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Motivation

B Online learning with side observation (Mannor and Shamir,

2011):

® side observation modeled as feedback graph.

e full information and bandit: special cases.

* intermediate regret guarantees expressed in terms of
graph properties (mas-number, independence number,
domination number).
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https://arxiv.org/pdf/1106.2436.pdf
https://arxiv.org/pdf/1106.2436.pdf

Feedback Graph
[

e
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B [farm O is selected, then the losses of arms 0, 1, 2, and 3
are observed (but not the loss of arm 4).




Applications

(Valko, 2016)

B Undirected graph:

B Directed graph:



https://hal.inria.fr/tel-01359757/document

Graph Theory Notions

(Goddard and Henning, 2013)
B Given a directed graph G = (V, F) (self-loops ignored),

e the mas-number of G, u(G), is the size of the maximum
acyclic subgraph of G'.

® asubset of the vertices is independent if no two vertices
in it are adjacent; the independence number of G, a(G),
is the size of the maximum independent set in G.

e adominating set of G is a subset S C V such that every
vertex notin S is adjacent to S'; the domination number
of G, v(G), is the minimum size of a dominating set.

e it follows that for any graph:|v(G) < a(G) < u(G).
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https://people.cs.clemson.edu/~goddard/papers/idomSurvey.pdf

Graph Theory Notions

B Computing domination number is NP-hard since it is
equivalent to the minimum vertex cover problem. But, it
can be approximated modulo logarithmic factor via greedy
set cover:

® ateach round select vertex with largest uncovered
adjacent set.

B When G is undirected (symmetric edges), then,
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Examples

B Star graph:v(G) =1,a(G) =n — 1, u(G) = n.




Example

0@0 5O

®m Auction graph:v(G) = 1,a(G) = (n — 1)/2, u(G) = n.




Adversarial Setting




Protocols

B Graph information:

e pre-informed setting: feedback graph received before
selecting arm.

e uninformed setting: feedback graph received after
selecting arm.

B Time-dependent or fixed feedback graph.
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EXP3-SET Algorithm

B (Alonetal., 2013): variant of EXP3;
® uninformed setting.
e directed feedback graphs G; = (V, E}).

® surrogate loss:

1,

qit = Z Dyt

g (Jri)eEy

A\ J/

Probability?)?observing I.
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https://arxiv.org/pdf/1307.4564.pdf

EXP3-SET

EXP3-SET(n)

1 Vie V,wz-,l +— 1

2 fort+1to T do

3 Vi€ V,piy 4 s
SAMPLE(I; ~ p¢)
RECEIVE({(4,4;+): (Lt,5) € Etr})
RECEIVE(Gy)
for i < 1 to |V| do

Git < Z] GiyeE, Pit P probability of observing 4.
gzt F bit H{(It, ) c Et}

10 Wi t4+1 < € nfz tw; it

© 00 J O Ot i~
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EXP3-SET Guarantee

B Theorem: the pseudo-regret of EXP3-SET can be bounded
as follows:

lo K d
Reg(EXP3-SET) < —2 Z Q4

e whereQ,; = Zp”

'LEV
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Proof

~

m Potential: ®,,1 =log S5 emlit with Ly, =S¢ 05 .

s=1

® Upper bound:

K _nzi,t K _nzi,t—l _nZ?l,t
Py — P = log Z]:Vz:l — = log Zz:lﬁ; _°
Z’i:l 6_77L7l,t—1 Zi:l e_nLi,t—l
= log [ E [6_"727@"’5]}
1~Pe
< E [e™it] -1 (logx <z —1)
1~pe
_ ~ ’)72 ~ 2
< E [—nlis+—=0,] (e*<l-z+4+%).
i~p 2 7

B Summing up:
T

T B 5 N
Oryg — P < —7p Z sz',t&;,t + % Z Zpi,tf?,t-

t=1:1€eV t=111€V
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Proof

B |ower bound:;

Oryi — Py = log[Ze nLi.z logK] > nLJT—logK——nZ@t—logK.
1=1 t=1

0 Comparison'

T
Zzpztfzt<zggt logK Zzzpztz?t

t=1icV t=1icV

B Using conditional expectationE= E [-|I1,...,[;_1]:

t Ii~py
o d log K 1
/. 7 PP
Z Z E [pz',t I?[&t]] < Z 2 [Igl[éj,t]} + ; + 5 Z Z E [pi,t IEZ[EM]] .
t=1:cV t=1 t=1icV
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Proof

