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Outline
Model selection. 

Deep boosting. 

• theory. 

• algorithm. 

• experiments.

2



pageAdvanced Machine Learning - Mohri@

Model Selection
Problem: how to select hypothesis set     ? 

•      too complex, no gen. bound, overfitting.    

•      too simple, gen. bound, but underfitting. 

          balance between estimation and approx. errors.
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Estimation and Approximation
General equality: for any           , 

Approximation: not a random variable, only depends on    . 

Estimation: only term we can hope to bound; for ERM, 
bounded by two times gen. bound:
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h�H

R(h)�R� = [R(h)�R(h�)]⇤ ⇥� ⌅
estimation

+ [R(h�)�R�]⇤ ⇥� ⌅
approximation

.

H

best in class

R(hERM)�R(h�) = R(hERM)� �R(hERM) + �R(hERM)�R(h�)

� R(hERM)� �R(hERM) + �R(h�)�R(h�)

� 2 sup
h�H

|R(h)� �R(h)|.

Bayes error
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Structural Risk Minimization
SRM:                          with  

• solution:
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H =
��

k=1

Hk H1 � H2 � · · · � Hk � · · ·
(Vapnik and Chervonenkis, 1974; Vapnik, 1995)

f� = argmin
h�Hk,k�1

�RS(h) + pen(k, m).

complexity

error

training error

penalty

training error + penalty
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SRM Guarantee
Definitions: 

•            simplest hypothesis set containing    . 

•      the hypothesis returned by SRM: 

Theorem: for any          , with probability at least         ,
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Hk(h) h

f�

f� = argmin
h�Hk,k�1

�RS(h) + Rm(Hk) +
�

log k

m
= Fk(h).

�>0 1��

R(f�) � R(h�) + 2Rm(Hk(h�)) +

�
log k(h�)

m
+

�
2 log 3

�

m
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Proof
General bound for all             :
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Proof
Using the union bound and the bound just derived gives:
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Remarks
SRM bound: 

• similar to learning bound when            is known! 

• can be extended if approximation error assumed to be 
small or zero. 

• if    contains the Bayes classifier, only finitely many 
hypothesis sets need to be considered in practice. 

• restriction:     decomposed as countable union of 
families with converging Rademacher complexity. 

Issues: (1) SRM typically computationally intractable;         
(2) how should we choose      s?
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Voted Risk Minimization
Ideas: 

• no selection of specific       . 

• instead, use all      s:                                ,                 ,             . 

• hypothesis-dependent penalty:
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Hk

Hk

p�

k=1

�kRm(Hk).

h =
�p

k=1 �khk hk � Hk � � �

Deep ensembles.
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Outline
Model selection. 

Deep boosting. 

• theory. 

• algorithm. 

• experiments.
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Ensemble Methods in ML
Combining several base classifiers to create a more 
accurate one. 

• Bagging (Breiman 1996). 

• AdaBoost (Freund and Schapire 1997). 

• Stacking (Smyth and Wolpert 1999). 

• Bayesian averaging (MacKay 1996). 

• Other averaging schemes e.g., (Freund et al. 2004). 

Often very effective in practice. 

Benefit of favorable learning guarantees.

12
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Convex Combinations
Base classifier set    . 

• boosting stumps. 

• decision trees with limited depth or number of leaves. 

Ensemble combinations: convex hull of base classifier set.
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H

conv(H) =
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T�
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Ensembles - Margin Bound
Theorem: let     be a family of real-valued functions. Fix          . 
Then, for any          , with probability at least         , the 
following holds for all                                                 : 

• where

14

H �>0
�>0 1��

f =
�T

t=1 �tht�conv(H)

(Bartlett and Mendelson, 2002; Koltchinskii and Panchencko, 2002) 

�RS,�(f) =
1
m

m�

i=1

1yif(xi)�� .

R(f)  bRS,⇢(f) +
2

⇢
Rm(H) +

s
log

1
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Questions
Can we use a much richer or deeper base classifier set? 

• richer families needed for difficult tasks in speech and 
image processing. 

• but generalization bound indicates risk of overfitting.
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AdaBoost
Description: coordinate descent applied to 

Guarantees: ensemble margin bound. 

