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Outline

® Domain adaptation.

B Multiple-source domain adaptation.
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Domain Adaptation

B Sentiment analysis.

B Language modeling, part-of-speech tagging.
B Statistical parsing.

B Speech recognition.

® Computer vision.

=3 Solution critical for applications.
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This Talk

B Domain adaptation
e Discrepancy
* Theoretical guarantees
e Algorithm

e Enhancements

Advanced Machine Learning - Mohri@ page5



Domain Adaptation Problem

® Domains: source (Q, fo), target(P, fp).

| |[nput:
e labeled sample Sdrawn from source.

e unlabeled sample’l'drawn from target.

® Problem: find hypothesis hin H with small expected loss
with respect to target domain, that is

Lp(h, fp)= E [L(h(g;), fp(x))]

r~P
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Sample Bias Correction Pb

B Problem: special case of domain adaptation with

* fo=1IpP.
e supp(QR) C supp(P).
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Related Work in Theory

B Single-source adaptation:

e relation between adaptation and the d adistance (Devroye
et al. (1996); Kifer et al. (2004); Ben-David et al. (2007)).

e afew negative examples of adaptation (Ben-David et al.
(AISTATS 2010)).

e analysis and learning guarantees for importance
weighting (Cortes, Mansour, and MM (NIPS 2010)).
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Related Work in Theory

B Multiple-source:

® same input distribution, but different labels (crammeretal.,
2005, 2006).

e theoretical analysis and method for multiple-source
adaptation (Mansour, MM, Rostamizadeh, 2008).
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Distribution Mismatch

Which distance should we use
to compare these distributions?
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Simple Analysis
® Proposition: assume that the loss L is bounded by M, then

Lo(h, ) — Lp(h, )] < M Ly(Q, P).
® Proof:
Le(h, f) ~ Lo(h N =| B [L((h(@), f@))] = E_[L((h(x), f(@))]
= |3 (P(#) — Q@) L((h(), (),
< Mx; P(x) — Q(a)].

But, is this bound informative?
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Example - Zero-One Loss

f

Lo(h, f) = Lp(h, f)] = |Q(a) — Pla)]
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Discrepancy

(Mansour, MM, Rostami, COLT 2009)
B Definition:

- _ N /
disc(P, Q) = Jmax, Lp(h,h')—Lgo(h,h")|.

* symmetric, triangle inequality, in general not a distance.

® helps compare distributions for arbitrary losses, e.g.
hinge loss, or L, loss.

e generalization of d 4 distance (Devroye et al. (1996); Kifer et al.
(2004); Ben-David et al. (2007)).
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Discrepancy - Properties

® Theorem: for L, loss bounded by M, for any 0 > 0, with
probability at least1 — 4,

disc(P, Q) < dlSC ) + 4q 9‘{5 ) + f/)\f{T

59

B Proof: Application of McDiarmid’s inequality.

omu;
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Discrepancy = Distance

(Cortes & MM (TCS 2013))
B Theorem: let K be a universal kernel (e.g., Gaussian kernel)

and H = {h € Hg: ||h||x <A}.Then, for the L loss,
discrepancy is a distance over a compact set X.

m Proof:¥: h— E,oplh?(z)]—Ez~g[h?(x)] is continuous
for norm || - ||co, thus continuous on C'(X).
o disc(P,Q)=0implies ¥(h)=0 for all h € H since:
vh.h € H, | E [(W(x) = h(x))]" = E_[(W'(x) = h(z))]"| = 0.

o sinceHis densein C(X), ¥ =0 over C'(X).

o thus, Ep[f]—Eg[f]=0forallf>0in C(X).
e thisimplies P=().
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Theoretical Guarantees

B Two types of questions:

o difference between average loss of hypothesis hon P
versus ()?

o difference of loss (measured on P) between hypothesis h
obtained when training on (Q, fg) versus hypothesis h’
obtained when trainingon (P, fp)?
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Generalization Bound

(Mansour, MM, Rostamizadeh (COLT

B Notation: 2009) + MM addition)
o Lolhh, fo) = min Lo(h, fo).
heH
¢ ’Cp(h*P?fP) :}L%llr_}ﬁp(hvff-’)

B Theorem: assume that L obeys the triangle inequality, then
the following holds:

Lo(h. fr) <, min {Lo(hho)+dis(P.Q) + Lp(hp. fr)

+min{ Lo (ho, hp), Lp(hg. hp)}}.
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Proof

Lp(h, fp) < hmiefllq{ﬁp(h, hp)+ Lp(hp, fP)} (triangle ineq.)