B Observe that:

s gzt
2fi] - [ . >EE}]
Uiy
:ij GE}—taq —Ezt-
1,1

jev

| Similarly,




Proof

B Thus,
a d logK L
SN Elpibid <Y E[] + ZZ [ ]
t=14€eV t=1 PR qit
e and,

lo K d
Reg(EXP3-SET) < —= Z Q).
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EXP3-SET Guarantee

B Theorem: the pseudo-regret of EXP3-SET can be bounded
as follows for directed graphs:

lo K L
Reg(EXP3-SET) < —2 Z W(Gy)).

e for E[/L(Gt)] < U,

T
Reg(EXP3-SET) < \ 2(log K) Z
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Proof

B For any graph (dropping time indices),
K

Pi
< u(G).
= 2 jeING) P

e Construct subset of vertices V'inducing acyclic graph
such that Zfil = epi < |[V'].

FEIN(s) Pi

° define i1 = argmin;cy » o1y P; @nd remove that vertex
from the graph as well as all j € IN(4;) and all edges
entering or leaving these vertices.

e QObserve that'

Z Z = Z - -=1.

kEIN(iy) —IEIN(K) Pj kEIN (i) ZJ'GIN(il) Pj
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Proof

% < Pi
1=1 ZjEIN(i) Pj B iZIN(i1) ZjEIN(i) Pj

K

B Thus, + 1.

 reiterating until no vertex is left, with V' = {iy, ..., i},

Pk

< |[V'].

e the graph induced by V' cannot contain cycles since at
each step all incoming edges of i,. and source vertices of
those edges are removed.
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EXP3-SET Guarantee

B Corollary: the pseudo-regret of EXP3-SET can be bounded
as follows for undirected graphs:

lo K L
Reg(EXP3-SET) < —2 Z

o for Ck(Gt) < oy,

T
Reg(EXP3-SET) g\ (log K) Z
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Adversarial Setting

(Mannor and Shamir, 2011): introduced online learning
with side information modeled as feedback graph.

(Alon et al., 2013): directed feedback graphs, variants of
EXP3.

(Alon et al., 2015): algorithm with O(T%) regret for weakly
observable graphs (vertex with no self-loop or no entering
edge from all other vertices).

(Alon et al., 2014): high probability bounds based on mas-
number.

(Neu 2015): high probability bounds based on
independence number, implicit.e



https://arxiv.org/pdf/1106.2436.pdf
https://arxiv.org/pdf/1307.4564.pdf
http://proceedings.mlr.press/v40/Alon15.pdf
https://arxiv.org/pdf/1409.8428.pdf
https://arxiv.org/pdf/1506.03271.pdf

Stochastic Setting




UCB-N

B (Caronetal., 2012): UCB-type algorithm;

* number of observations of arm up to time(t — 1), O; ;1.

e average reward of armiup totime(t — 1), X, 1.

Z Xislien(1,)-

s=1

Xit—1=

1,t—1

~ 2logt

° arm selected attime t: I; = argmax; ¢y Xi -1 +



http://www.auai.org/uai2012/papers/236.pdf
http://www.auai.org/uai2012/papers/236.pdf

UCB-N

UCB-N(G)
2 fort<+1tol do

3 I} < argmax; ¢k X+ 218%T
4 for k € N(I;) do
5 O <+ O +1
6 Xk o X + (1= 5-) X
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Graph Theory Notions

B Acliguein an undirected graph G = (V, F): subset of V with
any two vertices being adjacent.

B Acligue covering C of G is a set of cliques such that

v=|Jc

ceC
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UCB-N Guarantee

B Theorem: the pseudo-regret of UCB-N can be bounded as
follows for undirected graphs:

iec A
Reg(UCB-N) < mf{S > ESAQ logT} + (1 + %) S oA
1< :
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Proof
B lemma:foranys >0, forTc(t—1)=) ..o Ti(t—1),

T T
ZZ 17— A; < S(Igleaczi Ai) + S: S: Lr,—i lrp (t—1)>s Qi

t=1qcC t=s+1:1eC

B Proof: observe that

T T T
Z Z lr,—i Ay = Z Z L= Irg (t—1)<s Di + Z Z L= Irg (t—1)>s D

t=1q:eC t=1qcC t=1:eC
e Now, fort* = max {t <7 ]-Tc(t 1)<s ?é O}
S e () S h

1€C
t=1:eC t=11€C

e By definition of ¢*, the number of non-zero terms in the

sum is at most s.



