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Outline

B Model selection.

B Deep boosting.
® theory.
* algorithm.

® experiments.
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Model Selection

® Problem: how to select hypothesis set H?
e H too complex, no gen. bound, overfitting.
e H too simple, gen. bound, but underfitting.

-P palance between estimation and approx. errors.

hBayeS
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Estimation and Approximation

®m General equality: forany h € H,

best in class

e
R(h) — R* = |[R(h) — R(h")| + |[R(h") — R"|.
R A N i

Bayes error estimation approximation

B Approximation: not a random variable, only depends on H.

B Estimation: only term we can hope to bound; for ERM,
bounded by two times gen. bound:
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Structural Risk Minimization

(Vapnik and Chervonenkis, 1974; Vapnik, 1995)

B SRM: H = U HywithH, CHyC---CHyC -
k=1
® solution: f* = argmin }A%s(h) + pen(k, m).
heHy k>1
errorA

training error + penalty

training error

complexity

Advanced Machine Learning - Mohri@ pageb5



SRM Guarantee

B Definitions:
o Hjnsimplest hypothesis set containing h.
* f{*"the hypothesis returned by SRM:

f* = argmin Rg(h) + Rm(Hy) +
heHy,k>1

log k

— F,.(h).

B Theorem: for any d >0, with probability at least 1 —,
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Proof

Bm General boundforallh € H:
Pr [21612 R(h) — Fpy(h) > e}

= Pr [sup sup R(h) — Fi(h) > €
k>1 he Hy

< ZPI‘ [ sup R(h) — Fx(h) > €

—1 heHy

log k
_ZPr[SupR — Rg(h) — R (Hy) > € + 1] —2 ]
heHy m

<> e (—2mfer /)
< Z e—2m62€—210gkz
k=1

0

2
_ 2 1 T _ 2 . 2
— e 2me E :—2:—6 2me §2€ 2me.
k §
k=1
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Proof
B Using the union bound and the bound just derived gives:

Pr [R(f*) — R(R") — 2R, (Hyygey) — 1/ 2850 5 e}
* * € * * (o) * €
< Pr [ R(f*) = Fi(roy (%) > 5] + Pr By (f7) = R(W) = 2Rom (Hige) — /2250 > 2
< _ng . *\ *\ o) — log k(h™) E
< 2e + Pr [Fk(h (7)) — R(R) = 2R, (Hin)) =\ == > 2}
_me? D * * €
= 2¢~ % | Pr [Rs(h ) = R(h*) — R (Hie) > 5]

_m_€2 _m_'fz _ 2
=2¢ 2 H4+e 2 =3e "z .
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Remarks

& SRM bound:
* similar to learning bound when k(h™)is known!

® can be extended if approximation error assumed to be
small or zero.

o ifHcontains the Bayes classifier, only finitely many
hypothesis sets need to be considered in practice.

® restriction: Hdecomposed as countable union of
families with converging Rademacher complexity.

B |[ssues: (1) SRM typically computationally intractable;
(2) how should we choose H}s?
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Voted Risk Minimization

B |deas:
® no selection of specific Hy.
o instead, useallHys: h =, _, aphg, hy € Hg, o € A,
* hypothesis-dependent penalty:

p
Z &k%m (Hk)
k=1

- Deep ensembles.
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Outline

B Model selection.

B Deep boosting.
® theory.
* algorithm.

® experiments.
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Ensemble Methods in ML

B Combining several base classifiers to create a more
accurate one.

® Bagging (Breiman 1996).

® AdaBoost (Freund and Schapire 1997).
® Stacking (Smyth and Wolpert 1999).

® Bayesian averaging (MacKay 1996).

 Other averaging schemes e.g., (Freund et al. 2004).
B Often very effective in practice.

B Benefit of favorable learning guarantees.
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Convex Combinations

B Base classifier set H.
®* boosting stumps.

® decision trees with limited depth or number of leaves.

B Ensemble combinations: convex hull of base classifier set.
4 T T N
conv(H) = { Zatht: ap > O;Zat <1;Vt,h; € H ;.

