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Normal Form Games: Example

B Rock-Paper-Scissors.

R | P | S
R 100 -1,1]1,-1
P 11,-110,0|-1,1
S |-1,111,-11 0,0
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Be Truly Random

B http://goo.gl/3sVFzN

experience against you.

HUMAN
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Rock-Paper-Scissors: You vs. the Computer

Computers mimic human reasoning by building on simple rules and statistical averages. Note: A truly random game of rock-paper-scissors would result in a
Test your strategy against the computer in this rock-paper-scissors game illustrating basic

artificial intelligence. Choose from two different modes: novice, where the computer learns
to play from scratch, and veteran, where the computer pits over 200,000 rounds of previous over time it can exploit a person's tendencies and patters to gain

NS

W TWITTER m LINKEDIN SHARE

statistical tie with each player winning, tying and losing one-third of
the time. However, people are not truly random and thus can be
studied and analyzed. While this computer won't win all rounds,

an advantage over its opponent.

wi NOVICE COMPUTER

Play at least five rounds to see what the computer is thinking.

Round 4

@ J Round 3

@J Round 2
@ J Round 1
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Normal Form Games

B p players.

B For each player k € [1, p|:
e set of actions (or pure strategies) A .

o payoff functionug: [[,_; Ax — R.

B Goal of each player: maximize his payoff in a repeated
game.
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Prisoner’s Dilemma

B Silence/Betrayal.

e for each player, the best action is B, regardless of the
other player’s action.

e but, with (B, B), both are worse off than (5, S).

S B
S 2,2 | 0,3
B 3,0 | 1,1
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Matching Pennies

B Player A wins when pennies match, player B otherwise.

e other versions: penalty kick.

® no pure strategy Nash equilibrium.
H T

H 1,-1 | -1,1

T -1,1 1 1,-1

Advanced Machine Learning - Mohri@ page 7



Battle of The Sexes

B Opera/Football.

* two pure strategy Nash equi
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ibria.
O F
3,2 | 0,0
00 | 23

page 8



Mixed Strategies

B Strategies:

* pure strategies: elements of [ [, _; Ak .

* mixed strategies: elements of [ [, _; A1 (Ag).

®m Payoff: for each player k € |1, p|, when players play mixed

strategies (P1,---,Pp),
B m@l= Y pile) o pylay)ua)
7 a=(ay,...,ap)
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Nash Equilibrium

B Definition: a mixed strategy(p1, ..., Pp) is a (mixed) Nash
equilibrium if for allk € [1,plandqr € A1 (Ak),

uk(qk, P—k) < Uk(Pka P—k)-

o ifforallk, pxis a pure strategy, then (p1,..., p,) is said
to be a pure Nash equilibrium.
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Nash Equilibrium: Examples

B Prisoner’s dilemma: (B, B) is a pure Nash equilibrium.
Dominant strategy: both better off playing B regardless of
the other player’s action.

B Matching Pennies: no pure Nash equilibrium; clear mixed
Nash equilibrium: uniform probability for both.

B Battle of The Sexes:
* pure Nash equilibria: both (O, O) and (F, F).
e mixed Nash equilibria: ((2/3, 1/3), (1/3, 2/3)).

e payoff of 2/3 for both in mixed case: less than payoffs in
pure cases!
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Nash's Theorem

B Theorem: any normal form game with a finite set of players
and finite set of actions admits a (mixed) Nash equilibrium.
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Proof

m Define function ®: [[,_; A1(Ax) = [[1—; A1(Ag) by

/

®(p1,...pPp) = (P1,---Pp)

: J J+
with V& € [1,p],j € [L,ng], pf = —2ef%
Lplg € L], pi = 5
where C”;C = uk(ej, p_k) — uk(pk, p_k), C‘]i_l_ = max((), C?C)

® &is a continuous function mapping from a non-empty
compact convex set to itself, thus, by Brouwer’'s fixed-point
theorem, there exists (p1, . . . pp) such that

®(p1,...pp) = (P1,---Pp)-
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Proof

m Observe that forany k € [1, p],

ni ni
> pier = pjuk(e;, p—k) — ur(pr, p—k) = 0.