< hr;ne%{ﬁcg(h, hp) + dis(P, Q) + Lp(hp, fp)}
(def. of discrepancy)

< th%}aneH{ﬁQ(h, hQ) + Lo(hg, hp) +dis(P, Q) + Lp(hp, fp)}'
(triangle ineq.)

EP(ha fP)
< n;LlineH{EQ(h, ho) + dis(P, Q) + Lp(hp, fr) + min{Lo(hg, hp), Lp(ho. hp)}}.
QP
(rerun with the opposite order of min)

Advanced Machine Learning - Mohri@ page 18



Some Natural Cases
® Whenh" = h = hp,
Lp(h, fp) < Lo(h,h™)+ Lp(h™, fp) + disc(P, Q).
® When fp € H (consistent case),

Lp(h, fp) — Lo(h, fP)] < disc(Q, P).

e Bound of (Ben-David et al., NIPS 2006) OF (Blitzer et al., NIPS 2007);
always worse in these cases.
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Regularized ERM Algorithms

B Objective function:
Fg(h) = M|h]% + Rg(h).

where K is a PDS kernel;
A > (0 is a trade-off parameter; and

R@(h) is the empirical error of h.

® Dbroad family of algorithms including SVM, SVR, kernel
ridge regression, etc.
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Guarantees for Reg. ERM
(Cortes & MM (TCS 2013))
B Theorem: let K'be a PDS kernel with K (x,z) < R*and L a
convex loss function such that L(-, y) ispu-Lipschitz. Let h'
be the minimizer of I and hthat of that Fg, then, for

all (z,y) € X XY,

L( (), ) — L(h(z),9)] < MR\/ diselP, Q) + s fr fq),
where

i (feo fo) = jnf { max_|fp(x) = h@)| + max |fq(@) ~h)[}.
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Proof

B By the property of the minimizers, there exist subgradients

such that / /
2\h" = —(5Rﬁ(h )

2\h = —dRg(h).
® Thus,
2A|A" = h||* = —(h" — h,6Rp(h") — R5(h))
—(h' = h,0Rp(h")) + (W — h,0Rz(h))

< Rp(h) — Rp(h) + Rg(W) — Ra(h)

< 2disc(P, Q) + 2unu (fp, fQ)-

Foundations of Machine Learning page 22



Proof

B For any hypothesis hg, we can write:

2M|1" = hl[% < (Lp(h, fp) = Lp(h ho)) = (Lp(h, fp) — Lp(I, ho))
+ (L5, ho) — Lg(h, ko)) — (LR ho) — Lg(R', ho))
+ (Lg(hs ho) = La(h, fo)) — (La(h' ho) = Lg(H, fq))-

B Next, by the Lipschitzness, the following holds:

(Lp(h, fP) = Lp(h, ho)) = (Lp(W, fr) = Lp(h' ho)) <20 E_[|fp(2) — ho(2)]]

r~P

(L5(h, ho) = L5(h, fQ)) = (La(h' ho) — Lo, fQ)) <21 E_[|fo(x) — ho(2)]].

r~Q

B Since hgis in H, we have

(Lp(h.ho) — La(h, ho)) — (La(H ho) — Lg(h, he)) < 2dise(P, Q).
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Guarantees for Reg. ERM

(Cortes & MM (TCS 2013))

B Theorem: let K be a PDS kernel with K (x, ) < R* and L
the Loloss bounded by M. Then, for all(x, ),

Rv M
A

L(K(x),y) — L(h(z),y)| < (54 /62 + axdise(P.Q)),

where § = min

he H

E_|(h(z) - fo(@)@x(@)] = B_|(h(@) = fr(2)) k(@)

x~Q x~ P HK

A FOrfP :fQ :f’
e 0 < Re if fis e-close to H on samples.

