
Abstract Many cell movements appear to be driven by
the polymerization of actin. Here we show how the force
of polymerization can be generated by the thermal motions
of the actin filaments near the sites of polymerization. We
apply the model to explain the observations that the lamel-
lipodial cytoskeleton is organized into an orthogonal net-
work interspersed with filopodial protrusions, and that the
protrusion of lamellipodia generally proceeds in the pres-
ence of a rearward cytoskeletal flow.

Introduction

Many types of cells spread thin veil-like sheets of cyto-
plasm, called lamellipodia, before them as they crawl over
a substratum (Lee et al. 1993; Lee et al. 1994; Small 1994;
Small et al. 1995; Theriot and Mitchison 1991). Of cells
employing lamellipodia-driven locomotion, the fish kerat-
ocyte is one of the most studied. In this cell electron mi-
crographs reveal that the lamellipodium is composed of a
nearly orthogonal network of crosslinked actin filaments,
interspersed with occasional parallel bundles that project
to the leading edge (Cox et al. 1995; Small 1994; Small
et al. 1995).

Peskin et al. formulated a theory to account for the force
generated by the polymerization process itself when the
filaments are rigid (Peskin et al. 1993). They proposed that
the addition of subunits to the end of growing filaments
rectified the Brownian motion of any diffusing object in
front of the filament, and showed that this ‘ratcheting’ of
diffusive motion could generate sufficient force to account
for a number of motile phenomena. Here we generalize
their model for rectified diffusion to describe the situation

when the thermal fluctuations of either the actin fibers or
membrane are significant. This extension provides a me-
chanical explanation for the protrusion of lamellipodia.

A model for lamellipodial extension

Figure 1 shows a schematic view of the filament and mem-
brane arrangement we shall model. We treat the lamellipo-
dium as a network of two populations of parallel, cross-
linked fibers incident on the cytoplasmic face of the mem-
brane at angles ±θ measured from the membrane normal.
A load force, f, is applied to the membrane over some area
(Oliver et al. 1994). We assume that all fibers experience
the same actin monomer concentration M, and so grow at
the same rate in the same direction. We shall show that there
is a critical angle θc at which the growth rate is fastest.

A filament bends much more easily than it compresses,
and so the major mode of thermal motion for a fiber is a
bending undulation. We shall treat only the bending fluc-
tuations of the filament tips; i. e. the filament segment
between the membrane and the first crosslink. We neglect
the collective thermal modes of the actin meshwork, and
consider it as a rigid anchor. We also neglect effects of elec-
trostatic forces and cytoplasmic fluid flow.

We shall study two situations.

1. The membrane does not fluctuate sufficiently to permit
intercalation of monomers onto the filament tips. We shall
show that the thermal undulations of the filament tip can
easily accommodate intercalation of the new monomers
and drive protrusion. In this case there will be an optimal
filament angle, θc, for fastest polymerization.
2. The membrane fluctuations are sufficient to permit
intercalation, then the optimal filament angle will be θ = 0°.

Case I: Membrane fluctuations are damped

We begin with the case when the membrane does not fluc-
tuate sufficiently to permit polymerization. This will oc-
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cur when the leading edge membrane is loaded with pro-
tein. There are compelling reasons to support this assump-
tion. First, it is known that the actin polymerization that
propels the bacterium Listeria monocytogenes through the
cytoplasm of its host cell is triggered by the bacterial pro-
tein, ActA (Kocks and Cossart 1993; Kocks et al. 1993).
When ActA is expressed in mammalian cells it stimulates
actin-driven membrane ruffling and protrusion (Friederich
et al. 1995). This strongly suggests that normal lamellipo-
dial protrusion is stimulated by the action of analogous
membrane associated proteins. Moreover, it is known that
many membrane proteins localize to regions of high mem-
brane curvature, especially at the tips of ruffles and lamel-
lipodia (Odell and Oster 1993). In this situation, the effec-
tive diffusion coefficient characterizing membrane fluctu-
ations would be defined by the proteins rather than the bi-
layer. Since the diffusion coefficients for membrane pro-
teins are Dp ~10–12 – 10–9 cm2/s, it can be shown that these

fluctuations would be too slow to support the intercalation
of actin monomers onto the tips of the filaments. Below
we treat the case where the density of membrane proteins
is insufficient to damp the bilayer fluctuations sufficiently
to inhibit polymerization