7=1 7=1
® Thus, forany k € [1 p|, there exists at Ieast one 7 such
that c{c < 0 withp;, > 0. Forthatj, ¢, =0 and
J "k
J Pk i+
Py, = = — =1+ Zc{{; =1
1+ 5 a =1

= c{f =0,V
— uk(eja P—k) < Uk(plm P—k),W
— Uk(%, P—k) < Uk(pka P—k),V%-
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Nash Equilibrium: Problems

B Different equilibria:
e not clear which one will be selected.

e different payoffs.
@ Circular definition.

B Finding any Nash equilibrium is a PPAD-complete
(polynomial parity argument on directed graphs) problem
(Daskalakis et al., 2009).

® Not a natural model of rationality if computationally hard.

Advanced Machine Learning - Mohri@ page 15



Zero-Sum Games: Order of Play

B [f row player plays p then column player plays g solution

of
min  E [uy(a)].

A1(As) @17P
a€A1(A2) o178

B Thus, if row player starts, he plays p to maximize that
quantity and the payoff is

max min E |ui(a)].
pEAL(A1) qEAL(A) A1™P

az2~q
B Similarly, if column player plays first, the expected payoff is

min  max E |ui(a)].
qEA1(A2) pEA(A7) G1™P

as~(q
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von Neumann’'s Theorem

(von Neumann, 1928)

B Theorem (von Neumann’'s minimax theorem): for any two-
player zero-sum game with finite action sets,

max min E |ui(a)l= min max E |ui(a)].
pEA1(A1) qeA1(A2) g;:g qeA1(A2) peA1( A1) g;:g

e common value called value of the game.

e mixed Nash equilibria coincide with maximizing and
minimizing pairs and they all have the same payoff.
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Proof

B Playing second is never worse:

max min E [ui(a)]< min  max E |ui(a)].
p€A1(A1) geAq(Ag) 917P qc€A1(A2) peAi(Ay) gé:g

as~q

* straightforward:

Vp € Aq( A1), Vg € Aq(As), min E [u(a)] < E [uy(a
p € Ay(A1),Vq € Ay(A)) emithy o 1(a)] 3;28[ 1(a)]
= Vq € Aq(Ay), max min E [ui(a)] < max E [us(a
1€ A I et ai’p )l < mmax g;:g[ ()]
= max min  FE [u(a)] < min @ max E [uy(a)].
pEA1(A1) qeA1(Av) gé:g ) qeAq(Ag) peA1(A1) g;zg
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Proof

B Set-up: at reach round,

¢ column player selects q; using RWM.,

-
e row player selectsp; = max p Uq.
peA (A1)
B Thus, letting 1" — 400 in the following completes the
proof:
min  max E [ui(a)]= min max p' Ugqg
a€Aq(Az) peAy(Ay) o178 qEA(A2) pEA; (A1)
1 — 1 «
< T L _ L T
= e, v TZ‘“] perﬁiﬁﬂzp Ya
R
< = T L T T
< Zperg?&c{l)p Zpt Ug, = min Zpt Uq+ —

t 1

Rr
T

1 L
szt
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Proof

B letp' € argmax min wuq(p,q)and
pEA1 (A1) I€EAL(A2)

¢* € argmin max uy(p,q).
qEAl(Ag)peAl(‘Al)

* p*and ¢*exist by the continuity of u; and the
compactness of the simplices.

e By definition of p*and ¢"and the minmax theorem:
v = mqinul(p*,q) <wui(p*,q") < mgxm(p, q") =v.

e Thus, (p*,q")is a Nash equilibrium.
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Proof

B Conversely, assume that (p*, ¢")is a Nash equilibrium. Then,

u1(p*,q") = maxuy(p,q*) > minmaxui(p,q) = v
p q p

u1(p*,q") = mqin u1(p*, q) < mgxmqin u1(p,q) = v.

