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Abstract. Angular self-organization of the actin cytoskeleton is modeled as a process of instant
changing of filament orientation in the course of specific actin-actin interactions. These interactions
are modified by cross-linking actin-binding proteins. This problem was raised first by Civelekoglu and
Edelstein-Keshet [Bull. Math. Biol., 56 (1994), pp. 587–616]. When restricted to a two-dimensional
configuration, the mathematical model consists of a single Boltzmann-like integrodifferential equation
for the one-dimensional angular distribution. Linear stability analysis, asymptotic analysis, and
numerical results reveal that at certain parameter values of actin-actin interactions, spontaneous
alignment of filaments in the form of unipolar or bipolar bundles or orthogonal networks can be
expected.

Key words. actin cytoskeleton, master equation, Boltzmann equation, integrodifferential equa-
tion, peak solution

AMS subject classifications. 45K05, 92C

PII. S0036139996309539

1. Introduction. The formation of orientational order has been of great sci-
entific interest during the last several years. Fish schools and flocks of birds are
characterized by a high degree of directionality. Various models were suggested to
explain the parallel alignment of bacteria in swarms [15] and the formation of par-
allel arrays of fibroblasts [4]. Here we are interested in orientational patterns on a
molecular biological level.

Actin is an abundant protein in cells. It is the main building material for the
cytoskeleton, playing an important role in intracellular transport, cell motility, and
division [16], [18], [20], [7], [22]. We will concentrate on the properties of actin in
nonmuscle cells. Actin exists in these cells in a variety of types of structural order,
ranging from disordered loose meshworks to highly ordered fibers and bundles. Actin
filaments consist of monomers (G-actin) that, to first approximation, are polymerized
in linear order. The length of the filament can change very rapidly. Monomers usually
are attached at, and leave the filament from, the ends of the polymer. There is no
symmetry between the “head” and the “tail” of an actin polymer because monomers
are not isotropic and bind each other in a geometrically ordered manner.

For our purposes a model of an individual actin filament as a rigid rod will do.
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It was shown in a number of experiments that our assumption is justified if filaments
are short, if the time interval during which stress is applied is short, or if the applied
stress is weak [9]. More precisely, filaments of length 0.1− 1µm (80–90% of filaments
in vivo are of this length) are stiff. Even longer filaments associated with certain
proteins (e.g., tropomyosin) or heavily cross-linked can be viewed as straight rods.

The spatioangular organization of actin in the cytoskeleton is vitally important
for the life of the cell, and this organization has to be changed rapidly when needed.
This is achieved and controlled with the help of an extensive variety of actin-binding
proteins, such as α-actinin, filamin, fibrillin, ABP-280, and myosin—to name just a
few. In this paper we completely ignore the army of proteins binding actin to the cell
membrane, severing it, etc., concentrating instead on the actin-binding proteins that
provide short- or long-living links between neighboring filaments.

The spatial structure of the cytoskeleton leads to important effects in cell biology
[18] and promises interesting mathematical modeling [13]. Nevertheless, in the present
paper we do not attempt to model the spatial structure of the cytoskeleton, considering
it to be spatially homogeneous. This is a sensible approach if we work with a small
volume in the cell that contains a large number of actin filaments. It is the angular
order of actin that is the object of our investigation here.

Static mechanical properties of the cell depend on the angular structure of the
actin network [7]. Also, in lamellipodia of some cells, bulk retrograde flow of actin
(which is an important component of motility) driven by myosin depends critically
on the orientation of actin fibers [3]. A few types of angular order have been detected
and are known to be important [16], [18], [20], [7], [22]:

1. completely loose gel-like isotropic actin meshworks;
2. more structured anisotropic meshworks where micrographs reveal that most

angles between the filaments are close to the right angle (orthogonal meshworks); and
3. bundles, where actin is aligned along some axis, prescribed by external con-

ditions. Bundles may be
(i) unipolar (all heads are oriented in the same direction) or
(ii) bipolar (heads are aligned along two opposite directions).