The filament can be considered as an elastic rod char-
acterized by its persistence length, λ (Janmey et al. 1994). 1

The data on the numerical value of λ is variable, ranging
between 0.5 µm (Kas et al. 1993) and 15 µm (Isambert
et al. 1995). We feel that the lower measurements are more
realistic for filaments at the leading edge, and so we shall
use the value λ≈1 µm. The length of the free filament ends
is of the order of the mean spacing between parallel fibers:
l ≈30 nm (calculated from (Small et al. 1995)).

We place our coordinate system on the leading edge
membrane, measuring positive displacements perpendicu-
larly inward from the membrane. Denote by x (t) the in-
stantaneous distance of the tip from the membrane, and by
y(t) the equilibrium (i. e. unbent) position of the filament
tip at time t. For small displacements of the tip, it can be
shown that the fluctuations of the tip are subject to an ap-
proximately harmonic restoring force Fy(x) = –κ (x – y)
(detailed calculations will be reported in Mogilner and Os-
ter (1996). For small deflections, the corresponding angle-
dependent effective elastic coefficient is κ (θ) ≈ 4λ
kT/l 3sin2θ. The effective diffusion coefficient associated
with filament bending fluctuations is D ≈ KBT/
(6πηl ) ≈ 1 – 10 µm2/s, where η is the viscosity of the fluid
phase of the cytoplasm, ~0.03 poise (Fushimi and Verk-
man 1991).

Let P (x, y, t) be the probability that a filament tip has
fluctuated a distance (y – x) away from its equilibrium po-
sition y at time t. We describe the probability density for
the location of the tip by an extension of the Fokker-Planck
equation used in (Peskin et al. 1993):

(1)

Here V is the protrusion velocity of the lamellipodium, T
is the absolute temperature, kB is Boltzmann’s constant.
Because actin filaments form a double helix, the interca-
lation distance, δ = 2.7 nm, is one half size of the actin
monomer. kon, koff are the polymerization and depolymer-
ization rate constants, and M is the local concentration of
polymerizable monomeric actin. The first term in Eq. (1)
describes effective one-dimensional diffusion of the tip.
The second term accounts for the motion of the tip towards
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Fig. 1 The leading lamella of a migrating fibroblast is driven by a
front of polymerizing actin filaments. The interface between the 
actin network and the membrane is shown schematically. The cross-
linked actin network terminates near the membrane with free ends
which impinge on the membrane at mean angles ±θ measured from
the membrane normal. The free ends are modeled by elastic filaments
which are free to execute Brownian motion. If a thermal fluctuation
is large enough and lasts long enough a monomer may intercalate
onto the filament end with polymerization and depolymerization
rates (kon M) and koff, respectively. The elongated filament is now
slightly bent away from its mean equilibrium configuration so that
its fluctuations exert an average elastic pressure against the mem-
brane. Opposing the motion is a load force, f. The resistance to mo-
tion is the membrane tension, augmented by any external load ap-
plied, f, to the membrane

1 The elastic bending modulus, B, of a filament is related to its per-
sistence length by B=λkBT



its equilibrium position under the action of the elastic bend-
ing force. The third terms describes the motion of the tip
with respect to the leading edge of the cell. The last term
describes the polymerization kinetics of the filament,
which depends on whether there is enough room between
the tip and the membrane to intercalate a monomer (see
Peskin et al. 1993 for more details).

