q_t$.

- Thus, letting $T \to +\infty$ in the following completes the proof:

$$
\min_{q \in \Delta_1(A_2)} \max_{p \in \Delta_1(A_1)} \mathbb{E}_{a_1 \sim p, a_2 \sim q}[u_1(a)] = \min_{q \in \Delta_1(A_2)} \max_{p \in \Delta_1(A_1)} p^\top U q \\
\leq \max_{p \in \Delta_1(A_1)} p^\top U \left[\frac{1}{T} \sum_{t=1}^{T} q_t \right] = \max_{p \in \Delta_1(A_1)} \frac{1}{T} \sum_{t=1}^{T} p^\top U q_t \\
\leq \frac{1}{T} \sum_{t=1}^{T} \max_{p \in \Delta_1(A_1)} p^\top U q_t = \frac{1}{T} \sum_{t=1}^{T} p_t^\top U q_t = \min_{q} \frac{1}{T} \sum_{t=1}^{T} p_t^\top U q + \frac{R_T}{T} \\
= \min_{q} \left[\frac{1}{T} \sum_{t=1}^{T} p_t^\top \right] U q + \frac{R_T}{T} \leq \max_{p} \min_{q} p^\top U q + \frac{R_T}{T}.
$$
Proof

Let \(p^* \in \text{argmax} \ \min_{p \in \Delta_1(A_1)} \min_{q \in \Delta_1(A_2)} u_1(p, q) \) and
\[
q^* \in \text{argmin} \ \max_{q \in \Delta_1(A_2)} \max_{p \in \Delta_1(A_1)} u_1(p, q).
\]

- \(p^* \) and \(q^* \) exist by the continuity of \(u_1 \) and the compactness of the simplices.

- By definition of \(p^* \) and \(q^* \) and the minmax theorem:
 \[
v = \min_{q} u_1(p^*, q) \leq u_1(p^*, q^*) \leq \max_{p} u_1(p, q^*) = v.
 \]

- Thus, \((p^*, q^*)\) is a Nash equilibrium.
Proof

Conversely, assume that \((p^*, q^*)\) is a Nash equilibrium. Then,

\[
\begin{align*}
 u_1(p^*, q^*) &= \max_p u_1(p, q^*) \geq \min_q \max_p u_1(p, q) = v \\
 u_1(p^*, q^*) &= \min_q u_1(p^*, q) \leq \max_p \min_q u_1(p, q) = v.
\end{align*}
\]

This implies equalities and

\[
 u_1(p^*, q^*) = \max_p \min_q u_1(p, q) = \min_q \max_p u_1(p, q).
\]
Unique value: all Nash equilibria have the same payoff (less problematic than general case).

Potentially several equilibria but no need to cooperate.

Computationally efficient: convergence in $O\left(\sqrt{\frac{\log N}{T}}\right)$.

Plausible explanation of how an equilibrium is reached — note that both players can play RWM.

In general non-zero-sum games regret minimization does not lead to an equilibrium.
Yao’s Lemma

Theorem: for any two-player zero-sum game with finite action sets,

\[
\max_{p \in \Delta_1(\mathcal{A}_1)} \min_{a_2 \in \mathcal{A}_2} \mathbb{E}[u_1(a)] = \min_{q \in \Delta_1(\mathcal{A}_2)} \max_{a_1 \in \mathcal{A}_1} \mathbb{E}[u_1(a)].
\]

• consequence: for any distribution D over the inputs, the cost of a randomized algorithm is lower bounded by the minimum D-average cost of a deterministic algorithm.

• to determine a lower bound for the cost of a randomized algorithm, it suffices to inspect the complexity of deterministic algorithms with randomized inputs.
General Finite Games

- Regret notion not relevant: (external) regret minimization may not lead to a Nash equilibrium.

- Notion of equilibrium: several issues related to Nash equilibria.

 → new notion of equilibrium, new notion of regret.
There is an authority or a correlation mechanism device.

The authority defines a probability distribution p over the p-tuple of the players’ actions.

The authority draws $(a_1, \ldots, a_p) \sim p$ and reveals to each player k only his action a_k.

The authority is a correlated equilibrium if player k has no incentive to deviate from the action recommended: the utility of any other action is lower than a_k, conditioned on the fact that he was told a_k, assuming that other players follow the recommendation they received.
Correlated Equilibrium

Definition: consider a normal form game with $p < +\infty$ players and finite action sets \mathcal{A}_k, $k \in [1, p]$. Then, a probability distribution p over $\prod_{k=1}^{p} \mathcal{A}_k$ is a correlated equilibrium if for all $k \in [1, p]$, for all $a_k \in \mathcal{A}_k$ with positive probability and all $a'_k \in \mathcal{A}_k$,

$$E_{a \sim p} [u_k(a_k, a_{-k}) \mid a_k] \geq E_{a \sim p} [u_k(a'_k, a_{-k}) \mid a_k].$$
Think of the joint distribution as a correlation device.