In vivo, these structures are usually three-dimensional (with some important excep-
tions, such as two-dimensional orthogonal actin networks at the lamellipodia of ker-
atocytes [18]). In vitro, similar two-dimensional structures are observed [21]. In the
present model we attempt to explain these types of order.

An important difference between angular self-ordering in liquid crystals and that
in the cytoskeleton is that the former is partially due to crowding effect. Simple
estimates show that the cytoskeleton in vivo, when the mesh size is about 0.1µm, is far
from being crowded, so this factor is less important than protein-mediated actin-actin
interaction. In this case, modeling approaches employing nonlinear phenomenological
equations governing the angular and temporal dynamics of average densities might
be appropriate.

The angular organization of the cytoskeleton was modeled lately using various
ideas [2], [10], [17]. A phenomenological functional of the actin angular distribution
dependent on mechanical forces was introduced by Sherratt and Lewis [17]. Minimiza-
tion of this functional gave a resulting angular ordering. Madden and Herzfeld [10]
analyzed a free energy of a crowded ensemble of growing and depolymerizing actin
fibers. Also, the alignment was obtained by minimization of a free-energy functional.
These models imply that the system is close to thermodynamic equilibrium. However,
the cytoskeleton of the living cell is far away from such equilibrium [20]. Moreover,
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one of the advantages of a dynamical approach is that it allows one to analyze the
system’s approach to a stationary state.

Such a dynamical model was suggested earlier in [4] and applied to the cytoskele-
ton dynamics in [2]. This is a model describing the dynamics of two two-dimensional
angular densities—that of “bound” actin and that of “free” actin—with a complex
set of integrodifferential equations. The mathematical analysis of these papers was
extended in [11], [12]. The present paper is related to the work of Civelekoglu and
Edelstein-Keshet [2] and uses the same general approach. However, the following
reasons forced us to suggest another model. For the dense actin meshwork, it is, in
general, difficult to distinguish between “bound” and “free” types of filaments, and
also free rotational diffusion of the fibers (which was the antiordering factor in [2]) is
unimportant.

The following scenario leads to the mathematical model described in the next
section. The model assumes the existence of groups of actin filaments in the cytoplasm
attached to some hypothetical “nods” (see also [1]). Within each group the fibers
are cross-linked with actin-binding proteins. In cells the actin-related interaction
mechanisms are diverse and complex. However, mechanistic interaction rules can
be formulated and put into an appropriate mathematical framework. These rules are
based on the properties of different actin-binding proteins which have different binding
affinities and configurations and which favor different orientational structures. Actin-
binding proteins are viewed as being able to bind two filaments together. The rates of
attachment and detachment are angle and density dependent. Frequent detachment of
a filament from proteins and attachment to another protein redistribute the filament.

We consider various mechanisms of alignment by actin-binding proteins, partly
based on experimental data and partly on speculations. Some proteins, like gelsolin,
are very long and, hence, flexible rods. Two filaments linked by such proteins are,
on the average, oriented with an angular uncertainty so great that they reveal little
or no alignment. The protein α-actinin is a shorter rod. Filaments linked by it align
with each other with less uncertainty and create loose bundles. The protein fibrillin
is very stiff and favors tight bundles. Myosin II has two tails “glued” together and
two heads. The heads attach to actin in a sterically precise way and align them in
a bipolar fashion (with “heads” of the two fibers oriented opposite to each other).
Filamin is abundant in orthogonal meshworks. This protein may work as a specific
floppy hinge with two “arms” perpendicular to each other. Two filaments attaching
to different arms of filamin will be at right angles to each other.

This picture leads to the following model. Each actin filament is described by its
orientational angle θ ∈ (−π, π]. (Here we restrict ourselves to the two-dimensional
model.) As a result of detachment and turning, filaments disappear from direction
θ with a certain rate. At the same time, as a result of actin-actin interaction, other
fibers from other directions appear at direction θ. This leads to a discontinuous de-
scription of the angular dynamics with a nonlinear integrodifferential Boltzmann-like
master equation. We call the corresponding angle-dependent rate a turning probabil-
ity function. There are no experimental data on such rates, mainly because it has been
impossible so far to observe individual fibers in vivo. We speculate on the angular
dependence of this rate based on available structural information about actin-binding
proteins. Also, earlier modeling [11], as well as this paper, demonstrates that the type
of order mainly depends on the symmetry properties of the interactions rather than
on the detailed angular dependence of the corresponding rates.