We look for the asymptotically stable stationary solu-
tion of Eq. (1) on the half plane (–∞ < y < ∞, x ≥ 0); the
inequality holds because the membrane is impenetrable.
The probability, P, is subject to the normalization condi-
tion and to zero flux boundary conditions at the membrane.
Under physically reasonable conditions, the third and forth
terms can be treated as small perturbations on the first two
terms. That is, the time scale for tip fluctuations is much
smaller than that for polymerization and protrusion. The
stationary solution for Eq. (1) was obtained using a multi-
scale perturbation analysis, which yields the following ex-
pression for the protrusion velocity:

(2)

(3)

Equation (2) resembles the expression for the free poly-
merization velocity, Vp = δ (konM – koff), where δ is mod-
ified to (δ cosθ) to account for the angle of the polymer to
the membrane, and p̂(θ, y0) is the probability of a gap of
sufficient size and duration to permit intercalation of a
monomer. The expression for p̂(θ, y0) given by Eq. (3) de-
pends on y0, the asymptotic equilibrium distance of the tip
from the membrane, which can be found as follows. The
force, f, exerted by a fluctuating filament against the load
– the main source of which is the applied resistance of a
microneedle (Oliver et al. 1994) – is computed from the
elastic free energy of a semi-stiff rod (Landau and Lifshitz
1970 a):

(4)

Equation (4) also depends on y0; eliminating y0 para-
metrically from formulae (2 – 4), we obtain an expression
for the protrusion velocity V as a function of the variables
f and θ for fixed l , λ, and δ. V(f, θ) is plotted in Fig. 2.

For filament tips longer than l ~ 0.1 µm, a flexible fil-
ament (i. e. λ ~ 1 µm) can grow even if it approaches the
load perpendicularly, since thermal motions can bend it
easily to allow intercalation of monomers. A stiffer fila-
ment must approach the load at an angle to the normal to
permit intercalation since the probability of a sufficient gap
increases with the angle of incidence (the effective elastic
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coefficient is smaller). For the same reason, a larger load
force favors the growth of filaments at larger angles.
Clearly, protrusion ceases where the filament is parallel to
the membrane (θ → π/2); therefore, a critical angle, θc, ex-
ists at which the protrusion velocity is maximal. This crit-
ical angle depends on the load force as well as the filament
stiffness. We have derived an approximate expression of
the optimal angle in the case when the only load is the mem-
brane tensions (σ ~ 3.5 × 10–2 pN/nm (Cevc and Marsh
1987)):

(5)

Using the parameter values given in Table 1 we find
θc≈48°. This is close to the angle observed by Small for la-
mellipodia in fish keratocytes (Small et al. 1995). At such
angle and force the derived protrusion velocity is in the ob-
served range of 0.1 – 1 µm/s, (Lee et al. 1993).

Finally, the model predicts a stall force for a single fil-
ament as

(6)

Using the parameters in Table 1, we obtain fs ~ 5 pN.
Using the micrographs of Small (1995) to estimate the di-
mensions of a lamellipod and the total number of filaments,
we arrive at a total stall force fs ~ 103 – 104 pN; this com-
pares favorably with the experimental value of
4.5 × 104 pN reported by Oliver et al. (1994).
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Fig. 2 Lamellipodial velocity in nanometers per second as a func-
tion of load, f, in pN, and filament incidence angle, θ, in degrees for
fixed length, l, and persistence length, λ, given in Table 1. The crit-
ical angle, θc, for fastest growth depends on the load; the trajectory
of θc is shown on the v (f, θ) surface connecting the loci of maxi-
mum velocity at each load. v(θc) corresponds to a typical velocity of
about 0.1 µm/s providing we assume a monomer concentration of
about 10 µM. While this is higher than cytoplasmic concentrations,
the presence of recruiting proteins analogous to ActA in Listeria
could easily raise the local concentration of polymerization-compe-
tent monomers to this level (Cooper 1991; Theriot 1994). The opti-
mal angle θc, is an increasing function of the load force. When the
load force is large enough, the velocity passes through a maximum
at θc. The figure was computed from the load-velocity expressions
(2 – 4). The parameter values employed in the computations are giv-
en in Table 1



