Mehryar Mohri Advanced Machine Learning 2015 Courant Institute of Mathematical Sciences Homework assignment 1 February 27, 2015 Due: March 16, 2015

A. Learning kernels

Consider the learning kernel optimization based on SVM:

$$\min_{\mu \in \Delta_{\infty}} \max_{\boldsymbol{\alpha}} 2 \boldsymbol{\alpha}^{\top} \mathbf{1} - \boldsymbol{\alpha}^{\top} \mathbf{Y}^{\top} \mathbf{K}_{\boldsymbol{\mu}} \mathbf{Y} \boldsymbol{\alpha}$$

subject to: $\mathbf{0} \leq \boldsymbol{\alpha} \leq \mathbf{C} \wedge \boldsymbol{\alpha}^{\top} \mathbf{y} = 0$,

where $\Delta_{\infty} = \{ \boldsymbol{\mu} : \|\boldsymbol{\mu}\|_{\infty} \leq 1 \land \boldsymbol{\mu} \geq 0 \}$ and where for the rest the notation is the one used in the lecture slides. Show that its solution coincides with the SVM solution for the uniform combination kernel.

B. Cross-Validation

The objective of this problem is to derive a learning bound for cross-validation comparing its performance to that of SRM. Let $(H_k)_{k\in\mathbb{N}}$ be a countable sequence of hypothesis sets with increasing complexities.

The cross-validation (CV) solution is obtained as follows. Suppose the learner receives an i.i.d. sample S of size $m \ge 1$. He randomly divides S into a sample S_1 of size $(1 - \alpha)m$ and a sample S_2 of size αm , where α is in (0, 1), with α typically small. S_1 is used for training, S_2 for validation. For any $k \in \mathbb{N}$, let \hat{h}_k denote the solution of ERM run on S_1 using hypothesis set H_k . The learner then uses sample S_2 to return the CV solution $f_{\text{CV}} = \operatorname{argmin}_{k \in \mathbb{N}} \hat{R}_{S_2}(\hat{h}_k)$.

1. Prove the following inequality:

$$\Pr\left[\sup_{k\geq 1} \left| R(\hat{h}_k) - \hat{R}_{S_2}(\hat{h}_k) \right| > \epsilon + \sqrt{\frac{\log k}{\alpha m}} \right] \le 4e^{-2\alpha m\epsilon^2}.$$

2. Let $R(f_{\text{SRM}}, S_1)$ be the generalization error of the SRM solution using a sample S_1 of size $(1 - \alpha m)$ and $R(f_{\text{CV}}, S)$ the generalization error of the cross-validation solution using a sample S of size m. Use the previous question to prove that for any $\delta > 0$, with probability at least $1 - \delta$ the following holds:

$$R(f_{\rm CV}, S) - R(f_{\rm SRM}, S_1) \le 2\sqrt{\frac{\log \frac{4}{\delta}}{2\alpha m}} + 2\sqrt{\frac{\log \max(k(f_{\rm CV}), k(f_{\rm SRM}))}{\alpha m}}$$

where, as for the notation used in class, for any h, k(h) denotes the smallest index of a hypothesis set contained h. Comment on the bound derived: point out both the usefulness its suggests for CV and its possible drawback in some bad cases.

3. Suppose that for any k, $\widehat{R}_{S_1}(\widehat{h}_{k+1}) < \widehat{R}_{S_1}(\widehat{h}_k)$ for all k such that $\widehat{R}_{S_1}(\widehat{h}_k) > 0$ and $\widehat{R}_{S_1}(\widehat{h}_{k+1}) \leq \widehat{R}_{S_1}(\widehat{h}_k)$ otherwise. Show that we can then restrict the analysis to H_k s with $k \leq m+1$ and give a more explicit guarantee similar to that of the previous question.

C. CRF

In class, we discussed the learning algorithms for CRF in the case of bigram features.

- 1. Write the expression of the features in the case of *n*-grams (arbitrary $n \ge 1$).
- 2. Describe explicitly the key graph-based algorithms in the case of *n*-grams. What is the running-time complexity of these algorithms?