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Multi-Armed Bandit Problem

B Problem: which arm of a K-slot machine should a gambler
pull to maximize his cumulative reward over a sequence of
trials?

e stochastic setting.

e adversarial setting.
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Motivation

® (linical trials: potential treatments for a disease to select
from, new patient or category at each round (Thompson, 1933).

B Ads placement: selection of ad to display out of a finite set
(which could vary with time though) for each new web page
visitor.

B Adaptive routing: alternative paths for routing packets
through a “series of tubes” or alternative roads for driving
from a source to a destination.

B Games: different moves at each round of a game such as
chess, or Go.
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Key Problem

B Exploration vs exploitation dilemma (or trade-off):
® inspect new arms with possibly better rewards.

® use existing information to select best arm.
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Outline

B Stochastic bandits

B Adversarial bandits
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Stochastic Model

B Karms:foreacharmi: e {1,...,K},
e reward distribution P;.
e reward mean u;.

®* gaptobesttA; =pu" — p;, wherep™ = max ;.
ic(l,
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Bandit Setting

B Fort=1toTdo
e player selects action I; € {1, ..., K} (randomized).

e player receives reward Xy, ¢+ ~ F7,.
B Equivalent descriptions:
e on-line learning with partial information (Ffull).

e one-state MDPs (Markov Decision Processes).
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Objectives

B Expected regret

E[Ry] = E

B Pseudo-regret

T T
Rr = max E Xit — Xr,,
ie[1,K] ; )t 75:21 t}
T
:ILL*T—E ZXItat:|
t=1

®m By Jensen’s inequality, Rr < E[R7].
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Expected Regret

B If(X; ¢ — p;)s take values in|—r, 4], then

D

max

i€[1,K]

T

t=1

(Xie — ")

<ry2Tlog K.

® The O(v/T) dependency cannot be improved;

— better guarantees can be achieved for pseudo-regret.
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Pseudo-Regret

B Expression in terms of A;s:
K

Rr =) E[Ti(T)]A; ,
1=1

where T;(t) denotes the number of times arm ¢ was pulled

up to time ¢, T;(t) = Zizl Ly —;.

T

ZXIt,t

t=1

® Proof. Ry =p'T - E =B

Z(M* - Xft,t)]

t=1
T

Z Z(M* — Xi,t)lfti] = Z Z El(p" — Xi4)] E[17,=]

t=1 1=1

> 11”.] = ZE[Ti(T)]Ai.
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e-Greedy Strategy

(Auer et al. 2002a)
B Attimet,

e with probability 1—¢,, select arm ¢ with best emp. mean.

e with probability ¢, select random arm.

B Fore =min(33;,1), withA = min A,
1: A; >0
o fort> S5, Pr[l; #i*] < % for some C>0.

e thus, E|T;(T §%logTand}_3T§Z-. | C—AZ’ilogT.
A 1: ;>0 A

B |ogarithmic regret but,
* requires knowledge of A.

® sub-optimal arms treated similarly (naive search).
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UCB Strategy

(Lai and Robbins, 1985; Agrawal 1995; Auer et al. 2002a)
B Optimism in face of uncertainty:

e ateachtimet € [1,T]compute upper confidence bound
(UCB) on the expected reward of each arm &€ [1, K]

e select arm with largest UCB.

B [dea: wrong arm 2 cannot be selected for too long.
o Dby definition, p; < u* < UCB;. 1 :[

e pulling 7 often —p UCB closer to ;.
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Note on Concentration Ineqgs

B |let X be arandom variable such that forallt > 0,
log E [et(X_E[X])} < W(t),
where Uis a convex function. For Hoeffding's inequality

and X € [a,b],W(t) = L=

B Then, P[X —E[X] > ] = P[e!XEXD > gtfe]

< inf{e_t6 E[et(X_E[X])]}
— t>0

< inf{e_teeq’(t) }
t>0
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UCB Strategy

B Average reward estimate for arm ¢ by time ¢:
~ t
Wit = %(t) > ot Xislr =
B Concentration inequality (e.g., Hoeffding's ineq.):
t L *
Pr[:u% R %Zs:l Xias > 6] <e v (6)

® Thus, for any 6 >0, with probability at least 1 —9,

1 < 1 1
<= Xio4v*H Slog= ).
< g3 Kt (t og5)

Advanced Machine Learning - Mohri@ page 14



(a, Y)-UCB Strategy

® Parameter a>0; («, 1)-UCB strategy consists of selecting
attimet

~ _1f{ alogt
I; € argmax {m’ Lt 1( >}
t ic[1,K] t Ti(t —1)
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(a, U)-UCB Guarantee

B Theorem: for a> 2, the pseudo-regret of (o, 1)-UCB

satisfies

Ry < Z

1: AN; >0

(

OzAi
Y (5)

logT"