Case 2: Membrane fluctuations are significant

When the concentration of protein in the leading edge
membrane is low, membrane fluctuations are sufficient 
to permit intercalation of monomers. We consider the 
case when the transmembrane protein density is not suffi-
cient to dampen membrane fluctuations. Let us consider
free protrusion when the load force f is given by the mem-
brane surface tension. The corresponding pressure
P ~ 2σ/H ≈ 3.5 × 10–4 pN/nm2, where H ≈ 200 nm is the
thickness of lamellipodia (Lee et al. 1993). The average
amplitude of membrane fluctuations, h, is related to the
pressure on the membrane by the following asymptotic for-
mulae (Sackmann 1996): P ~ (kBT)2/(Bmh3) if σ PkBT/h2.
In the situation under study here amplitudes are of the or-
der of a few nm, and the inequality holds. Here
Bm ≈ 5 – 50 kBT is the membrane bending stiffness (Bo and
Waugh 1989; Evans and Yeung 1989). We estimate the av-
erage amplitude of membrane fluctuations as h ~ ((kBT)2/
(BmP))1/3 ≈ 7 – 15 nm. This is much larger than the mini-
mal gap needed for intercalation of an actin monomer. The
wavelength of the fluctuations corresponding to these am-
plitudes is  (Sackmann
1996), and the corresponding effective diffusion coeffi-
cient can be estimated as Dm ~ kBT/(6πηL) ~ 1 – 10 µm2/s
(Leibler et al. 1987). These fluctuations would be fast and
large enough to provide an effective polymerization ve-
locity equal to the ideal polymerization velocity
Vp ≈ 0.3 µm/s (for the parameter values given in Table 1).

In this situation, the angle corresponding the fastest fil-
ament growth, θc, is normal to the membrane since the fil-
aments do not need to bend in order to polymerize. This
situation can arise when a fluctuation in the density of
membrane proteins produces a local region where the bi-
layer fluctuations permit intercalation of monomers onto
the filament tips. In this region the filaments perpendicu-
lar to the membrane will grow fastest. Also, if the cross-
linking density at the tip falls so that filament tip length
exceeds approximately 150 nm, then the filaments become
flexible enough to intercalate monomers even when
θc=90°. In either case, we interpret the nucleation of par-
allel crosslinked filament bundles as the beginning stages
of filopod formation. On the basis of this picture, we ex-

L h B k T nmm B~ / ~ ( )10 100−

pect that the membrane region between filopodia will be
characterized by increased membrane tension and protein
loading. Thus the regions between the filopodia will fill in
via lamellipod growth, like the web on a duck’s foot.

We can estimate the stall force in this case as follows.
The load pressure sufficient to suppress the amplitude of
membrane fluctuations to about δ is Ps ~ (kBT)2/(Bmδ3).
The corresponding stall force is fs ~ (kBT)2A/
(Bmδ3) ≈ 103 – 5 × 104 pN, where A ~ 0.2 µm2 is the pro-
jected cross-sectional area of the lamellipod. This estimate
is again of the same magnitude as the force reported in 
(Oliver et al. 1995).

Centripetal flow during lamellipodial protrusion

During lamellipodial protrusion, particles and ruffles on
the dorsal surface of the lamella move centripetally to-
wards the perinuclear area. This retrograde, or centripetal
flow of lamellar substance accompanies cell migration, im-
plying there is a counter-flow of material in the lamellipod
(Sheetz 1994; Small 1994; Stossel 1993; Theriot and
Mitchison 1991). Fast centripetal flow of up to 100 nm/s is
observed in neural growth cone lamellae (Lin and Forscher
1995). In fibroblasts, where a gradient in lamella density
from the leading edge to the perinuclear region is substan-
tial, the centripetal flow is fast, while in keratocytes, where
the gradient is small, centripetal flow is slow (Sheetz 1994).

To model centripetal flow we assume that polymeriza-
tion of actin takes place mainly at the leading edge. Before
crosslinking, the free ends of actin fibers must be stress
free. Crosslinking permits stress to develop due to the en-
tropic motions of the chains between the cross-links. Back
from the leading edge, filaments start to disassemble, ei-
ther spontaneously or from the action of solation proteins,
or both. This causes a gradual increase in the distances
between neighboring crosslinks or entanglement loci. The
average distances between such points anywhere in the la-
mella are much smaller than the lowest estimates for the
persistent length of actin. Therefore, filaments must be
treated as elastic semistiff rods, rather than entropically
flexible threads. Due to thermal writhing, when filaments
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Parameter Value Reference