The paper is organized as follows. We introduce the mathematical model in
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Fig. 1. Sketch of filaments and mutual angles. With high probability the filament’s turning
angle is near an “optimal” turning angle, θo − θn = v(θo − θi). After turning, the new position of
filament θo will most probably be in the shaded area.

section 2. Section 3 is devoted to a linear stability analysis of the model. A limiting
case of complete alignment in one direction is investigated in section 4. We report
results of numerical simulations in section 5. The discussion in section 6 concludes
the paper.

2. The mathematical model.

2.1. Definitions and master equation. Throughout this paper we use the
following notations:

t time, t ≥ 0,
θ orientation angle, θ ∈ (−π, π],

f(θ, t) angular distribution of filaments,
η(θo − θi) rate (per unit time) of interaction between two filaments at

directions θo, θi,
w(θo − θn, θo − θi) probability of turning of a filament from direction θo to direc-

tion θn as a result of interactions with filaments at direction
θi; see Figure 1.

All functions are 2π-periodic (in all variables).
The ensemble of fibers is characterized by the angular distribution f(θ, t). A

filament turns effectively in the course of a pairwise interaction with another filament,
mediated by actin-binding proteins. We consider the isotropic case characterized by
local rotational invariance of the cytoplasm. Thus, all relevant elementary rates and
probabilities depend on the relative angles only, not on angles measured from some
distinguished axis. We call the functions w(θo − θn, θo − θi) and η(θo − θi) turning
probability function and frequency function, respectively. Since w is a probability
density, ∫ π

−π
w(θo − θn, θo − θi) dθn = 1.(2.1)
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Rescaling the time yields ∫ π

−π
η(θo − θi)dθi = 1.(2.2)

Thus, the rate of turning from angle θo to angle θn is a linear functional of f :

W [f ](θo, θn) =

∫ π

−π
η(θo − θi)w(θo − θn, θo − θi)f(θi)dθi.(2.3)

The following master equation governs the dynamics of the angular distribution
[14]:

∂f

∂t
(θ, t) = −f(θ, t)

∫ π

−π
W [f ](θ, θn)dθn +

∫ π

−π
W [f ](θo, θ)f(θo, t)dθo,(2.4)

or, plugging in expression (2.3) for the rate W and taking into account condition (2.1),

∂f

∂t
(θ, t) = −f(θ, t)

∫ π

−π
η(θ − θi)f(θi, t) dθi(2.5)

+

∫ π

−π

∫ π

−π
w(θo − θ, θo − θi)η(θo − θi)f(θo, t)f(θi, t) dθi dθo.

This is the main model equation. The same master equation was derived in [8] in a
different set-up for another biological application. This equation bears deep similarity
to the Boltzmann equation of statistical physics.

2.2. Symmetries of the model. Integrating both sides of (2.5) over the vari-
able θ and using the normalization condition (2.1), we establish conservation of mass
of filaments: ∫ π

−π
f(θ, t)dθ = const = 1 for all t ≥ 0(2.6)

(we normalize the total mass of filaments to be 1). The isotropic character of our model
forces the following symmetry assumptions of the turning probability and frequency
functions:

η(θ) = η(−θ), w(θ1, θ2) = w(−θ1,−θ2).(2.7)

The symmetry properties (2.7) have an important consequence. If f is a solution
of (2.5), then g±(θ, t) := f(Θ±θ mod 2π, t), where Θ is the direction of some arbitrary
axis, are also solutions of (2.5) because

∂g±
∂t

(θ, t)

= −f(Θ± θ, t)
∫ π

−π
η(Θ± θ − θi)f(θi, t) dθi

+

∫ π

−π

∫ π

−π
w(θo −Θ∓ θ, θo − θi)η(θo − θi)f(θo, t)f(θi, t) dθi dθo

= −g±(θ, t)

∫ π

−π
η(θ − θi)g±(θi, t)dθi

+

∫ π

−π

∫ π

−π
w(θo − θ, θo − θi)η(θo − θi)g±(θo, t)g±(θi, t) dθi dθo.
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Thus, the differential-integral equation is invariant under rotations and inversions.
This yields also that reflectional symmetries of initial distributions are conserved in
time.