e 0 = 0 for a Gaussian kernel and f continuous.
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Proof

B For any hypothesis hg, we can write as for previous result:
2A |0 = hll% < (Lp(h, fp) = Lp(h ho)) — (L', fp) — Lp(R', o))
+ (Lp(h, ho) = Lg(h, ho)) = (LR ho) — La(h', ho))
+ (Lg(h, ho) = Lg(h, fq)) — (La(h', ho) — Lg (', fq)).
B Next, for the squared loss, we have:

La(h, fp) — Lp(h,ho) (ho() — fp(2))(2h(x) = fp(x) — ho(w))]
LW, fp) = Lp(h', ho) (ho(w) = fp ()20 (x) — fp(x) — ho(x))].
® Thus,

(Lg(hho) = La(h, fq)) — (Lg(H' ho) — L5, fo))
= -2 E_|[(ho(z) — fo(2))(h(z) — K'(2))].

2~ Q

)

xrnrv

)

€T~
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Proof

B As for previous theorem, we have
(L5(h,ho) — Lg(h,ho)) — (Lp(h' ho) — LR ho)) < 2dise(P, Q).

B Thus, 2)\||h' — h||% < 2disc(P, Q) + 2A with:
A= {h=1\ E [(ho(e) = fp@)E ()] = E [(ho(x) - Jo(@)K (. )])

x~P ZENQ

E_[(ho(2) ~ fp(@)K(z,)] = E_[(ho(z) — fo(@)K(x,)]|| .

B The result follows by solving second-degree inequality.

< [lh = h'llx

Advanced Machine Learning - Mohri@ page 26



Empirical Discrepancy

m Discrepancy measure disc(P, Q) critical term in bounds.

B Smaller empirical discrepancy guarantees closeness of
pointwise losses of h”and h.

B But, can we further reduce the discrepancy?
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Algorithm - |dea

®m Search for a new empirical distribution ¢ with same
support:

S

*

g = argmin  disc(P, q).
supp(q) Csupp(Q)

B Solve modified optimization problem:

m

h .
1=1

Adaptation Theory and Algorithms - Mohri@
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Case of Halfspaces

Adaptation Theory and Algorithms - Mohri@ page 29



Min-Max Problem

B Reformulation:

Q' = agg/lglgln h%l?éXH‘Elg(h/, h) — E@,(h/, h)|.

* game theoretical interpretation.
* gives lower bound:
max min|Ls(h',h) — L5,
o, min | £5(0, 1) — Lg

i LW, h)— L,
i max \Lp(,h) = L

h',h)| <

h',h)|.
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Classification - 0/1 Loss

B Problem:

. -/ B ﬁ
min max |Q'(a) = P(a)

subject to  Vz € So, Q'(z) > 0 A Z Q' (z) = 1.
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Classification - 0/1 Loss

B Linear program (LP):

min o
Q/

subjectto Va € HAH, @’(a) — ﬁ(a)
Va € HAH, P(a) — Q' (a)
A

>I/\I/\
> >

* No. of constraints bounded by shattering coefficient.

I gAm(mo + no)
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Advance

Algorithm - 1D

d Machine Learning - Mohri@
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Regression - L2 Loss

® Problem:
min max |E[(W () — h(z))?] — E[(W (z) — h(a;))z]‘.
@’EQ h,h’EH ﬁ @/
min max | E[(w — w) %)% — E[(W - w)"x)?
Qe llwl[<1 1P Q'
w']|<1
— min max P(x) — Q' (x))[(W — w) " x|?
= min, max, | 3 (P60~ Qo) —w)Txl"
Iw'[| <1 *
— min max P(x) — Q' (x Tx]?
= min mox | 3 (P60 — Q') fu "
- g s (-0
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Regression - L2 Loss

® Problem equivalent to

min max [u' M(z)ul,
|z]]1=1 |Jul|=1
z>0

mo
with: M(z) = Mo — » 2 M;,
i=1
M, = Z P(x)xx '
xeS

elements of Supp(@)