• but AdaBoost does not maximize the margin! 

• some margin maximizing algorithms such as arc-gv are 
outperformed by AdaBoost! (Reyzin and Schapire, 2006)
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(Freund and Schapire, 1997) 

F (�) =
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i=1
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Suspicions
Complexity of hypotheses used:  

• arc-gv tends to use deeper decision trees to achieve a 
larger margin. 

Notion of margin: 

• minimal margin perhaps not the appropriate notion. 

• margin distribution is key.
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can we shed more light on these questions?
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Question
Main question: how can we design ensemble algorithms 
that can succeed even with very deep decision trees or 
other complex sets? 

• theory. 

• algorithms. 

• experimental results.
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Base Classifier Set H
Decomposition in terms of sub-families or their union.
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Ensemble Family
Non-negative linear ensembles                                 :
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T�
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with
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Ideas
Use hypotheses drawn from     s with larger   s but allocate 
more weight to hypotheses drawn from smaller   s. 

• how can we determine quantitatively the amounts of 
mixture weights apportioned to different families? 

• can we provide learning guarantees guiding these 
choices?

21

Hk k
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Learning Guarantee
Theorem: Fix        . Then, for any         , with probability at 
least         , the following holds for all                               :
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�>0 �>0
1�� f =

�T
t=1 �tht�F

R(f) � �RS,�(f) +
4
�

T�

t=1

�tRm(Hkt) + �O
��

log p

�2m

�
.

(Cortes, MM, and Syed, 2014) 
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Consequences
Complexity term with explicit dependency on mixture 
weights. 

• quantitative guide for controlling weights assigned to 
more complex sub-families. 

• bound can be used to inspire, or directly define an 
ensemble algorithm.

23
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Set-Up
                      : disjoint sub-families of functions taking 
values in                 . 

Further assumption (not necessary): symmetric sub-
families, i.e.                                        . 

Notation:  

•                            with                 .
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H1, . . . , Hp

[�1, +1]

h � Hk � �h � Hk

rj = Rm(Hkj ) hj�Hkj



pageAdvanced Machine Learning - Mohri@

Derivation
Learning bound suggests seeking              with                          
to minimize
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� � 0
�T

t=1 �t � 1

1
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Convex Surrogates
Let                        be a decreasing convex function upper 
bounding                    , with     differentiable. 

Two principal choices: 

• Exponential loss: 

• Logistic loss: 
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�(�u) = exp(�u).
�(�u) = log2(1 + exp(�u)).

u �� �(�u)
u �� 1u�0 �
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Optimization Problem
Moving the constraint to the objective and using the fact 
that the sub-families are symmetric leads to:
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min
��RN

1
m

m�

i=1

�
�
1�yi

N�

j=1

�jhj(xi)
�
+

N�

t=1

(�rj + �)|�j |,

where                , and for each hypothesis, keep either h or -h.�, � � 0

(Cortes, MM, and Syed, 2014) 



pageAdvanced Machine Learning - Mohri@

DeepBoost Algorithm
Coordinate descent applied to convex objective. 

• non-differentiable function. 

• definition of maximum coordinate descent.

28
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Direction & Step
Maximum direction: definition based on the error 

Step:  

• closed-form expressions for exponential and logistic 
losses. 

• general case: line search.
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�t,j =
1
2

�
1� E

i�Dt

[yihj(xi)]
�
,

where       is the distribution over sample at iteration  .Dt t
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Pseudocode
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�j = �rj + �.
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Connections with Previous Work
For                     , DeepBoost coincides with  

• AdaBoost (Freund and Schapire 1997), run with union of sub-
families, for the exponential loss. 

• additive Logistic Regression (Friedman et al., 1998), run with 
union of sub-families, for the logistic loss. 

For             and             , DeepBoost coincides with 

• L1-regularized AdaBoost (Raetsch, Mika, and Warmuth 2001), for 
the exponential loss. 

• coincides with L1-regularized Logistic Regression (Duchi 

and Singer 2009), for the logistic loss.
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� = � = 0

� = 0 � �= 0
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Rad. Complexity Estimates
Benefit of data-dependent analysis: 

• empirical estimates of each                  . 