2.3. Examples of turning rates and interaction frequencies. In the fol-
lowing we will give some examples of frequency functions and turning probabilities.
Generally, gσ with deviation σ > 0 will denote either the periodic Gaussian or the
normalized step function:

gσ(θ) =
1√
2πσ

∑
z∈Z

exp

(
−1

2

(
θ + 2πz

σ

)2
)
, θ ∈ (−π,+π),(2.8a)

or

gσ(θ) =

{
1

2σ , |θ| < σ (≤ π),
0, σ ≤ |θ| ≤ π.(2.8b)

The analysis of the following sections shows that only a small number of features of gσ
are essential for the general qualitative behavior of the model. One of these features
is, e.g., the fact that the Fourier transform of gσ converges to 1 for small deviation.

We choose the turning probability function in the form

w(θo − θn, θo − θi) := gσ((θo − θn)− v(θo − θi)).(2.9)

With highest probability a filament turns from angle θo to angle

θn = θo − v(θo − θi)(2.10)

as a result of an interaction with a fiber at angle θi; see Figure 1. So v(θ) is the average
angle of turning as a function of the interaction angle θ. We call v the turning function.
To satisfy the symmetry assumptions (2.7), the turning function must be odd; i.e.,
v(θ) = −v(−θ). The parameter σ > 0 is the deviation of the turning angle; we call
this parameter the uncertainty of turning. The greater σ, the less exact alignment
takes place (for example, when the rod domains of actin-binding proteins are long and
flexible). When σ � 1, alignment is almost exact; the turning angle is determined by
the interaction (e.g., when the rod domains of actin-binding proteins are short).

We introduce a few qualitatively different turning functions. In all examples the
parameter κ, 0 ≤ κ ≤ 1, is a measure for the magnitude of the turning angle. We call
κ the attractivity coefficient.

1. a. v(θ) = κ sin(θ): attracting interaction. At all interaction angles the angle
between two filaments decreases according to the law of the resultant force.

b. v(θ) = κθ: attracting interaction. Here, the directions of two filaments
converge proportional to the interaction angle. This turning function increases with
the interaction angle, and it is discontinuous at the interaction angle π.

Both interactions 1a and 1b are asymptotically equivalent at small interaction
angles. In general, a turning function v is called attracting if 0 < v(θ) < θ for all
0 < θ < π; i.e., two filaments turn toward each other. After interaction and turning,
their mutual angle is smaller than before.

2. v(θ) = κ
2 sin(2θ): mixed attracting/repulsing interaction. Filaments converge

at acute interaction angles and diverge at obtuse angles (i.e., convergence to rear end
of interaction partner).
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3. v(θ) = −κ2 sin(2θ): mixed attracting/repulsing interaction. Filaments di-
verge at acute interaction angles and converge at obtuse angles.

If κ = 0, there is no biased turning. If κ ' 0, we have the “weak” limit; at each
interaction mutual angles converge (or diverge) just a little bit.

To model parallel and orthogonal binding configurations, we will use three dif-
ferent frequency functions. The parameter ρ > 0 is a measure for the effective range
at which filaments interact with each other. Note that gρ is the second Gaussian or
step function in the equation but that σ and ρ have quite different meanings in the
model.