84

a— 2

)

o for Hoeffding's lemma,a-UCB,1* (€) = 2€%(auer et al. 2002a),

Ry < Z

1: AN; >0

(5

200

— log 1"

1

o
a—2/
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Proof

B Lemma:for anys >0, and anyz' € K],

let i < S+ Z lr,=i 7 (t—1)>s-

t=s+1
B Proof: observe that

T T T
Z lr,= = Z lr,—ilrt—1)<s + Z Lr,=ilr(t—1)>s-
t=1

— t=1 t=1
* Now, fort* =max{t <T: 1y, —1)<s 7 0},

T t
Z 1It:’L 1Tz(t—1)<8 — Z 1It:’L 1Tz(t—1)<8
t=1 t=1

e By definition of ¢*, the number of non-zero terms in the
sumisatmosts: Tj(t* —1) <s =3, 17— < s.
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Proof

B Foranyiand tdefinen; (1 = w*_l(%). At time ¢, if i is
selected, then

(Hiyt—1 +Mi0—1) — (Hix,e + M= 4—1) =0
S(it—1 — i —Ni—1] + 2nie—1 — D] + [ — Hix =1 — Mix 1—1] > 0.

Thus, at least one of these three terms is non-negative.
Also, if one is non-positive, at least one of the other two is

non-negative.
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Proof

® To bound the pseudo-regret, we bound E|T;(T')]. But,
observe first that

ozlogT_‘ - alogt
V() 1T ()

Tz(t—l) > 8§ = |7 :>Az'_277i,t—1 > (.

B Thus,
E[T;(T)] = E LET; 11t:i]

T
<s+E [ Z ly,=i 1Ti(t1)23]
ths—l—l

< s+ Z Pr{f;t—1 — pit—1 — Mit—1 > 0] + Pr{p™ — fijx 1—1 — M= 1—1 > 0].
t=s+1
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Proof

B Each of the two probability terms can be bounded as
follows using the union bound:

Prip” — ixt—1 — Nixe—1 = 0]

1 < _y/alogt
< Pr [336[1,t]:u*——ZXi’k—w* 1(0‘ o8 )zo]
S

S

" , B k=1
B Final constant of the bound obtained by further simple
calculations.
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L ower Bound

(Lai and Robbins, 1985)
®m Theorem: for any strategy such that E[T;(T)] = o(T") for
any arms¢ and any g >0 for any set of Bernoulli reward

distributions, the following holds for all Bernoulli reward
distributions:

Rr A,
lim inf > :
Toioo log T~ @-.;0 D(p; || 1)

® a more general result holds for general distributions.
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A; 1
> ~ > pr(1— ") N
2 Dl 2,5
. x i L —
since D(u; || 1*) = pilog N—* + (1 — p;) log N*
z L=p
i — B pE— R
< Wi + (1 — p4)
Ty 1 =p
(i — p*)? A7

Advanced Machine Learning - Mohri@ page 22



Outline

B Stochastic bandits

B Adversarial bandits
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Adversarial Model

B Karms:foreacharm: e {1,..., K},
® no stochastic assumption.

* rewardsin|0,1].
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Bandit Setting

® Fort=1toTdo
e player selects action/; € {1,..., K}(randomized).

e player receives reward xy, ¢ .

B Notes:

* rewards z;.for all arms determined by adversary
simultaneously with the selection I; of an arm by player.

e adversary oblivious or nonoblivious (or adaptive).

* strategies: deterministic, regret of at least Z for some
(bad) sequences, thus must consider randomization.
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Scenarios

® Oblivious case:

e adversary rewards selected independently of the player’s
actions; thus, reward vector at time t only a function of ¢.

B Non-oblivious case:

® adversary rewards at time ¢ function of the player’s past
actions Iy,...,1;_4.

* notion of regret problematic: cumulative reward
compared to a quantity that depends on the player’s
actions! (single best action in hindsight function of
actions I,..., Ir played; playing that single “best” action
could have resulted in different rewards.)
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Objectives

B Minimize regret (¢; = 1 — z; ), expectation or high prob.:

T
RT_Zé?ﬁ}[(qu t—lett—Zﬁ —Zemlir;(];&,t.

=1

B Pseudo-regret:

T
Zé}t’t:| — min E
=1 1€[1,K]

t=1

® By Jensen’sinequality, R+ < E[R7].
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Importance Weighting

B [n the bandit setting, the cumulative loss of each arm is not
observed, so how should we update the probabilities?

B Estimates via surrogate loss:

where p: = (p1+,---,PK,t) is the probability distribution the
player uses at time ¢t to draw an arm (p; + >0).