• example: for kernel function       ,  

• alternatively, upper bounds in terms of growth functions,
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Rm(Hk)
Kk

�RS(Hk) �
�

Tr[Kk]
m

.

Rm(Hk) �
�

2 log �Hk(m)
m

.
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Experiments (1)
Family of base classifiers defined by boosting stumps: 

• boosting stumps                 (threshold functions). 

• in dimension    ,                                        , thus 

• decision trees of depth 2,                 , with the same 
question at the internal nodes of depth 1. 

• in dimension    ,                                                       , thus
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Hstumps
1

d �Hstumps
1

(m) � 2md

Rm(Hstumps
1 ) �

�
2 log(2md)

m
.

Hstumps
2

d �Hstumps
2

(m) � (2m)2 d(d�1)
2

Rm(Hstumps
2 ) �

�
2 log(2m2d(d� 1))

m
.
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Experiments (1)
Base classifier set:                                     . 

Data sets: 

• same UCI Irvine data sets as (Breiman 1999) and (Reyzin and 

Schapire 2006). 

• OCR data sets used by (Reyzin and Schapire 2006): ocr17, 
ocr49. 

• MNIST data sets: ocr17-mnist, ocr49-mnist. 

Experiments with exponential loss. 

Comparison with AdaBoost and AdaBoost-L1.
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Hstumps
1 �Hstumps

2
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Data Statistics

35

breastcancer ionosphere german (numeric)
Examples 699 351 1000
Attributes 9 34 24

diabetes ocr17 ocr49
Examples 768 2000 2000
Attributes 8 196 196

ocr17-mnist ocr49-mnist
Examples 15170 13782
Attributes 400 400
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Experiments - Stumps Exp Loss

36

(Cortes, MM, and Syed, 2014) 
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Experiments (2)
Family of base classifiers defined by decision trees of  
depth    . For trees with at most n nodes: 

Base classifier set:                        . 

Same data sets as with Experiments (1). 

Both exponential and logistic loss. 

Comparison with AdaBoost and AdaBoost-L1.
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k

�K
k=1H

trees
k

Rm(Tn) �
�

(4n + 2) log2(d + 2) log(m + 1)
m

.
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Experiments - Trees Exp Loss

38

breastcancer AdaBoost AdaBoost-L1 DeepBoost ocr17 AdaBoost AdaBoost-L1 DeepBoost
Error 0.0267 0.0264 0.0243 Error 0.004 0.003 0.002

(std dev) (0.00841) (0.0098) (0.00797) (std dev) (0.00316) (0.00100) (0.00100)
Avg tree size 29.1 28.9 20.9 Avg tree size 15.0 30.4 26.0

Avg no. of trees 67.1 51.7 55.9 Avg no. of trees 88.3 65.3 61.8

ionosphere AdaBoost AdaBoost-L1 DeepBoost ocr49 AdaBoost AdaBoost-L1 DeepBoost
Error 0.0661 0.0657 0.0501 Error 0.0180 0.0175 0.0175

(std dev) (0.0315) (0.0257) (0.0316) (std dev) (0.00555) (0.00357) (0.00510)
Avg tree size 29.8 31.4 26.1 Avg tree size 30.9 62.1 30.2

Avg no. of trees 75.0 69.4 50.0 Avg no. of trees 92.4 89.0 83.0

german AdaBoost AdaBoost-L1 DeepBoost ocr17-mnist AdaBoost AdaBoost-L1 DeepBoost
Error 0.239 0.239 0.234 Error 0.00471 0.00471 0.00409

(std dev) (0.0165) (0.0201) (0.0148) (std dev) (0.0022) (0.0021) (0.0021)
Avg tree size 3 7 16.0 Avg tree size 15 33.4 22.1

Avg no. of trees 91.3 87.5 14.1 Avg no. of trees 88.7 66.8 59.2

diabetes AdaBoost AdaBoost-L1 DeepBoost ocr49-mnist AdaBoost AdaBoost-L1 DeepBoost
Error 0.249 0.240 0.230 Error 0.0198 0.0197 0.0182

(std dev) (0.0272) (0.0313) (0.0399) (std dev) (0.00500) (0.00512) (0.00551)
Avg tree size 3 3 5.37 Avg tree size 29.9 66.3 30.1