1. η(θ) = 1
2π : the frequency of turning is angle independent;

2. η(θ) = gρ(θ): the frequency of turning is larger at small interaction angles
and smaller at larger angles;

3. η(θ) = 1
2 (gρ(θ − π

2 ) + gρ(θ + π
2 )): the frequency of turning is greater at

orthogonal angles and smaller for parallel and antiparallel fibers.
Altogether we have three parameters characterizing these models: the effective

interaction range ρ, the uncertainty of turning σ, and the attractivity coefficient κ.

3. Linear stability analysis. It is easy to check that the homogeneous angular
distribution (no angular order) f(θ) = const = 1

2π is a stationary solution of the
model equation (2.5). Here we analyze the linear stability of this steady state under
small perturbations. We represent the angular distribution in the form

f =
1

2π
+ f̃ ,

∫ π

−π
f̃(θ)dθ = 0, |f̃ | � 1.

(Because of mass conservation (2.6) in our model, the homogeneous distribution is
neutrally stable under constant perturbations.) Plugging this expression into (2.5)
and keeping only linear terms, we obtain the linearized equation

∂f̃

∂t
= −f̃ − η ∗ f̃ + I ∗ f̃ ,(3.1)

where the symbol ∗ denotes the convolution of two functions:

(η ∗ f̃)(θ) =

∫ π

−π
η(θ − ψ)f̃(ψ) dψ

and

I(θ) :=

∫ π

−π
η(ψ) (w(θ, ψ) + w(θ + ψ,ψ)) dψ.

The rotational invariance of the model (see section 2.3) is reflected in the fact that
all operators in (3.1) are convolutions. This, in turn, implies that {exp(ilθ)}, l ∈ Z,
is a complete orthogonal system of eigenfunctions for the right-hand side of (3.1).
Therefore, Fourier transformation yields the following linear system of equations for
the time dependent amplitudes f̂l of the perturbation modes exp(ilθ):

df̂l
dt

=
(
−1− η̂l + Îl

)
f̂l =: cl f̂l, l ∈ Z,(3.2)

where the linear growth rates of the perturbation modes, cl, involve the lth Fourier
coefficients, η̂l, Îl, of the functions η(θ), I(θ), respectively. (Here we define f̂l :=∫ π
−π f(θ)e−ilθ dθ and η̂l, Îl analogously.)
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Because of the symmetry properties (2.7), the coefficients cl are real, and cl =
c−l for all l. The homogeneous solution is stable if for all wavenumbers l ≥ 1, the
eigenvalue cl is negative, and it is unstable if there exists at least one l ≥ 1 such that
cl is positive. At most, finitely many eigenvalues can be positive because η̂l, Îl → 0
for |l| → ∞.

Let us first consider the case of purely random turning; i.e., w = const. Then
Îl = 0, l 6= 0. Because of the positivity and normalization of the function η, we
have the inequality |η̂l| < 1, l 6= 0. Then cl = −1 − η̂l < 0, and the homogeneous
distribution is stable. Thus, angle-independent interaction does not lead to order
even if the frequency of interactions depends on mutual angles. This conclusion does
not contradict some known facts, such as, for example, bacteria’s ability to move
unidirectionally by changing the frequency of reorientation depending on their spatial
position. In that case, the spatial inhomogeneity leads to the directionality of motion.
In our case, we consider the isotropic dynamics in the angular space. Though at some
angles filaments interact more frequently than at others, this alone does not lead to
alignment, because the average reorientation angle of the pair of interacting filaments
is arbitrary. Because of this rotational invariance there is no angular bias on the
average. If some biochemical bias in the cytoplasm is introduced, and the rotational
invariance is broken, then the angular dependence of the turning frequency alone
could cause alignment.