The set of all correlated equilibria is a convex set (it is a polyhedron): defined by a system of linear inequalities, including the simplex constraints. Solution via solving an LP problem.

The set of Nash equilibria in general is not convex. It is defined by the intersection of the polyhedron of correlated equilibria and the constraints

\[p(a) = p_1(a_1) \times \cdots \times p_p(a_p). \]
Traffic Lights

- Stop/Go.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>4,4</td>
<td>1,5</td>
</tr>
<tr>
<td>G</td>
<td>5,1</td>
<td>0,0</td>
</tr>
</tbody>
</table>

- Pure Nash equilibria: (S, G), (G, S). Mixed Nash equilibrium: ((1/2, 1/2), (1/2, 1/2)).

- Correlated equilibria:

```
  0   1/2
1/2  0
 1/3  1/3
1/3  0
```
Internal Regret

- **Definition:** internal regret, $C_{a,b}$ functions $f : A \rightarrow A$ leaving all actions unchanged but a which is switched to b.

\[
R_T = \sum_{t=1}^{T} \mathbb{E}_{a_t \sim p_t} [l(a_t)] - \min_{f \in C_{a,b}} \sum_{t=1}^{T} \mathbb{E}_{a_t \sim p_t} [l(f(a_t))].
\]

- **Definition:** swap regret, C family of all functions $f : A \rightarrow A$.

\[
R_T = \sum_{t=1}^{T} \mathbb{E}_{a_t \sim p_t} [l(a_t)] - \min_{f \in C} \sum_{t=1}^{T} \mathbb{E}_{a_t \sim p_t} [l(f(a_t))].
\]
Swap Regret and Correlated Eq.

Theorem: consider a finite normal form game played repeatedly. Assume that each player follows a swap regret minimizing strategy. Then, the empirical distribution of all plays converges to a correlated equilibrium.
Alternative Proof

- Let \(C \) be the convex set of correlated equilibria. If the sequence of empirical dist. \((\hat{p}_t)_{t \in \mathbb{N}}\) does not converge to \(C \), it admits a subsequence in \(C_\eta = \{ p : d(p, C) \geq \eta \} \) (compact set), thus, it admits a subsequence converging to \(\hat{p} \not\in C \).

- Thus, there exist \(\epsilon > 0 \), \(k \in [1, p] \), and \(a_k, a'_k \in \mathcal{A}_k \) such that

\[
\sum_{a_{-k} \in \mathcal{A}_{-k}} \hat{p}(a)[u_k(a'_k, a_{-k}) - u_k(a_k, a_{-k})] = \epsilon.
\]

- Therefore, for \(t \) sufficiently large,

\[
\sum_{a_{-k} \in \mathcal{A}_{-k}} \hat{p}_\tau(t)(a)[u_k(a'_k, a_{-k}) - u_k(a_k, a_{-k})] \geq \frac{\epsilon}{2}.
\]
Alternative Proof

Since $\hat{p}_{\tau(t)}(a) = \frac{1}{\tau(t)} \sum_{s=1}^{\tau(t)} 1_{a_{-k}, \tau(s)=-k} 1_{a_k, \tau(s)=a_k}$,

\[
\frac{1}{\tau(t)} \sum_{s=1}^{\tau(t)} \left[u_k(a'_k, a_{-k}, \tau(s)) - u_k(a_k, a_{-k}, \tau(s)) \right] 1_{a_k, \tau(s)=a_k} \geq \frac{\epsilon}{2}.
\]

Thus, the internal regret of player k for switching a_k to a'_k is lower bounded by $\frac{\epsilon}{2}$ at time $\tau(t)$ and later, which implies that the player is not following a swap regret minimization strategy.
Proof

- Define the instantaneous regret of player k at time t as

$$\hat{r}_{k,t,j,j'} = 1_{a_{k,t}=j} [l_k(j,a_{-k},t) - l_k(j',a_{-k},t)],$$

and

$$r_{k,t,j,j'} = p_{k,t,j} [l_k(j,a_{-k},t) - l_k(j',a_{-k},t)].$$

- Then, $E[\hat{r}_{k,t,j,j'}|\text{past } \wedge \text{other players' actions}] = r_{k,t,j,j'}$.