\tzl t:]_ J
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Ensembles - Margin Bound

(Bartlett and Mendelson, 2002; Koltchinskii and Panchencko, 2002)
B Theorem: let H be a family of real-valued functions. Fixp>0.
Then, for any 0 > 0, with probability at least 1 —0, the
following holds for all f= Zthl athy € conv(H):

~ 2 log 5
R(P) < By (1) + R (H) +[ 52

)

~ 1 —
* where R ,(f) = m Z Lyif(zi<p -
i=1
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Questions

B Can we use a much richer or deeper base classifier set?

* richer families needed for difficult tasks in speech and
Image processing.

® put generalization bound indicates risk of overfitting.
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AdaBoost
(Freund and Schapire, 1997)

B Description: coordinate descent applied to

m m

T
Fla) = Ze_yi‘f(xi) = Zexp —Yi Zatht(fﬁz‘)
t=1

B Guarantees: ensemble margin bound.

* put AdaBoost does not maximize the margin!

® some margin maximizing algorithms such as arc-gv are
outperformed by AdaBoost! (Reyzin and Schapire, 2006)
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Suspicions

B Complexity of hypotheses used:

® arc-gv tends to use deeper decision trees to achieve a
larger margin.

® Notion of margin:
e minimal margin perhaps not the appropriate notion.

® margin distribution is key.

- Can we shed more light on these questions?
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Question

B Main question: how can we design ensemble algorithms
that can succeed even with very deep decision trees or
other complex sets?

* theory.
* algorithms.

* experimental results.
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Base Classifier Set H

B Decomposition in terms of sub-families or their union.
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Ensemble Family

® Non-negative linear ensembles F = conv(U; _, Hy):

T

f:ZOét

t=1

with Ot 2 O,Zle Ot S ].,h ~ Hkt.
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ldeas

B Use hypotheses drawn from H;s with larger ks but allocate
more weight to hypotheses drawn from smaller &s.

* how can we determine quantitatively the amounts of
mixture weights apportioned to different families?

® can we provide learning guarantees guiding these
choices?

Advanced Machine Learning - Mohri@ page21



Learning Guarantee

(Cortes, MM, and Syed, 2014)
B Theorem: Fixp>0. Then, for any ¢ >0, with probability at
least 1—¢, the following holds for all f:Zle ath e F:

T
R(f) < Rs ,(f) + % > R (Hy,) + O ( 10gp) .

2
m
t=1 P
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Consequences

B Complexity term with explicit dependency on mixture
weights.

® guantitative guide for controlling weights assigned to
more complex sub-families.

®* bound can be used to inspire, or directly define an
ensemble algorithm.
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Set-Up
| Hy,...,H,:disjoint sub-families of functions taking

valuesin [—1, +1].

B Further assumption (not necessary). symmetric sub-
families,i.e. h € H, < —h € Hy,.

B Notation:
°r; = %m(ij) with hj Eij.
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Derivation

B |earning bound suggests seeking a > 0 with Zle ar <1
to minimize

l — 4 L
m 2Ly sr aimeyze P ).
1=1 —1
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Convex Surrogates

m lLetu — ®(—u)be adecreasing convex function upper
bounding u — 1,<¢, with ® differentiable.

® Two principal choices:
* Exponential loss: ®(—u) = exp(—u).

o Logisticloss: ®(—u) = log, (1 + exp(—u)).
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Optimization Problem

(Cortes, MM, and Syed, 2014)

B Moving the constraint to the objective and using the fact
that the sub-families are symmetric leads to:

RS S SRS TR

=1

where A\, 3 > 0, and for each hypothesis, keep either h or -h.

Advanced Machine Learning - Mohri@ page 27



DeepBoost Algorithm

B (Coordinate descent applied to convex objective.
* non-differentiable function.

e definition of maximum coordinate descent.

N
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Direction & Step

B Maximum direction: definition based on the error

1
€tj = 5 {1 — iNEIJDt yih; (%)]]»

where D is the distribution over sample at iteration t.
| Step:

* closed-form expressions for exponential and logistic
losses.