 Thisimplies equalities and

u1(p*, q") = maxminu(p, q) = min max uy(p, q).
P4 q¢ p
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Notes

B Unique value: all Nash equilibria have the same payoff (less
problematic than general case).

B Potentially several equilibria but no need to cooperate.

B Computationally efficient: convergence in O( logTN).

B Plausible explanation of how an equilibrium is reached —
note that both players can play RWM.

B |n general non-zero-sum games regret minimization does
not lead to an equilibrium.
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Yao's Lemma

(Yao, 1977)
B Theorem: for any two-player zero-sum game with finite
action sets,
max min E [ui(a)l = min max E [u(a)].
pEA(A4) azE€EA2 a1~p qeAq(Az) a1 €A a2~q

® consequence: for any distribution D over the inputs, the
cost of a randomized algorithm is lower bounded by the
minimum D-average cost of a deterministic algorithm.

* to determine a lower bound for the cost of a randomized
algorithm, it suffices to inspect the complexity of
deterministic algorithms with randomized inputs.
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General Finite Games

B Regret notion not relevant: (external) regret minimization
may not lead to a Nash equilibrium.

B Notion of equilibrium: several issues related to Nash
equilibria.

—» new notion of equilibrium, new notion of regret.
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Correlated Equilibrium - Tale

B There is an authority or a correlation mechanism device.

B The authority defines a probability distribution p over the
p-tuple of the players’ actions.

® The authority draws(aq, ..., a,) ~ p and reveals to each
player k only his action ay.

B The authority is a correlated equilibrium if player k has no
incentive to deviate from the action recommended: the
utility of any other action is lower than ag , conditioned on
the fact that he was told ag, assuming that other players
follow the recommendation they received.
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Correlated Equilibrium

(Aumann, 1974)

B Definition: consider a normal form game with p <+00
players and finite action sets A, k € [1,p]. Then, a
probability distribution p over szl Ay is a correlated
equilibrium if for allk € [1, p], for allax € Ay, with positive
probability and all a), € Ay,

E [ur(ar, a—k) | ax] 2 E lug(ay,a—p) [ ax].

a~’p
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Notes

B Think of the joint distribution as a correlation device.

B The set of all correlated equilibria is a convex set (it is a
polyhedron): defined by a system of linear inequalities,

including the simplex constraints. Solution via solving an LP
problem.

B The set of Nash equilibria in general is not convex. It is
defined by the intersection of the polyhedron of correlated
equilibria and the constraints

p(a) — pl(al) X X pp(ap)-
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Traffic Lights

| Stop/Go.
S G
S 44 | 1,5
G 51 | 00

e Pure Nash equilibria: (S, G),

(G, S). Mixed Nash

equilibrium: ((1/2, 1/2), (1/2, 1/2)).

® (Correlated equilibria:

0

/21 |1/3|11/3

1/2

0 |1/3| O
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Internal Regret

®m Definition: internal regret, Cq 4 functions f: A — A
leaving all actions unchanged but a which is switched to b.

T T

Rr=3" E [ia)] —min}" E [(f(a))]

Advanced Machine Learning - Mohri@ page 29



Swap Regret and Correlated EqQ.

B Theorem: consider a finite normal form game played
repeatedly. Assume that each player follows a swap regret
minimizing strategy. Then, the empirical distribution of all
plays converges to a correlated equilibrium.
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Alternative Proof

B LetC be the convex set of correlated equilibria. If the
sequence of empirical dist. (p:)¢+eny does not converge to C,
it admits a subsequence in C,, = {p: d(p,C) > 1} (compact
set), thus, it admits a subsequence converging top ¢ C.