- Thus, for any (j, j'), $(r_{k,t,j,j'} - \hat{r}_{k,t,j,j'})$ is a bounded martingale difference. By Azuma’s inequality and the Borell-Cantelli lemma, for all k and (j, j'),

$$\limsup_{T \to +\infty} \frac{1}{T} \sum_{t=1}^{T} \hat{r}_{k,t,j,j'} - r_{k,t,j,j'} = 0 \text{ (a.s.).}$$

Therefore,

$$\forall k, \limsup_{T \to +\infty} \max_{j,j'} \frac{1}{T} \sum_{t=1}^{T} \hat{r}_{k,t,j,j'} \leq 0 \text{ (a.s.).}$$
Theorem: there exists an algorithm with $O(\sqrt{NT\log N})$ swap regret.

\mathcal{R}_i's external regret minimization algorithms
Proof

- Define for all $t \in [1, T]$ the stochastic matrix

$$Q_t = \begin{pmatrix}
(q_{t,1}, q_{t,2}, \ldots, q_{t,N})
\end{pmatrix}_{(i,j) \in [1,N]^2} =
\begin{bmatrix}
q_{t,1}^T \\
\vdots \\
q_{t,N}^T
\end{bmatrix}.$$

- Since Q_t is stochastic, it admits a stationary distribution p_t:

$$p_t^T = p_t^T Q_t \iff \forall j \in [1, N], p_{t,j} = \sum_{i=1}^{N} p_{t,i} q_{t,i,j}$$

- Thus,

$$\sum_{t=1}^{T} p_t \cdot 1_t = \sum_{t=1}^{T} \sum_{j=1}^{N} p_{t,j} l_{t,j} = \sum_{t=1}^{T} \sum_{j=1}^{N} \sum_{i=1}^{N} p_{t,i} q_{t,i,j} l_{t,j} = \sum_{i=1}^{N} \sum_{t=1}^{T} q_{t,i} \cdot (p_{t,i} l_t) \leq \sum_{i=1}^{N} \min_j \sum_{t=1}^{T} p_{t,i} l_{t,j} + R_{T,i}.$$

Advanced Machine Learning - Mohri@
Proof

Thus, for any $f : \mathcal{A} \rightarrow \mathcal{A}$,

$$
\sum_{t=1}^{T} p_t \cdot l_t \leq \sum_{i=1}^{N} \sum_{t=1}^{T} p_{t,i} l_{t,f(i)} + R_{T,i}.
$$

For RWM, $R_{T,i} = O\left(\sqrt{L_{\min,i} \log N} \right)$. Thus, by Jensen’s inequality,

$$
\sum_{i=1}^{N} R_{T,i} = N \frac{1}{N} \sum_{i=1}^{N} R_{T,i} \\
\leq O \left(N \sqrt{\frac{1}{N} \sum_{i=1}^{N} L_{\min,i} \log N} \right) \\
\leq O \left(N \sqrt{\frac{1}{N} T \log N} \right) = O \left(\sqrt{NT \log N} \right).
$$

(Jensen’s ineq.)
Notes

Surprising result:

- no explicit joint distribution in the game!
- correlation induced by the empirical sequence of plays by the players.

Game matrix:

- no need to know the full matrix (which could be huge with a lot of players).
- only need to know the loss or payoff for actions taken.
Coarse Correlated Equilibrium

Definition: consider a normal form game with $p < +\infty$ players and finite action sets \mathcal{A}_k, $k \in [1, p]$. Then, a probability distribution p over $\prod_{k=1}^{p} \mathcal{A}_k$ is a coarse correlated equilibrium if for all $k \in [1, p]$, for all $a_k \in \mathcal{A}_k$ and all $a'_k \in \mathcal{A}_k$,

$$E_{a \sim p} [u_k(a_k, a_{-k})] \geq E_{a \sim p} [u_k(a'_k, a_{-k})].$$
Any correlated equilibrium is a coarse correlated equilibrium. Difference: realization a_k not known to player.

Comparison with mixed Nash equilibria: (general) joint distribution vs. product distributions.

Relationship with external regret, and external regret minimizers.
Conclusion

- Zero-sum finite games:
 - external regret minimization algorithms (e.g., RWM).
 - Nash equilibrium, value of the game reached.

- General finite games:
 - internal/swap regret minimization algorithms.
 - correlated equilibrium, can be learned.

- Questions:
 - Nash equilibria.
 - extensions: e.g., time selection functions (Blum and Mansour, 2007), conditional correlated equilibrium (MM and Yang, 2014).
References

References

References