* general case: line search.
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Pseudocode

DEEPBOOST(S = ((z1.11)se v s (Zrn, n)))

1 fori+— 1ltomdo
2 Dl(z: — r-l;
3 fori« 1107 do
4 for j — 1ta N do
S5 if (@1, 7 U) then
6 d — (ECJ ) + Sg'l(ac 1,“,—5.% Aj = )\rj + 5.
8 d_ — U
10 k e argmax|d;|
FE[1.N]
11 C ¢ C.k
12 if(l(l—Gt)eut—..\'—ﬁte—ut—l.kli:;_'n:e"ﬂ) then
13 T & —Qp-1,h
14 elseil (T — ;e © ML L 5" ) then
y o log - ey |2+ 12
16 ehe g lop[ + ey [Run] e de
17 a( h a;-—- +ﬂtek
18 Stfl (—?"l ‘po(l TJV at 3hf z‘ ')
19 for i — 1 tom do
I( N \
20 D‘...;I:'i) o Pl Z‘i"_:lm_,h_; (x:)
21 f ¢ S:;V_l Olz.Jh_;
22 return f
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Connections with Previous Work

m For A = /3 =0, DeepBoost coincides with

* AdaBoost (Freund and Schapire 1997), run with union of sub-
families, for the exponential loss.

® additive Logistic Regression (Friedman et al., 1998), run with
union of sub-families, for the logistic loss.
m For A\ =0 and (3 # 0, DeepBoost coincides with

* L1-regularized AdaBoost (Raetsch, Mika, and Warmuth 2001), for
the exponential loss.

® coincides with L1-regularized Logistic Regression (Duchi
and Singer 2009), for the logistic loss.
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Rad. Complexity Estimates

B Benefit of data-dependent analysis:
o empirical estimates of each R, (Hy).

e example: for kernel function Ky,

s5\%5([‘114) < \/Tr[Kk].

m

® alternatively, upper bounds in terms of growth functions,

2 log HHk (m)
- :

it <
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Experiments (1)

B Family of base classifiers defined by boosting stumps:

* boosting stumps H; "™P* (threshold functions).

* indimensiond, Il ystume: (m) < 2md, thus

m
o decision trees of depth 2, H5"""P° with the same

question at the internal nodes of depth 1.

* indimensiond, II swumps (m) < (2m)2@, thus

2log(2m2d(d — 1
%m(H;tumpS)é\/ Og(m ( ))

m
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Experiments (1)

. t L
m Base classifier set: H, U Hy PR,

B Data sets:

e same UCI Irvine data sets as (Breiman 1999) and (Reyzin and
Schapire 2006).

®* OCR data sets used by (Reyzin and Schapire 2006): 0Cr17,
ocr4o.

e MNIST data sets: ocr17-mnist, ocr49-mnist.
B Experiments with exponential loss.

B Comparison with AdaBoost and AdaBoost-L1.
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Data Statistics

breastcancer | ionosphere | german (numeric)
Examples 699 351 1000
Attributes 9 34 24
diabetes ocrl7 ocr49
Examples 768 2000 2000
Attributes 8 196 196
ocrl7-mnist ocr4d9-mnist
Examples 15170 13782
Attributes 400 400
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Experiments - Stumps Exp Loss

(Cortes, MM, and Syed, 2014)

Takle 1. Results for boosied decision stmps and the exponentia’ loss functon.

