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Learning with Large Number of Experts

@ Regret of RWM is O(v/ T In N).

e Informative even for very large number of experts.
@ What if there is “overlap” between experts?

e RWM with path experts
e FPL with path experts
@ — can we do better?

[Littlestone and Warmuth, 1989; Kalai and Vempala, 2004]
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Better Bounds in Structured Case?

@ Can “overlap” between experts lead to better regret
guarantees?

@ What are the lower bounds in the structured
setting?

e Computationally efficient solutions that realize these
bounds?
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Learning Scenario

Assumptions:

@ Structured concept class C C {0, 1}d

e Composed of components: C! indicates which
components are used for each trial t.

@ Additive loss ¢! incurred at each trial t.
@ Loss of each concept Cis C - ¢* < M := maxcec|C|

Goal:

@ minimize expected regret after T trials

T T
Rr =) E[CT-¢ - r&igz C- 1t
t=1 t=1
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Component Hedge Algorithm

[Koolen, Warmuth, and Kivinen, 2010 ]
CH maintains weights wic conv(C) C [0,1]¢ over the
components at each round t.
e Update:

t
Q weights: wf = w! e

@ relative entropy projection:

wt = argminWEconv(C)A(W| | Wt)

where A(w || v) = 2.7 (w; In Tt + vi — wy)
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Component Hedge Algorithm

@ Prediction:

@ Decomposition of weights:

Wt = E Od(:C
ceC

where «x is a distribution over C

@ Sample C'! according to o
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Efficiency

Need efficient implementation of:

@ Decomposition (not unique) of weights over the
concepts

@ Entropy projection step (convex problem)

Sufficient: conv(C) described by polynomial in d
constraints
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Regret Bounds

Theorem: Regret Bounds for CH

Let £* = mincee C - (1 + ... +£7) be the loss of the
best concept in hindsight, then

Rt < \/20-M1In(d/M) + M In(d /M)

2M In(d /M)

by choosing n = 7

@ Since (* < MT, regret Rt € O(MV'T Ind).
@ Matching lower bounds in applications.



Comparison of CH, RWM and FPL

@ CH has significantly better regret bounds:
o CH: Rr € O(MV T Ind).
e RWM: Rr € O(MVMT Ind)
o FPL: Ry € O(M\dT Ind)

@ CH is optimal w.r.t. regret bounds while RWM and
FPL are not optimal.

@ Standard expert setting (no structure):
CH, RWM and FPL reduce to the same algorithm.
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Applications

@ On-line shortest path problems.

@ On-line PCA (k-sets).

@ On-line ranking (k-permutations).
@ Spanning trees.
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On-line Shortest Path Problem (SPP)

e G = (V,E) is a directed graph.

@ s is the source and t is the destination.
@ Each s — t path is an expert.

@ The loss is additive over edges.
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Unit Flow Polytope

@ Convex hull of paths cannot be captured by linear
constraints

@ Unit flow polytope relaxation is used:

wyy >0, Y(u,v)eE

ZWS,V =1

veV
E Wy = E Wyy, VYueV
veV veV

@ Relaxation does not hurt regret bounds.
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Example of Unit Flow Polytope




Entropy Projection on Unit Flow Polytope

mln E WUV /\ + WUV_ Wu7v

subJect to:
wyy >0, Y(uv)eE

ZWSN =1

veV

Z Wy = Z Wyy, VYueV

veV veV
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Dual problem

@ No constraints.
@ Only |V] variables.

@ Primal solution: w,, = w, e
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Convex Decomposition

@ Find any non-zero path from s to t.

@ Subtract the smallest weight from each edge.

© Repeat until no path is found.

—> At most |E]| iteration is needed.
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Example of Convex Decomposition
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Example of Convex Decomposition
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Example of Convex Decomposition
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Example of Convex Decomposition
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Example of Convex Decomposition
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Regret Bounds for SPP

@ Expected regret is bounded by
2/ Ck*In|V|+2k*In|V| € O(M\/T In|V])

@ Bound holds for arbitrary graphs.
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Lower Bounds

Any algorithm can be forced to have expected regret

Vi
C¥k*In —
N
Idea of the proof:
@ Minimize the “overlap”.
o Create |V/|/k disjoint paths of length k.
@ Apply lower bounds for standard expert setting.
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Conclusions

@ Regret of CH is often better than that of RWM or
FPL in structured setting.

@ Regret of CH often matches lower bounds in
applications.

o Efficient solutions exist for a wide range of
applications: on-line shortest path, on-line PCA,
on-line ranking, spanning trees.
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Regret Bounds

Theorem: Regret Bounds for CH

Let £* = mincee C - (1 + ... +£7) be the loss of the
best concept in hindsight, then

Rt < \/20*MIn(d/M) + MIn(d/M)

2M In(d /M)

by choosing n = >
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Proof of CH Regret Bound

@ Bound:
(1—e w10t < A(C||wt Y —A(C||wh)+nC- (1.
o l—e™>(1—e")x
e Generalized Pythagorean Theorem

@ Sum over trials t:
(1—e >l wit et < A(C||w®) — A(C||wT) +5C - (=T
where (=T =1 ... 40T,

© Use wi™!.(t = E[CY]- ¢

T A(C|[wO)—A(C||wT)4+nC-e=T
S E[CY-et < (cllw?) (1(_e|ln) )+




Proof of CH Regret Bound

@ w? assumes uniform distribution over concepts

w? =Y — A(C||w®) = MIn(Z)

@ let /* best concept in hind-sight and choosing
_ M)

n =1\ —7 " = Regret bound Rr.
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