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Active Learning Setup
Passive learning:  

• IID sample                                                   is drawn. 

• learner receives full labeled sample. 

Active learning: 

• IID sample                                                   is drawn. 

• learner has access to                      . 

• learner can request the label     of point     . 

• objective: fewer label requests than in passive learning.
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Key Active Learning Problem
Tension: 

• requesting label of new point to gain more information. 

• sample bias induced by the label queries.
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Favorable Example
Binary classification problem in    : 

•    : threshold functions. 

• data assumed separable. 

Sample complexity for determining     within   : 

• supervised learner needs          samples since at least 
one point is needed in                         . 

• active learner needs only               using binary search.
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Negative Result
Non-realizable case: 

• stochastic or deterministic labels. 

• if Bayes error is          , the sample complexity of any 
active learning algorithm is at least 

• thus, lower bound matches passive learning upper 
bound            .
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CAL Algorithm
Assume realizable case with hypothesis set    .
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(Cohn, Atlas, and Ladner, 1994)

CAL(H)

1 H1  H
2 for t 1 to T do

3 if (9h, h0 2 Ht : h(xt) 6= h0(xt)) then
4 yt  QueryLabel(xt)
5 Ht+1  {h 2 Ht : h(xt) = yt}
6 else Ht+1  Ht

7 return HT+1

H
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CAL Algorithm
Simple algorithm, but: 

• Computational cost of maintaining     s. 

• Separability requirement.
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Definitions
Region of disagreement: 

Disagreement metric:  

Disagreement ball: 

Disagreement coefficient (rate of disagreement decrease):
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DIS(H) = {x 2 X | 9h, h0 2 H : h(x) 6= h0(x)}.

d(h, h0) = Pr
x⇠D
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0(x)].
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n
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(Hanneke, 2009)
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Disagreement Coefficient
Property: for all         , 

Examples: 

• threshold functions:          .  

• let                    , then                               where 

• thus,  

• finite hypothesis sets:              . 

• linear separators going through the origin and uniform 
distribution:                 .
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CAL Guarantees
Theorem: let     be a hypothesis set with                           and 
assume that the data is separable with disagreement 
coefficient   . Then, the label complexity of CAL is bounded 
by
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DHM Algorithm
             returns hypothesis in    consistent with    with 
minimum error on     when it exists,       otherwise.
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A(S, T ) H S
T nil

DHM((x1, . . . , xT ))

1 S  ; / labels inferred
2 T  ; / labels queried
3 for t 1 to T do

4 h+  A(S [ (xt,+1), T )
5 h�  A(S [ (xt,�1), T )
6 if (h+ = nil) then
7 S  S [ {(xt,�1)}
8 elseif (h� = nil) then
9 S  S [ {(xt,+1)}

10 elseif

bRS[T (h+)� bRS[T (h�) > �t then

11 S  S [ {(xt,�1)}
12 elseif

bRS[T (h�)� bRS[T (h+) > �t then

13 S  S [ {(xt,+1)}
14 else yt  QueryLabel(xt)
15 T  T [ {(xt, yt)}
16 return HT+1

(Dasgupta, Hsu, and Monteleoni, 2007)
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Notes
          not an i.i.d. labeled sample drawn according to    . 

     is defined by
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DHM Guarantees
Theorem: let     be a hypothesis set with                           and 
disagreement coefficient   . Then, the label complexity of 
DHM is bounded by
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Heuristics
Idea: 

• select points close to the decision surface. 

• poor theory: no guarantee. 

• experiments: often effective.
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(see for example (Tong and Koller, 2002))
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Recent Algorithms
‘Margin-based active learning’ (Balcan, Broder, and Zhang, 2007; 

Balcan and Long, 2013; Awasthi, Balcan, and Long, 2014): improvement 
over disagreement-based for 

• uniformly distributed linear classifiers. 

• log-concave distributions. 

Confidence-rated predictors (Zhang and K. Chaudhuri, 2014): 

• better sample complexity than disagreement-based 
ones (term better than dis. coeff.). 

• more general than margin-based techniques. 

• however, computationally inefficient.
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Empirical Results
Active learning challenge (2011): 

• algorithms allowed to query labels with a budget. 

• performance measured in terms of AUC. 

• disappointing results compared to baseline passive 
learning algorithms.

16

(Guyon, Cawley, Dror and Lemaire, 2011)
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