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Learning with Large Number of Experts

Regret of RWM is O(
√
T lnN).

Informative even for very large number of experts.

What if there is “overlap” between experts?
RWM with path experts
FPL with path experts
−→ can we do better?

[Littlestone and Warmuth, 1989; Kalai and Vempala, 2004]
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Better Bounds in Structured Case?

Can “overlap” between experts lead to better regret
guarantees?

What are the lower bounds in the structured
setting?

Computationally efficient solutions that realize these
bounds?
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Learning Scenario

Assumptions:

Structured concept class C ⊆ {0, 1}d

Composed of components: C t indicates which
components are used for each trial t.

Additive loss `t incurred at each trial t.
Loss of each concept C is C · `t ≤ M := maxC∈C|C |

Goal:

minimize expected regret after T trials

RT =
T∑
t=1

E[C t ] · `t −min
C∈C

T∑
t=1

C · `t
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Component Hedge Algorithm

[Koolen, Warmuth, and Kivinen, 2010 ]

CH maintains weights w t∈ conv(C ) ⊆ [0, 1]d over the
components at each round t.

Update:

1 weights: ŵ t
i = w t−1

i e−η`
t
i

2 relative entropy projection:

w t := argminw∈conv(C)∆(w ||ŵ t)

where ∆(w ‖ v) =
∑d

i=1(wi ln wi

vi
+ vi − wi)
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Component Hedge Algorithm

Prediction:

1 Decomposition of weights:

w t =
∑
C∈C

αCC

where α is a distribution over C

2 Sample C t+1 according to α
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Efficiency

Need efficient implementation of:

Decomposition (not unique) of weights over the
concepts

Entropy projection step (convex problem)

Sufficient: conv(C) described by polynomial in d
constraints
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Regret Bounds

Theorem: Regret Bounds for CH

Let `∗ = minC∈C C · (`1 + . . . + `T ) be the loss of the
best concept in hindsight, then

RT ≤
√

2`∗M ln(d/M) + M ln(d/M)

by choosing η =
√

2M ln(d/M)
`∗

Since `∗ ≤ MT , regret RT ∈ O(M
√
T ln d).

Matching lower bounds in applications.
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Comparison of CH, RWM and FPL

1 CH has significantly better regret bounds:
CH: RT ∈ O(M

√
T ln d).

RWM: RT ∈ O(M
√
MT ln d)

FPL: RT ∈ O(M
√
dT ln d)

2 CH is optimal w.r.t. regret bounds while RWM and
FPL are not optimal.

3 Standard expert setting (no structure):
CH, RWM and FPL reduce to the same algorithm.
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Applications

On-line shortest path problems.

On-line PCA (k-sets).

On-line ranking (k-permutations).

Spanning trees.
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On-line Shortest Path Problem (SPP)

G = (V ,E ) is a directed graph.

s is the source and t is the destination.

Each s − t path is an expert.

The loss is additive over edges.
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Unit Flow Polytope

Convex hull of paths cannot be captured by linear
constraints

Unit flow polytope relaxation is used:

wu,v ≥ 0, ∀(u, v) ∈ E∑
v∈V

ws,v = 1∑
v∈V

wv ,u =
∑
v∈V

wu,v , ∀u ∈ V

Relaxation does not hurt regret bounds.
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Example of Unit Flow Polytope
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Entropy Projection on Unit Flow Polytope

min
w

∑
(u,v)∈E

wu,v ln
wu,v

ŵu,v
+ ŵu,v − wu,v

subject to:

wu,v ≥ 0, ∀(u, v) ∈ E∑
v∈V

ws,v = 1∑
v∈V

wv ,u =
∑
v∈V

wu,v , ∀u ∈ V
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Dual problem

max
λ

{
λs −

∑
(u,v)∈E

ŵu,ve
λu−λv

}

No constraints.

Only |V | variables.

Primal solution: wu,v = ŵu,ve
λu−λv
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Convex Decomposition

1 Find any non-zero path from s to t.
2 Subtract the smallest weight from each edge.
3 Repeat until no path is found.

=⇒ At most |E | iteration is needed.
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Example of Convex Decomposition
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Example of Convex Decomposition
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Example of Convex Decomposition
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Example of Convex Decomposition
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Example of Convex Decomposition
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Regret Bounds for SPP

Expected regret is bounded by

2
√
`∗k∗ ln |V |+ 2k∗ ln |V | ∈ O(M

√
T ln |V |)

Bound holds for arbitrary graphs.
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Lower Bounds

Any algorithm can be forced to have expected regret√
`∗k∗ ln

|V |
k∗

Idea of the proof:

Minimize the “overlap”.

Create |V |/k disjoint paths of length k .

Apply lower bounds for standard expert setting.
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Conclusions

Regret of CH is often better than that of RWM or
FPL in structured setting.

Regret of CH often matches lower bounds in
applications.

Efficient solutions exist for a wide range of
applications: on-line shortest path, on-line PCA,
on-line ranking, spanning trees.
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Regret Bounds

Theorem: Regret Bounds for CH

Let `∗ = minC∈C C · (`1 + . . . + `T ) be the loss of the
best concept in hindsight, then

RT ≤
√

2`∗M ln(d/M) + M ln(d/M)

by choosing η =
√

2M ln(d/M)
`∗
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Proof of CH Regret Bound

1 Bound:
(1−e−η)w t−1 ·`t ≤ ∆(C ||w t−1)−∆(C ||w t)+ηC ·`t .

1− e−ηx ≥ (1− e−η)x
Generalized Pythagorean Theorem

2 Sum over trials t:
(1− e−η)

∑T
t=1 w

t−1 · `t ≤ ∆(C ||w 0)−∆(C ||wT ) + ηC · `≤T
where `≤T = `1 + · · ·+ `T .

3 Use w t−1 · `t = E [C t ] · `t :∑T
t=1 E [C t ] · `t ≤ ∆(C ||w0)−∆(C ||wT )+ηC ·`≤T

(1−e−η)
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Proof of CH Regret Bound

4 w 0 assumes uniform distribution over concepts
w 0
i = M

d =⇒ ∆(C ||w 0) = M ln( d
M )

5 let `∗ best concept in hind-sight and choosing

η =

√
2M ln( d

M )

`∗ =⇒ Regret bound RT .
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