Further, we consider the case of angle-biased turning w 6= const and angle-
independent frequency of interaction η = const = 1

2π . The criterion for instability
then has the form

cl = −1 +
1

2π
(ŵl,0 + ŵl,−l) > 0 for some l > 0 ,(3.3)

where ŵk,l =
∫ π
−π
∫ π
−π e

−ikψ1e−ilψ2w(ψ1, ψ2) d(ψ1, ψ2). The coefficients ŵl,0, ŵl,−l can
be explicitly calculated for turning probability function (2.9):

1 + cl =
1

2π

∫ π

−π

∫ π

−π
gσ(ψ1 − v(ψ2)) (1 + e−i(−l)ψ2) e−ilψ1 dψ1dψ2

=
1

2π
ĝσl

∫ π

−π
(cos(lv(ψ)) + cos(l(ψ − v(ψ)))) dψ.(3.4)

Here

ĝσl =
sin(lσ)

lσ
for the step function(3.5a)

and

ĝσl = e−
1
2 (2πσl)2

for the periodic Gaussian.(3.5b)

An analysis of expressions (3.4)–(3.5) leads us to the following conclusions:
1. The uncertainty of turning σ has to be small enough in order for an instability

to occur. This means that turnings must be precise enough; otherwise, any ordering
would be smeared out by stochastics.

2. If v is identically zero (i.e., no turning, e.g., attractivity coefficient κ = 0),
then the homogeneous solution is always stable.

3. In the case of attracting turning function, the first mode becomes unstable
for small enough uncertainty of turning. Because ĝσl converges to 1 for small σ, we
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have to show that
∫ π
−π(cos v(ψ) + cos(ψ − v(ψ))) dψ > 2π. For attracting turning

function v, we have

∫ π

−π
(cos v(ψ) + cos(ψ − v(ψ))) dψ = 2

∫ π

−π
cos

(
1

2
ψ

)
cos

(
v(ψ)− 1

2
ψ

)
dψ

> 2

∫ π

−π
cos2

(
1

2
ψ

)
dψ = 2π.

However, even for attracting turning functions, the first mode needs not be the largest
mode. In Appendix A we construct a turning function for which higher mode numbers
can be larger than the first mode.

Figures 2a,b show the graphs of κ 7→ σ̄l(κ) with cl(κ, σ̄l(κ)) = 0 for the first
few l when v is the linear attracting turning function (Figure 2a) and a mixed at-
tracting/repulsing turning function (Figure 2b), respectively, and κ is the attractivity
coefficient. Below the curves the eigenvalue cl = cl(κ, σ) is positive; i.e., for these
parameter values (κ, σ) the corresponding wavenumbers l are unstable.

For the linear turning function, Figure 2a, eigenvalues to even wavenumbers are
negative for all κ and σ, hence the constant solution is stable with respect to pertur-
bations of even mode numbers. Moreover, the (positive) linear growth rate of the first
mode is the largest at all values of the parameters. Thus, one predicts that purely
attracting interaction leads to alignment in a single direction. The function σ̄1(κ) has
a maximum at κ = 1

2 , so alignment is the most effective when the average angle of
turning is equal to half the initial mutual angle (effectively, the orientations of two
filaments merge after turning). The plot’s symmetry results from the fact that the
behavior of the model with linear turning function is unchanged if κ is replaced with
1− κ.

Figure 2b shows that for the mixed attracting/repulsing turning function, v(θ) =
κ
2 sin(2θ), the second mode is the only one which becomes unstable for small uncer-
tainty of turning. Therefore, one expects the formation of bundles with filaments in
opposing orientations (i.e., two maxima of the distribution function at distance π).
The same figure (multiplied by 2 and with l = 1 instead of 2) holds for the attracting
turning function v(θ) = κ sin θ. Interestingly, there is no degeneracy at κ = σ = 0, in
contrast to the linear turning function for which infinitely many (odd) modes become
unstable near the origin.

4. Peak-like angular distribution in the case of attracting interaction.

4.1. Stability of a single peak in the case of exact alignment. The linear
stability analysis of the preceding section has shown that for small uncertainty of
turning, σ, the constant solution is unstable. Numerical calculations (see also section
5) show that as σ decreases, peaks become narrower. This leads to the plausible
assumption that in the limiting case of σ → 0, and with attracting interaction mecha-
nisms, the resulting angular pattern would be that of complete alignment. Indeed, in
this section we will demonstrate that in the case of purely attracting interaction, of
angle-independent frequency of interaction (i.e., η = const), and of exact alignment
(i.e., σ = 0), a single δ-peak is a stable solution.