B Unbiased estimate: for any ¢,
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EXP3

EXPS(K) (Auer et al. 2002b)

1 p}/%(%afva%)

2 (Ll’o,...,LK,o)%(O,...,O)
3 fort<+1to 1 do
SAMPLE([; ~ p;)
RECEIVE({y, +)
for:+1to K do

gzt<_ zt

th%th 1_|_€zs
for 1+ 1 to K do

© 00 J O O i~

e MLt

Zf-{:l e_nij’t

10 Dit+1 <
11 return priq

EXP3 (Exponential weights for Exploration and Exploitation)
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EXP3 Guarantee

B Theorem: the pseudo-regret of EXP3 can be bounded as
follows:

log K KT

SRl i

M 2
Choosing n to minimize the bound gives

Ry <

Ry < \/2KTlogK.

B Proof: similar to that of EG, but we cannot use Hoeffding's
inequality since ¢; ; is unbounded.
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Proof

m Potential: &, = log Y5 | e=nLir,

B Upper bound:

Z € ant g . € nziat—le 7751',75
— =1 1=1
(I)t (I)t 1 log

= lo _
Z =1 (& 77L7, t—1 g Zflil e_nLi,t—1
— lgg |: E [e_nzz‘,t}}
1~pe
< K _6_7727”} —1 (loggj < x— 1)
~pe -
n° )
< E [—nli+ > 2] (et<l-a+T)
t~pe
~ 2 121, _.
n it Ie=1
A [ Pis ]
2 l2 2) 1
T _ngftat + 77_ el < —77€It,t + 77__
2 pIt,t 2 p[t,
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Proof

B Upper bound: summing up the inequalities yields

T 2
KT
—nE :
|

E[®r—By]<—n E [ZEIt ]+ E [Z

Ii~py¢ Ii~py
® [ower bound: forallj € [1, K],

K
E[®r — &)= E llog [Ze—”Li,T] —logK]

Ii~py 1

~

—n E |[Ljr]—logK=—-n E [L;r|—logK.
Ii~py Ii~py

B Comparison:

2
Vi e [1, K], nE[Zeh ]— ]T]glogK—F%KT

— log K KT
= Ry < —° +772 .
Ui
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Notes

® When T is not known:
e standard doubling trick.

o or,usen =1/"2~, then Ry <2/KTlog K .

B High probability bounds:

* importance weighting problem: unbounded second

07
moment (see (Cortes, Mansour, MM, 2010)), E;~p, [f,?t] = pit -
t>

* (Auer et al, 2002b): mixing probability with a uniform
distribution to ensure a lower bound on p;.+; but not
sufficient for high probability bound.

o solution: biased estimate ¢; ; = gi’tlgjj“% with 8>0 a
parameter to tune.
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L ower Bound

(Bubek and Cesa-Bianchi, 2012)

B Sufficient lower bound in a stochastic setting for the
pseudo-regret (and therefore for the expected regret).

B Theorem: for any T >1and any player strategy, there exists
a distribution of losses in {0, 1} for which

1
Rr > 5o VKT.
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Notes

® Bound of EXP3 matching lower bound modulo Log term.

B |og-free bound: p; 41 = ¢¥(Cy — L; ;) where C; is a constant
ensuring > ., pi++1 = 1 and v increasing, convex, twice
differentiable over R* (audibert and Bubeck, 2010).

o EXP3 coincides with ¢ (z) = e,
e log-free bound with ¢¥(x) = (—nz) % and ¢ =2.
e formulation as mirror descent.

e onlyin oblivious case.

Advanced Machine Learning - Mohri@ page 35



References

B R. Agrawal. Sample mean based index policies with O(log n) regret for the
multi-armed bandit problem. Advances in Applied Mathematics, vol. 27, pp.
1054-1078, 1995.

B Jean-Yves Audibert and Sebastian Bubeck. Regret bounds and minimax policies
under partial monitoring. Journal of Machine Learning Research, vol. 11, pp.
2635- 2686, 2010.

B Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multi- armed bandit problem, Machine Learning Journal, vol. 47, no. 2-3, pp.
235- 256, 2002a.

B Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert Schapire. The non-
stochastic multi-armed bandit problem. SIAM Journal on Computing, vol. 32, no.
1, pp. 48-77, 2002b.

B Seébastian Bubeck, Nicolo Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and Trends in Machine

Learning 5, 1-122, 2012.
Advanced Machine Learning - Mohri@ page 36



References

B Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games.
Cambridge University Press, 2006.

B (Corinna Cortes, Yishay Mansour, and Mehryar Mohri. Learning bounds for
importance weighting. In NIPS, 2010.

® T.L. Laiand H. Robbins. Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, vol. 6, pp. 4-22, 1985.

B Gilles Stoltz. Incomplete information and internal regret in prediction of
individual sequences. Ph.D. thesis, Universite Paris-Sud, 2005.

B R Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

®  W.Thompson. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Bulletin of the American Mathematics
Society, vol. 25, pp. 285-294, 1933.

Advanced Machine Learning - Mohri@ page 37