δ = effective half monomer size 2.7 nm (Pollard 1986)
kon = polymerization rate 11 s–1 µM

–1 (Pollard 1986)
koff = depolymerization rate 1 s–1 (Pollard 1986)
M = monomer concentration 10 µM (Marchand et al. 1995)
λ = filament persistence length 1 µm (Kas et al. 1993)
l = length of filaments tips 30 nm (Small et al. 1995)
H = thickness of lamellipod 200 nm (Lee et al. 1993)
A = cross-sectional area of lamellipod 0.2 µm2 (Oliver et al. 1994)
kBT 4.1 pN×nm
σ = membrane surface tension 0.035 pN/nm (Cevc and Marsh 1987)
η = viscosity of the fluid part of the cytoplasm 0.03 poise (Fushimi and Verkman 1991)
Bm = bending stiffness of the membrane (5 – 50) kBT (Bo and Waugh 1989;

Evans and Yeung 1989)

Table 1 Parameter values



are polymerized and cross-linked in a stress-free state, the
average distance between cross-links is slightly smaller
than the average fiber length between cross-links. When
the distance between cross-links grows due to partial so-
lation of the network (due to filament severing, crosslink
dissolution and filament depolymerization), it is easy to
show that the equilibrium distance between cross-links de-
creases still more, and the consequent stress in the fila-
ments strains the actin meshwork. So, depolymeriziation
causes an entropic, contractile stress.

We can estimate the magnitude of the solation induced
network stress as follows. Focus attention on a single fil-
ament, as shown in Fig. 3 a. The equilibrium distance
between the ends of a thermally fluctuating elastic rod of
length l is (Landau and Lifshitz 1970 b):

req ≈ l (1 – l /6λ), (7)

where λ p l is the persistence length. The force, F, to
change the distance between the ends of the rod from its
equilibrium distance req to r is (MacKintosh et al. 1995):

(8)

The corresponding contractile force induced in the rod
when a single crosslink is removed is F ~ 2 kBTλ/l 2 ≈
8 pN.2
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As the network density decreases with disassembly, the
stress rises; therefore, solation of the network generates a
stress gradient which increases from the leading edge prox-
imally towards the cell center. This stress gradient is suf-
ficient to drive the creeping rearward motion of the corti-
cal actin network against the resistance due to viscous drag
of cytoplasm and the breaking of transmembrane bonds
with the substratum. Thus the net forward motion of the
lamellipod will be determined by the balance of protrusive
and centripetal forces. We can construct a simplified, 1-di-
mensional model of a longitudinal cross-section of the la-
mellipod as follows.

We focus our attention on a single filament, and place
our coordinate system at the tip of the lamellipod, as shown
in Fig. 3 a. Let x denote the proximal distance from the
leading edge along the filament and write balance equa-
tions for the crosslinking nodes and for the axial stress in
the lamellipod. It is convenient to characterize the network
by the distribution of distances between crosslinks, de-
noted by r (x, t), rather than the crosslinks themselves. De-
note the length distribution of the filaments between cross-
links by l (x, t), so that the local strain is (r – req(l)). The ev-
olution of these distributions is governed by the following
balance equations:

(9)

(10)

(11)

Here ζ is the effective viscous friction coefficient for
movement of the network through cytoplasm (which we
consider constant here for the sake of simplicity). V is the
polymerization velocity and µ is a rate of cross-link disso-
ciation. The first terms in each equation are the convective
fluxes and the second terms account for the decrease in
node density due to solation (loss of nodes). The last term
in Eq. (9) accounts for the change in r due to the difference
in velocity of adjacent nodes. We shall consider the lamel-
lipod of the fish keratocyte where the centripetal velocity
is small compared to the protrusion velocity: v/V P1. In
this situation we can use perturbation theory to find the
asymptotically stable stationary solution. In the first ap-
proximation, the stationary distributions of r and l are
given simply by

(12)