AdaBonst | AdaRoost AdzRoost  AdaKonst
broastearcer — H}F HL*™™ | AdaBoostll | DeepBoost oerl? HE H™™ | AdaBodst.Ll  DeepBoost
Lerer 0.0429 0.0437 0.0408 0.0373 Lrror 0.0085 0.0CE 0.0075 0.0070
(std dev) (0.0248) (0.0214: {0.0223) (0.0225) (std dev) 0.0072 0.0054 0.00¢€8 (0.0048)
Avy e size 1 2 1436 1.215 Avi Lo Sat 1 2 1.030 1309
Avg o, uf Lees 100 100 43.6 21.¢ Avz po. ol aes 100 100 378 359
AdaBoust | AdaBoost AdaBoost  AdaBoust
innnsprere H o H™™™ | Adasonatl. | DeepHoost neray H= A Ardakonstl.l DeepRoost
Errcr 0.1024 C.07s 0.0708 0.0628 Error 0.0555 Q.022 0.2 0.0275
(std dev) (0.0414) (0.0413; 10.0321) (0.0294) (std dev) 0.0167 o114 0.0122 (0.0095)
Avg tree 52 1 2 1392 1168 Avg tree ze 1 2 195 1.56
Avg no. of trecs 100 100 39.35 1745 Avz no. of iroes 100 100 0.3 96
AdaBoost | AdaBoost AdiBoost  AdaBoost
germar H HA | AduBoustL] | DeepBoost vcrl7-nmnist | H A | AdaBoost-Ll  DeepBoust
Froor n7as [PaNR (17453 [[PRLLY Frme se MEs (onas Lonan
(std dav) (0.0445) | (0.0487; (0.0438) (0.0462) (std dev) 0.0017 00014 0.0013 (0.0014)
Avg tree sz2 1 2 1.54 17¢ Avg tree size 1 2 2 1.9
Avg no. of trees 100 100 541 765 Avz no. of irzes 100 100 100 100
AdaBoost [ AdaBoost AdsBoost  AdaBoost
diabetes e HZ'™ | AdaBoost-L1 | DecpBoost ocrdd mniast | H7EF HF™ | AdaBoost-L1  DecpBocst
Errcr 0253 C.2oC 0.253 0.253 Error 0.0414 00273 0.02C0 0.0177
(std dev) (0.0330) (0.0518; (0.04858) (0.0510) (51d dev) 0.00539 C.00221 000408 (0.00438)
Avg ree sz 1 2. 1.997% 1.967% Ava rree Siie 1 2 1.9975 1.9G75
Avg no. of trees 100 170 10(l 1K) AV no 0T rees 100 10 100 100
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Experiments (2)

B Family of base classifiers defined by decision trees of
depth k. For trees with at most n nodes:

R (Th) < \/(4n + 2) log,(d + 2) log(m + 1)

m

® Base classifier set: Ui, H7es
B Same data sets as with Experiments (1).
B Both exponential and logistic loss.

B Comparison with AdaBoost and AdaBoost-L1.
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Experiments - Trees Exp Loss

(Cortes, MM, and Syed, 2014)

breastcancer | AdaBoost | AdaBoost-LL1 | DeepBoost ocrl7 AdaBoost | AdaBoost-L1 | DeepBoost
Error 0.0267 0.0264 0.0243 Error 0.004 0.003 0.002
(std dev) (0.00841) (0.0098) (0.00797) (std dev) (0.00316) (0.00100) (0.00100)
Avg tree size 29.1 28.9 20.9 Avg tree size 15.0 30.4 26.0
Avg no. of trees 67.1 51.7 55.9 Avg no. of trees 88.3 65.3 61.8
ionosphere AdaBoost | AdaBoost-L1 | DeepBoost ocr49 AdaBoost | AdaBoost-L1 | DeepBoost
Error 0.0661 0.0657 0.0501 Error 0.0180 0.0175 0.0175
(std dev) (0.0315) (0.0257) (0.0316) (std dev) (0.00555) (0.00357) (0.00510)
Avg tree size 29.8 314 26.1 Avg tree size 30.9 62.1 30.2
Avg no. of trees 75.0 69.4 50.0 Avg no. of trees 92.4 89.0 83.0
german AdaBoost | AdaBoost-L.1 | DeepBoost ocrl7-mnist AdaBoost | AdaBoost-L.1 | DeepBoost
Error 0.239 0.239 0.234 Error 0.00471 0.00471 0.00409
(std dev) (0.0165) (0.0201) (0.0148) (std dev) (0.0022) (0.0021) (0.0021)
Avg tree size 3 7 16.0 Avg tree size 15 33.4 22.1
Avg no. of trees 91.3 87.5 14.1 Avg no. of trees 88.7 66.8 59.2
diabetes AdaBoost | AdaBoost-L.1 | DeepBoost ocr49-mnist AdaBoost | AdaBoost-L1 | DeepBoost
Error 0.249 0.240 0.230 Error 0.0198 0.0197 0.0182
(std dev) (0.0272) (0.0313) (0.0399) (std dev) (0.00500) (0.00512) (0.00551)
Avg tree size 3 3 5.37 Avg tree size 29.9 66.3 30.1
Avg no. of trees 45.2 28.0 19.0 Avg no. of trees 82.4 81.1 80.9
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Experiments - Trees Log Loss