Foundations of Machine Learning
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Regression - L2 Loss

B Semi-definite program (SDP): linear hypotheses.

min A\
Z,\
subjectto Al — M(z) = 0
M+ M(z) =0

1'z=1A2z>0,

where the matrix IMI(z) is defined by:

— Z ﬁ(x)x:x:T — Zzisisj.

xES =1

Advanced Machine Learning - Mohri@
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Regression - L2 Loss

®m SDP: generalization to fd RKHS for some kernel K.

min A\
Z,\
subjectto AL — M(z) = 0
M+ M(z) = 0
1'z=1A2z>0,
m
with: M(z) = My — Z 2; M,
i=1

M, = K2 diag(P(s1), ..., P(sp,)) K3
M; = K2, K'Y/

Advanced Machine Learning - Mohri@ page 37



Discrepancy Min. Algorithm

(Cortes & MM (TCS 2013))
@ (Convex optimization:

® cast as semi-definite programming (SDP) prob.

e efficient solution using smooth optimization.
B Algorithm and solution for arbitrary kernels.

B OQutperforms other algorithms in experiments.
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Experiments

B C(lassification:
e (Qand P Gaussians.

® H: halfspaces.

e f.interval [-1, +1].

10
=*w/ min disc
0.9 _ —w/ orig disc
T Lo I
0.8 . I ------ l l L
0.7- ] | 1

06 [ | 7
05 \'/—I\\—)\fr -

0% 20 40 60 80 100
# Training Points
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Experiments

B Regression:

L105;//,if\\;;§§‘" . 5

Ojux\xi' LoD )
.095 ......... O’
009% """ toe s S I ....... ] P
).085

1000 1500 2000 2500
# Training Points

SDP solved in about |5s using SeDuMi on 3GHz CPU with
2GB memory.

Advanced Machine Learning - Mohri@
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Experiments

1.0
1.0 1 I | 1.0 o
1.0 ¢ : §
0.9 - I I 09 - }: 2’2
0.8 0.8 I ' ’
i 07 £
0.7 o8
0.8 06 RS
0.6 0.7 7 05
05 0.7 06 04
uads T T T T T T T T 03 T T T T T
2 3 4 5 8 2 3 4 2 3 a4 2 3 4 5 6
abalone bank-8fm bank-32nh cal-housing
1.0 = == == 1.0 = 1.0 7 - 1.0 1 - - -
K2
08 - 0.8 - 08 08
4 - 06 -
06 I - 06 T
0.4 0.4 - I 0.4
0.4
0.2 - £ |o2- 0.2 4
02 -
T T T T T T T ! L ! 0.0 T T T T T
2 3 4 5 8 2 3 4 2 3 4 2 3 4 5 6
cpu_act cpu_small kin-8fh kin-8fm

Fig. 11. Results with “easy-to-learn” biasing scheme: Relative MSE performance of (1):
Optimal (in black); (2): KMM (in blue); (3): KLIEP (in orange); (4): Uniform (in green);
(5): Two-Stage (in brown); and (6): DM (in red). Errors are normalized so that the average
MSE of Uniform is 1.
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Enhancement

(Cortes, MM, and Muinoz (2014))
B Shortcomings:

e discrepancy depends on maximizing pair of hypotheses.

o =3 DM algorithm too conservative.

B |deas:

e finer quantity: generalized discrepancy, hypothesis-
dependent.

* reweighting depending on hypothesis.
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Algorithm

(Cortes, MM, and Mufoz (2014))
B Choose Qy, such that objectives are unif. close:

MR|% + Laq, (R, fo)
Mhl% + L5k, fr).

B [deally:
Qn = argmin | Lq(h, fo) — Lp(h, fr)]-
q

® Using convex surrogate H":

Qi = argmin g | Lq(h, fo) — £(h W")|

Advanced Machine Learning - Mohri@ page 43



Optimization

(Cortes, MM, and Mufioz (2014))

Lq, (h, fo) argmin max |l — L5(h,h")

le{Lq(h,fo):qcF(Sx,R)} M €H”

_ : R 7
— a,rlgerﬁm max, il —Ls(h,h")|

. 1 7 - 7 )

_ 2(hg1€a§/, Lp(h,h") + min Lp(h,h")).