B Thus, there existe >0, k € [1,p], and ag, a;, € A such that

Z p(a) [uk(a;m a_i) — uk(ag,a_x)| = €.

a_LE€EA_§
B Therefore, for t sufficiently large,

D. €
> Drw@lu(ay, a—p) — ur(ar, ap)] > <.
a’—kEﬂ_k
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Alternative Proof

7(t)
0 SlncepT(t)( ) 7-(75) Z 13 k,7(s)—a&— klak ,T(s)—ak !
1 =) €
/
% Sz:; [uk’(akv a—k,T(s)) T uk(aka a—k,T(S))] 1ak,7(s):ak > 5
B Thus, the internal regret of player k for switching axtoa; is
lower bounded by 5 at time7(¢) and later, which implies

that the player is not following a swap regret minimization
strategy.
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Proof

B Define the instantanous regret of player k£ at time t as

?k,t,j,j’ = 1ak,t:j [lk(j7 a—k,t) — lk(j/7 a—k,t)]7
and  Tk,t5.j0 = Phtjllk(d a—kt) = k(' a k)]

® Then, E[7} ¢ ;. ;/|past A other players’ actions| = 7y ¢ ; ;.

m Thus, forany(j,5"), (Tk,t,5,7* — Tk,t,5,57) is @ bounded
martingale difference. By Azuma’s inequality and the
Borell-Cantelli lemma, for all & and (7, j'),

. 1 T A~ L
Bmsupy 4 oo 7 211 Thotgg’ = Thotgg = 0 (&:8.),
Therefore, 1 L

Vk,limsupmax — » Tgy ;5 <0 (a.s.).
T—~oo J5J r—1
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Swap Regret Algorithm

(Blum and Mansour, 2007)

B Theorem: there exists an algorithm with O(\/NT log N)
swap regret.

R;s external regret minimization algorithms
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Proof

m Define forallt € |1, T the stochastic matrix

- T
d: 1

Q: = (Clt,z',j)(z',j)eu,NP —

_ll
L e N

B Since QQ; is stochastic, it admits a stationary distribution p; :

p;l_ — p;er <:>\V/] S [ 7pt] ZptZQt,z,j

B Thus,

T N N

T T N N
Zpt' ZZ pt,jle; = S‘S‘Ypmth qutz' (pt,slt) SZ nzptzltj‘i_RTz-
t=1 =1 j=1 t=1

= t=1 j=1 =1 =1 t=1 =1
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Proof

® Thus, for anyf: A— A,

N T
Zpt lt<> > ptzltf(z)_l_RTz
t=1 1=1 t=1
® For RWM, R7; = O(y/Lmin,i log N) . Thus, by Jensen'’s

inequality,

N |
Z Ry = NN ZRT,i
i—1 i=1

N
1
<0 (NJ N Z Lyyin i log N) (Jensen’s ineq.)

1=1

§O<N\/%Tlog]\f> :O<\/NTlogN). (é mm@—Zmeltj>

t=1 =1
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Notes

B Surprising result:
* no explicit joint distribution in the game!
e correlation induced by the empirical sequence of plays
by the players.
® Game matrix:

* no need to know the full matrix (which could be huge
with a lot of players).

* only need to know the loss or payoff for actions taken.
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Coarse Correlated Equilibrium

B Definition: consider a normal form game with p <+00
players and finite action sets A, k € [1,p]. Then, a
probability distribution p over szl Ay is a coarse
correlated equilibrium if for all k € [1, p|, for all ax € Ay,
and alla}, € Ay,

E [ur(ar, a—x)] 2 E [ur(ay, a—x)] .

a~p
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Notes

B Any correlated equilibrium is a coarse correlated
equilibrium. Difference: realization a; not known to player.

B Comparison with mixed Nash equilibria: (general) joint
distribution vs. product distributions.

B Relationship with external regret, and external regret
minimizers.
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Conclusion

B Zero-sum finite games:
e external regret minimization algorithms (e.g., RWM).

* Nash equilibrium, value of the game reached.

B General finite games:
® internal/swap regret minimization algorithms.

e correlated equilibrium, can be learned.

B Questions:
* Nash equilibria.

* extensions: e.g., time selection functions (Blum and Mansour,
2007), conditional correlated equilibrium (vim and vang, 2014).
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