(Cortes, MM, and Syed, 2014)

breastcancer LogReg | LogReg-L1 | DeepBoost ocrl7 LogReg | LogReg-L1 | DeepBoost
Error 0.0351 0.0264 0.0264 Error 0.00300 0.00400 0.00250
(std dev) (0.0101) (0.0120) (0.00876) (std dev) (0.00100) | (0.00141) | (0.000866)
Avg tree size 15 59.9 14.0 Avg tree size 15.0 7 22.1
Avg no. of trees 65.3 16.0 23.8 Avg no. of trees 75.3 53.8 25.8
ionosphere LogReg | LogReg-L1 | DeepBoost ocr49 LogReg | LogReg-L1 | DeepBoost
Error 0.074 0.060 0.043 Error 0.0205 0.0200 0.0170
(std dev) (0.0236) (0.0219) (0.0188) (std dev) (0.00654) | (0.00245) (0.00361)
Avg tree size 7 30.0 18.4 Avg tree size 31.0 31.0 63.2
Avg no. of trees 44.7 25.3 29.5 Avg no. of trees 63.5 54.0 37.0
german LogReg | LogReg-L1 | DeepBoost ocrl7-mnist LogReg | LogReg-LL1 | DeepBoost
Error 0.233 0.232 0.225 Error 0.00422 0.00417 0.00399
(std dev) (0.0114) (0.0123) (0.0103) (std dev) (0.00191) | (0.00188) (0.00211)
Avg tree size 7 7 14.4 Avg tree size 15 15 25.9
Avg no. of trees 72.8 66.8 67.8 Avg no. of trees 71.4 55.6 27.6
diabetes LogReg | LogReg-L1 | DeepBoost ocr49-mnist LogReg | LogReg-LL1 | DeepBoost
Error 0.250 0.246 0.246 Error 0.0211 0.0201 0.0201
(std dev) (0.0374) | (0.0356) (0.0356) (std dev) (0.00412) | (0.00433) | (0.00411)
Avg tree size 3 3 3 Avg tree size 28.7 33.5 72.8
Avg no. of trees 46.0 45.5 45.5 Avg no. of trees 79.3 61.7 41.9
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Margin Distribution

lon: AdaBoost-L1, fold =6

Froquency
oo 38838

/T 1T T 1 1
0.1 03 05

Normalized Margin

lon: DeepBoost, fold =6

Froquency
oo 3888

]
0.7

0.1 03 05

Normalized Margin
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lon: AdaBoost, fold = 6

o
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|

Normalized Margin

Cumulative Distribution of Margins

1.0
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Multi-Class Learning Guarantee

(Kuznetsov, MM, and Syed, 2014)
B Theorem: Fixp>0. Then, for any ¢ >0, with probability at
least 14, the following holds for all f:Zle ahy € F:

~ 8¢ log p p2cim
R(P) < B pf) 7 3 P (T (Hi,) + O <\/ o 108 Luong .

B with ¢ number of classes.

B and II1(Hy) ={x— h(z,y): y € YV, h € Hy}.
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Extension to Multi-Class

B Similar data-dependent learning guarantee proven for the
multi-class setting.

* bound depending on mixture weights and complexity of
sub-families.
B Deep Boosting algorithm for multi-class:

* similar extension taking into account the complexities of
sub-families.

® several variants depending on number of classes.

o (different possible loss functions for each variant.
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Other Related Algorithms

B Structural Maxent models (Cortes, Kuznetsov, MM, and Syed, ICML
2015): feature functions chosen from a union of very
complex families.
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Other Related Algorithms

B Deep Cascades (DeSalvo, MM, and Syed, ALT 2015). cascade of
predictors with leaf predictors and node questions selected
from very rich families.
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Conclusion

B Deep Boosting: ensemble learning with increasingly
complex families.

data-dependent theoretical analysis.
algorithm based on learning bound.
extension to multi-class.

ranking and other losses.

enhancement of many existing algorithmes.

compares favorably to AdaBoost and additive Logistic

Regression or their L1-regularized variants in
experiments.
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