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A. Learning kernels

Consider the learning kernel optimization based on SVM:

min
µ∈∆∞

max
α

2α>1−α>Y>KµYα

subject to: 0 ≤ α ≤ C ∧α>y = 0,

where ∆∞ = {µ : ‖µ‖∞ ≤ 1 ∧ µ ≥ 0} and where for the rest the notation
is the one used in the lecture slides. Show that its solution coincides with
the SVM solution for the uniform combination kernel.

B. Cross-Validation

The objective of this problem is to derive a learning bound for cross-validation
comparing its performance to that of SRM. Let (Hk)k∈N be a countable se-
quence of hypothesis sets with increasing complexities.

The cross-validation (CV) solution is obtained as follows. Suppose the
learner receives an i.i.d. sample S of size m ≥ 1. He randomly divides S
into a sample S1 of size (1−α)m and a sample S2 of size αm, where α is in
(0, 1), with α typically small. S1 is used for training, S2 for validation. For
any k ∈ N, let ĥk denote the solution of ERM run on S1 using hypothesis
set Hk. The learner then uses sample S2 to return the CV solution fCV =
argmink∈N R̂S2(ĥk).

1. Prove the following inequality:

Pr

[
sup
k≥1

∣∣∣R(ĥk)− R̂S2(ĥk)
∣∣∣ > ε+

√
log k

αm

]
≤ 4e−2αmε2 .

2. Let R(fSRM, S1) be the generalization error of the SRM solution using
a sample S1 of size (1 − αm) and R(fCV, S) the generalization error
of the cross-validation solution using a sample S of size m. Use the
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previous question to prove that for any δ > 0, with probability at least
1− δ the following holds:

R(fCV, S)−R(fSRM, S1) ≤ 2

√
log 4

δ

2αm
+ 2

√
log max(k(fCV), k(fSRM))

αm
,

where, as for the notation used in class, for any h, k(h) denotes the
smallest index of a hypothesis set contained h. Comment on the bound
derived: point out both the usefulness its suggests for CV and its
possible drawback in some bad cases.

3. Suppose that for any k, R̂S1(ĥk+1) < R̂S1(ĥk) for all k such that

R̂S1(ĥk) > 0 and R̂S1(ĥk+1) ≤ R̂S1(ĥk) otherwise. Show that we can
then restrict the analysis to Hks with k ≤ m + 1 and give a more
explicit guarantee similar to that of the previous question.

C. CRF

In class, we discussed the learning algorithms for CRF in the case of bigram
features.

1. Write the expression of the features in the case of n-grams (arbitrary
n ≥ 1).

2. Describe explicitly the key graph-based algorithms in the case of n-
grams. What is the running-time complexity of these algorithms?
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