Proof

® For anyiand tdefine n;:—1 = \/% Attimet, if i is
selected, then
(Hit—1 +Mie—1) — (Wi ¢ + M p—1) =0
<:>[ﬁi,t—1 — i t—1 — 777;,75—1] =+ [277i,t—1 — Ai] =+ [M* - ﬁz‘*,t—l — ni*,t—l] > 0.

Thus, at least of one of these three terms is non-negative.
Also, if one is non-positive, at least one of the other two is

non-negative.
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Proof

® To bound the pseudo-regret, we bound ) ..~ E[T;(T)] .

Observe first that
8logT 8logT
O;(t—1) > = > — :>\V/‘EC,A¢—21'_ > 0.
( ) 2 50 r%agc[ A,Lz —‘_mmiecA? ¢ Mit—1 =
B Thus,
T
> E[T(T)A; =E [ZZ 11t:z']
ieC t=14icC i T
< sco rz'ne%XAi> +E Z ZlIt:i 1Tc(t—1)zscAi]
:t:sjq-kliEC
< sclmaxA; ) +E Z let:i 1Oi(t—1)230Ai]

~t=sc+1ieC

t=sc+1iecC

(
(1max )

< sc (maX Ai) + ET: Z APl e—1 — pig—1 — Nig—1 > 0] + A Plp™ — L= ¢—1 — M= p—1 > 0]
(1max )

T T 9

<~




Proof

B The pseudo-regret of the algorithm can thus be upper-
bounded as follows:

Reg(UCB-N) = Y ) E[T(

ceCieC
T T,
<Y so(maxa)+3 > S ay
cecC rec CeCt=sc+1icC  t=1
8logT s
S CZE:C(IZHEaC}’( AZ) miniec A2 C’EE;;A ( ?)
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Stochastic Setting

B (Caronetal., 2012): UCB-type algorithm for undirected
feedback graphs in stochastic setting; guarantees in terms
of graph clique structure.

B (Cohenetal., 2016): full feedback graph never revealed,
regret guarantee based on independence number, contrast

with adversarial setting where bandit bound remains
optimal.

B (Buccapatnam et al., 2014): LP-based solution, regret
guarantee based on domination number, lower bound.
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http://www.auai.org/uai2012/papers/236.pdf
https://arxiv.org/pdf/1605.07018.pdf
https://newslab.ece.ohio-state.edu/research/resources/mabSigfinal.pdf

Stochastic Setting

(Buccapatnam et al., 2017): more general setting covering
(Cohen et al., 2016).

(Lykouris et al., 2020): analysis of algorithms using layering
technigue; e.g. independence number guarantee for UCB-N.

(Cortes et al., 2019): sleeping experts with dependent
losses and awake sets.

(Cortes et al., 2020): dependent losses and feedback graphs
varying stochastically.

(Marinov, MM, Zimmert, 2022): notion of optimal finite-time

regret not uniquely defined in this context! Algorithm with
quasi-optimal pseudo-regret for a meaningful notion



https://www.jmlr.org/papers/volume18/16-340/16-340.pdf
https://arxiv.org/pdf/1605.07018.pdf
https://arxiv.org/pdf/1905.09898.pdf
https://cs.nyu.edu/~mohri/pub/saps.pdf
https://cs.nyu.edu/~mohri/pub/mf.pdf
https://cs.nyu.edu/~mohri/pub/sfg.pdf

Extensions

B (Valko, 2016): general survey of feedback graphs.

B (Kocaketal., 2016): online learning with noisy side
information.

B (Aroraetal., 2019): adversarial setting with feedback
graphs and switching costs.

B (Dann etal., 2020): reinforcement learning with feedback
graphs.
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https://hal.inria.fr/tel-01359757/document
http://cs.bme.hu/~gergo/files/KNV16.pdf
https://cs.nyu.edu/~mohri/pub/switch.pdf
https://cs.nyu.edu/~mohri/pub/mdpf.pdf