First, let us note that the functions gσ (for both Gaussian and step function cases)
converge to the delta distribution as σ → 0, gσ → δ. We transform the integral on
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Fig. 2. For parameter values above the curves the rates cl are negative (meaning that the
constant solution is stable under perturbations of that wavenumber). For parameter values below
the curves the rates cl are positive (the homogeneous distribution is unstable under perturbations of
the form described by that mode.) (2a) The level curves cl(σ, κ) = 0 (l = 1, 3, 5, 7) for the case of
unidirectional bundling (v(ψ) = κψ; gσ is the periodic Gaussian). All even modes are stable in this
case. (2b) The level curve c2(σ, κ) = 0 for the case of mixed attracting/repulsing turning function
(v(ψ) = κ

2
sin(2ψ); gσ is the periodic Gaussian). All other modes are stable.

the right-hand side of (2.5) and let σ → 0:∫ π

−π

∫ π

−π
gσ(θo − θ − v(θo − θi)) f(θo)f(θi) dθo dθi

=

∫ π

−π
gσ(ψ1)

∫ π

−π
f(θ − ψ1 − v(ψ)) f(θ − ψ1 + ψ − v(ψ)) dψ dψ1

σ→0−→
∫ π

−π
f(θ − v(ψ))f(θ + (ψ − v(ψ))) dψ =: A(f)(θ).
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Hence, model equation (2.5) can be rewritten as

∂f

∂t
=

1

2π
(−f +A(f) ),(4.1)

where f may be a distribution and the distribution A(f) acts on a test function
Φ ∈ C∞(R) as follows:

〈A(f)(θ),Φ(θ)〉 := 〈f(θ), 〈f(ψ),Φ(θ + v(ψ − θ))〉ψ〉θ.(4.2)

(〈f,Φ〉 denotes the action of a distribution on a test function.) After suitably rescaling
time, (4.1) becomes

∂f

∂t
= −f +A(f).(4.3)

We want to show that a single delta peak, δ(θ − θ̄), is a stationary solution of
(4.3). Because of the translational invariance of the problem, it suffices to show that
δ(θ) is a stationary solution; i.e., A(δ) = δ. This is easy to see because v(0) = 0, and
therefore,

〈A(δ)(θ),Φ(θ)〉 = 〈δ(θ), 〈δ(ψ),Φ(θ + v(ψ − θ))〉〉
= 〈δ(θ),Φ(θ + v(−θ))〉 = Φ(0) = 〈δ(θ),Φ(θ)〉.

In order to investigate the stability of this single peak, we linearize the differential
integral equation (4.3). We represent the perturbed peak-like solution in the form
f = δ + f̃ , where 〈f̃ , 1〉 = 0, and keep further only terms of linear order in f̃ . The
linearized equation has the form

∂f̃

∂t
= −f̃ + Lv(f̃) + Lid−v(f̃),(4.4)

where the operator Lv acts as follows:

〈Lv(f)(θ),Φ(θ)〉 = 〈f(θ),Φ(v(θ))〉,(4.5)

and Lid−v is defined analogously.
The linear equation (4.4) with initial distribution f̃(., 0) = f̃0 can be solved ex-

plicitly. This is done in Appendix B, where we further show that

f̃(., t)→ −〈f̃0(θ), θ〉 δ′ for t→∞

if the turning function v is attracting; i.e., 0 < v(θ) < θ for 0 < θ < π.
We define θ∞ := 〈f̃0(θ), θ〉 = 〈f(θ, 0), θ〉 for f(., 0) = δ + f̃0. Thus, the solution

f(t) = δ + f̃(t) of (4.3) converges in linear approximation to

f(t)→ δ − θ∞ δ′ = δ(−̇θ∞) +O(θ2
∞) for t→∞.(4.6)