=3 Convex optimization problem (loss jointly
convex):

1
: 2 - R 1/ : R /1
m]%n)\HhHK + 35 (hgleaécﬂ Ls(h,h") + ,in, Ls(h, h ))

Advanced Machine Learning - Mohri@ page 44



Convex Surrogate Hyp. Set

(Cortes, MM, and Munoz (2014))
B Choice of H” among balls

B(r) ={h" € H|Lq(h", fq) <1}

B Generalization bound proven to be more favorable than
DM for some choices of radius .

B Radius r chosen via cross-validation using small amount of
labeled data from target.

B Further improvement of empirical results.
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Conclusion

B Theory of adaptation based on discrepancy:
e keyterm in analysis of adaptation and drifting.
e discrepancy minimization algorithm DM.
e compares favorably to other adaptation algorithms in
experiments.
B Generalized discrepancy:
* extension to hypothesis-dependent reweighting.
® convex optimization problem.

e further empirical improvements.

B Further generalization:

Advanced Machine Learning - Mohri@ page 46
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Outline

® Domain adaptation.

B Multiple-source domain adaptation.
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Problem Formulation

B Given distributions and corresponding hypotheses:

\ \V/Z”C(Duhzaf)gﬁ
(D >—| 1 e
‘ / each hypothesis
) ' ~— performs well in
: : unknown its domain.
& target

Notation: L(D;, h;, f) :xPDi[L(hi(x)’ f(x))].

Loss L assumed non-negative, bounded, convex
and continuous.

—
—
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Problem Formulation

B The unknown target distribution is a mixture of input
distributions.

@
>

B Task: choose a hypothesis mixture that performs well in
target distribution.

Dr(z) = Z A D; ()

- - 2;D;(x)
ho(z) =) zihi(x) ha(z) =) —— hi(x)
i=1 i=1 Zj:1 z;Dj(z)
convex combination rule  distribution weighted combination

Advanced Machine Learning - Mohri@ page 49




Known Target Distribution

B For some distributions, any convex combination performs

poorly.
distribution weights hypothesis output
Dt | Do | D f | ho | hi
a |05 1|0 a |l [T]O
b |05( 0] | bl Ol ]|O

® Dbase hypotheses have no error within domain.

® any convex combination has error of 1/2!
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Main Results

B Thus, although convex combinations seem natural, they
can perform very poorly.

B We will show that distribution weighted combinations
seem to define the “right” combination rule.

B There exists a single “robust” distribution weighted
hypothesis, that does well for any target mixture.

4 )
Vf,32,¥Y\, L(Dx, hs, f) < e.
\§ J

Advanced Machine Learning - Mohri@ page 51



Known Target Distribution

® |f distribution is known, distribution weighted rule will
always do well. Choose: z = A.

i) =2 zUi(D) B

@ Proof:
L(Dr,hx, f Z z))Dr (%)
< >I > hi(x), f(x))Dr ()

Z ), f(z)) < ine — e

Advanced Machine Learning - Mohri@ page 52



Unknown Target Mixture

@ /ero-sum game:
o NATURE: select a target distribution D;.

e LEARNER: select a z, i.e. a distribution weighted
hypothesis h..

o Payoff: L(D;, h., f).

e Already shown: game value is at moste.

B Minimax theorem (modulo discretization of 2): there exists
a mixture ) _; ajh; of distribution weighted hypothesis
that does well for any distribution mixture.
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Balancing Losses

B Brouwer's Fixed Point theorem: for any compact, convex,
non-empty set A and any continuous functionf: A — A,
there exists x such that: f(x)==x.

f Notation:
[Lf’ :=L(D;, h, f)J

a Define mapping dby: [(2)] = o
efine mapping o by: |@(2)]; = pol
2.5 %k
B By fixed point theorem (modulo continuity):
f 2i L7 )
Jz: Vi, 2, = ——— - = Vi, L. = 2 L7 =:7.
L 25 %L j )