The boundary conditions specify the mesh size at the
leading edge, r (0) = r0, and the condition that the leading
node is strain free: l (0) = l0, where r0 and l0 are related by
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Fig. 3 a A single filament crosslinked into the cortical network.
Polymerization driven protrusion takes place at the tip with constant
velocity V. We place our coordinate system at the leading edge and
measure x backwards from the tip. Rather than crosslink density, we
use r (x, t), the distribution of distances between the crosslinks, and
l (x, t), the distribution of the filament lengths between the cross-
links, v (x) is the retrograde velocity field. b The normalized retro-
grade velocity field, v/V, as a function of the dimensionless proxi-
mal distance, x µ/V. Note that the retrograde velocity eventually goes
negative, as is observed sometimes in locomoting keratocytes

2 A better estimate based on a more realistic model is 5 pN for an
entire fiber (Mogilner and Oster, in preparation)



Eq. (7). The solution to Eq. (12) is

(13)

which yields the centripetal velocity field defined in the
expression (11), v (x)

(14)

v(x) is plotted in Fig. 3 b. The corresponding filament den-
sity, n (x) ~ 1/r (x), is in qualitative accordance with the ob-
servations of Small on the distribution of actin filaments
in locomoting keratocytes (Small et al. 1995). Note that,
at large distances from the leading edge, the network ve-
locity reverses (Sheetz 1994).

Discussion

By extending the polymerization ratchet model of Peskin,
et al. (1993) to permit flexible filaments we have been able
to construct a more complete picture of the physics of force
generation at the leading edge of the lamellipodium. The
model predicts the following features of lamellipodial pro-
trusion:

– The force and velocity of protrusion due to actin poly-
merization.
– The orthogonal network geometry observed in kerato-
cyte lamellipodia.
– The interspersion of parallel bundled actin filaments
which may nucleate filopodia.
– Centripetal flow of the network that accompanies pro-
trusion.

In addition, the elastic ratchet model provides an inter-
pretation for other features of lamellipodial driven cell mo-
tion. For example, increasing external osmolarity tends to
arrest cell protrusion (Trinkaus 1984). We interpret this in
the context of the model as follows. External osmolytes
will dehydrate the region near the leading edge causing the
membrane to ‘shrink-wrap’ the free filament tips. This ar-
rests polymerization and stops protrusion. If the cell is not
strongly adherent to the substratum, the lamellipod may
retract due to the stress gradient driven retraction force; if
the tip bends away from the substratum, a ruffle com-
mences. A similar effect can be brought about by introduc-
ing agents such as cytocholasin that inhibit actin polymer-
ization (Forscher and Lin 1995).

We note that there are alternative interpretations of the
filament geometry in the leading lamella. For example, ac-
tin binding proteins, such as profilin, may favor binding of
actin filaments which collide normal to each other (Hart-
wig 1992). It is feasible that such proteins can nucleate new
filaments from existing filaments near the membrane,
which could generate the observed orthogonal architecture
(Civelekoglu and Edelstein-Keshet 1994). In fact, if this
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hypothesis about angular dependent binding of actin is
true, then it is possible that filaments are nucleated in the
direction given by the fastest growth condition given here,
and the “frozen” into orthogonal order by actin-binding
proteins.

Finally, we expect that the elastic ratchet model applies
to other polymerization driven phenomena such as phag-
ocytosis (Swanson and Baer 1995), inductopodia (Fors-
cher et al. 1992) and microtubule deformation of liposomes
(Fygenson 1995; Miyamoto and Hotani 1988; Miyata and
Hotani 1992), platelet activation (Winojur and Hartwig
1995), the propulsion of certain pathogenic bacteria, such
as Listeria monocytogenes, through the cytoplasm of their
hosts (Marchand et al. 1995; Zhukarev et al. 1995), and the
infective protrusions generated by certain viruses, such as
vaccinia (Cudmore et al. 1995). Nor is the model restricted
to systems driven by actin polymerization. Nematode
sperm extend a lamellipodium and crawl by assembling
not actin, but an unrelated protein called major sperm pro-
tein (Roberts and King 1991; Roberts and Stewart 1995).
These lamellipodia resemble in most aspects those of mam-
malian cells and we believe that the underlying physics is
the same.
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