Avg no. of trees 45.2 28.0 19.0 Avg no. of trees 82.4 81.1 80.9

(Cortes, MM, and Syed, 2014) 
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Experiments - Trees Log Loss
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breastcancer LogReg LogReg-L1 DeepBoost ocr17 LogReg LogReg-L1 DeepBoost
Error 0.0351 0.0264 0.0264 Error 0.00300 0.00400 0.00250

(std dev) (0.0101) (0.0120) (0.00876) (std dev) (0.00100) (0.00141) (0.000866)
Avg tree size 15 59.9 14.0 Avg tree size 15.0 7 22.1

Avg no. of trees 65.3 16.0 23.8 Avg no. of trees 75.3 53.8 25.8

ionosphere LogReg LogReg-L1 DeepBoost ocr49 LogReg LogReg-L1 DeepBoost
Error 0.074 0.060 0.043 Error 0.0205 0.0200 0.0170

(std dev) (0.0236) (0.0219) (0.0188) (std dev) (0.00654) (0.00245) (0.00361)
Avg tree size 7 30.0 18.4 Avg tree size 31.0 31.0 63.2

Avg no. of trees 44.7 25.3 29.5 Avg no. of trees 63.5 54.0 37.0

german LogReg LogReg-L1 DeepBoost ocr17-mnist LogReg LogReg-L1 DeepBoost
Error 0.233 0.232 0.225 Error 0.00422 0.00417 0.00399

(std dev) (0.0114) (0.0123) (0.0103) (std dev) (0.00191) (0.00188) (0.00211)
Avg tree size 7 7 14.4 Avg tree size 15 15 25.9

Avg no. of trees 72.8 66.8 67.8 Avg no. of trees 71.4 55.6 27.6

diabetes LogReg LogReg-L1 DeepBoost ocr49-mnist LogReg LogReg-L1 DeepBoost
Error 0.250 0.246 0.246 Error 0.0211 0.0201 0.0201

(std dev) (0.0374) (0.0356) (0.0356) (std dev) (0.00412) (0.00433) (0.00411)
Avg tree size 3 3 3 Avg tree size 28.7 33.5 72.8

Avg no. of trees 46.0 45.5 45.5 Avg no. of trees 79.3 61.7 41.9

(Cortes, MM, and Syed, 2014) 
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Margin Distribution

40
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Multi-Class Learning Guarantee
Theorem: Fix        . Then, for any         , with probability at 
least         , the following holds for all                               : 

with    number of classes. 

and
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�>0 �>0
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�T
t=1 �tht�F

c

�1(Hk) = {x �� h(x, y) : y � Y, h � Hk}.

R(f) � �RS,�(f) +
8c

�

T�

t=1

�tRm(�1(Hkt)) + O

��
log p

�2m
log

��2c2m

4 log p

��
.

(Kuznetsov, MM, and Syed, 2014) 
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Extension to Multi-Class
Similar data-dependent learning guarantee proven for the 
multi-class setting. 

• bound depending on mixture weights and complexity of 
sub-families. 

Deep Boosting algorithm for multi-class: 

• similar extension taking into account the complexities of 
sub-families. 

• several variants depending on number of classes. 

• different possible loss functions for each variant.

42
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Other Related Algorithms
Structural Maxent models (Cortes, Kuznetsov, MM, and Syed, ICML 

2015): feature functions chosen from a union of very 
complex families.
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Other Related Algorithms
Deep Cascades (DeSalvo, MM, and Syed, ALT 2015): cascade of 
predictors with leaf predictors and node questions selected 
from very rich families.
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q1(x)

h1(x)

µ1

µ2

1� µ3

1� µ2

1� µ1

Node 1: 

Leaf 1: 

µ3
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Conclusion
Deep Boosting: ensemble learning with increasingly 
complex families. 

• data-dependent theoretical analysis. 

• algorithm based on learning bound. 

• extension to multi-class. 

• ranking and other losses. 

• enhancement of many existing algorithms. 

• compares favorably to AdaBoost and additive Logistic 
Regression or their L1-regularized variants in 
experiments.
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