Advanced Machine Learning - Mohri@ page 54



Bounding Loss

B For fixed pointz,

k
Dz,hz,f Z L ZZZDZ(ZC))

a:EX 1=1

B Also, by convexity,

k
L(D:,he, f) <ZZ’ZZ (@), f@)D(w) = 3 5L (Dishis f) < o

reX 1=1

Advanced Machine Learning - Mohri@ page 55



Bounding Loss

B Thus, v < eand for any mixture A,

-

-

k k
L(Dx,hz, f) =) XNL(Di hs, f) <D Ay=7<e
1=1 1=1

~

J

Advanced Machine Learning - Mohri@
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Details

B To deal with non-continuity refine hypotheses:

nooN ‘ z;Di(x) +n/k
S ; S5y 2iDj(x) + )

m Theorem: for any target functionfand any 0 >0,

an > 0,z: VN, L(Dx,h], f) <e+0.

B |f loss obeys triangle inequality:

V6 > 0,dz,m>0,V\, f e F, L(Dx,hl, f) <3e+ 0.

holds for all admissible target functions.

Advanced Machine Learning - Mohri@ page 57



A Simple Algorithm

B Asimple constructive algorithm, choose z with uniform
weights:

k

L(Dx, by, [) = ZD/\ (Z Zkfl_)i(;)-(x) hz‘(fﬁ)af(fb’)>

=Y y:)\mDm(x) LY hi(z), f(x)

i=1 Z?ﬂ Dj(x)

Advanced Machine Learning - Mohri@ page 58



Preliminary Empirical Results

B Sentiment Analysis - given a product review (text string),
predict a rating (between 1.0 and 5.0).

B 4 Domains: Books, DVDs, Electronics and Kitchen
Appliances.

B Base hypotheses are trained within each domain (Support
Vector Regression).

B We are not given the distributions. We model each
distribution using a bag of words model.

B We then test the distribution combination rule on known
target mixture domains.
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Empirical Results

Uniform Mixture Over 4 Domains

2.1f

I \n-Domain
| |Out-Domain| |

2_

1.9/
1.8
=
1.71
1.6/

1.5}

1 2 3 4 5 6

Advanced Machine Learning - Mohri@ page 60



Empirical Results

B 2 class
Mixture = o book + (1 — a) kitchen
2.4 | —weighted
= linear I
2.29| e book *‘
-«-kitchen | e
L
D 2
=
1.8
1.6
1'40 0.2 0.4 0.6 0.8 1
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Conclusion

B Formulation of the multiple source adaptation problem.
B Theoretical analysis for mixture distributions.

B Efficient algorithm for finding distribution weighted
combination hypothesis?

B Beyond mixture distributions?
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Rényi Divergences

M Definition: fora > 0,

logZP [ ?rl.

®* o = 1:coincides with relative entropy.

Do (P||Q) =

* o= 2:logarithm of expected probability ratio;

P(w)]
Qz) |
o a = +00: |logarithm of maximum probability ratio;

-

D, (P||Q) =log E [

x~ P

Foundations of Machine Learning page 63



Extensions - Arbitrary Target

(Mansour, MM, and Rostami, 2009)
m Theorem:foranyd>0anda>1,

a—1

30, 2 WP, L(P, I, f) < |da(P(Q)(e +0)| M.

Y A

P

measured in terms of Renyi
divergence,

1

(PO~ X G|

Advanced Machine Learning - Mohri@ page 64



Proof

B By Holder's inequality, for any hypothesis A,

£Ph =Y Qiﬁ”;()x)ml(x)uh(x), f(a)

[ZQfal ] > QL (b, S)]

= (da(PIQ)F" | B [Lﬁ(h(x),f(:v))ﬂ—

= (da(P]Q))* | E_[L(h(x), (@) L7 (h(x), f(2))]] *

< (da(PIQ)F |£(Q.hy M

Foundations of Machine Learning page 65



Other Extensions

(Mansour, MM, and Rostami, 2009)
B Approximate distributions (estimated):

e similar results shown depending on divergence between
true and estimated distributions.
m Different source target functions f;:

e similar results when target functions close to f on target
distribution.
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