This proves that after a small perturbation the δ-peak does not change its shape
but moves to the new angle θ∞ (which is close to the 0-angle because of the smallness
of the perturbation). If the perturbation f̃0 is even, then θ∞ = 〈f̃0(θ), θ〉 = 0, and
the peak remains unmoved.
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4.2. The shape of the peak. We expect that in the case of almost exact
alignment 0 < σ � 1 the angular distribution has the form of a narrow peak. In
order to find the shape of this peak, we solve approximately (with an error of the
order exp(−1/σ)) the stationary integral equation:

−f(θ) +

∫ π

−π

∫ π

−π
gσ(θo − θ − v(θo − θi)) f(θ) f(θ) dθi dθo = 0.(4.7)

Introducing the new variable x = θ
σ , we rescale the angular distribution. Let-

ting the rescaled limits of integration be equal to ±∞ (which at small σ gives only
exponentially small error), we obtain the approximate integral equation:

f̃(x) =

∫ ∞
−∞

∫ ∞
−∞

G1(xo − x− v(xo − xi)) f̃(xi)f̃(xo) dxi dxo.(4.8)

It is easy to check that this equation has a solution of the following form provided
v(θ) = κθ:

f̃(x) = Gε(x), ε =
1√

2κ(1− κ)
,(4.9)

where Gε is the Gaussian on R with deviation ε. Hence, at small uncertainty of
turning, σ, the approximate stationary angular distribution has the Gaussian shape

f(θ) = A exp

(
−κ(1− κ) θ2

σ2

)
, A =

√
κ(1− κ)√
πσ

,(4.10)

and the approximation error is exponentially small. The peak is narrow: the width
of the distribution is equal to σ√

2κ(1−κ)
(remember that κ is fixed and σ → 0). We

conjecture that for small σ this peak-like distribution is stable.
Let us consider in more detail the case of small attractivity coefficient κ→ 0 and

almost exact alignment σ → 0. In this case the approximation used in this section is
valid if σ is small compared to κ in the following sense. Let, e.g.,

σ = σ(κ) = κγ .

Then the above analysis can be done analogously with rescaling x = θ/κγ , and the
solution (4.10) again has Gaussian form with deviation

κ(γ− 1
2 )√

2(1− κ)
;(4.11)

i.e., the width of the peak of the distribution is of order κ(γ− 1
2 ). The approximations

of this subsection are valid only if this width is small compared to π or if γ > 1
2 .

Independently of the linear stability analysis, this confirms the conclusion that as the
attractivity coefficient becomes smaller, making alignment less prominent, the turning
has to become more exact in order for the angular pattern to exist. It is interesting
that the scaling law (4.11) relates to the corresponding result of the linear stability

analysis: if at small σ and κ the inequality σ > aκ
1
2 holds (where a is some constant

of order 1), then the homogeneous distribution is stable and no pattern evolves. If,
on the other hand, the inverse inequality holds, the stability of the constant solution
is broken.
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5. Results of numerical simulations. In this section we present numerical
results in order to complement the analytical ones. The discrete model which we
used for computer simulations is introduced in [8], so we do not repeat the derivation
here. The following system of ordinary differential equations was suggested as an
approximation to the integrodifferential equation (2.4):

∂yi
∂t

(t) = −yi
n−1∑
j=0

n−1∑
k=0

wk,i−j ηi−j yj +
n−1∑
j=0

n−1∑
k=0

wj−i,j−k ηj−k yj yk(5.1)

for i = 0, . . . , n − 1, where yi = f(2πi/n). The vector (ηi)i=0,...,n−1 and the ma-
trix (wi,j)i,j=0,...,n−1 are discretized versions of the functions η and w; e.g., wij =
w(2πi/n, 2πj/n). The periodicity of the functions is reflected by the conditions
ηi = ηi+n and wi+n,j = wi,j = wi,j+n. We solve the ordinary differential equa-
tions with an Euler scheme starting with a randomly chosen periodic continuous
distribution.

For all our simulations we took w(θ1, θ2) = gσ(θ1− v(θ2)) as in section 2.3. In all
cases considered, we observed several common features:

1. A fast symmetrization of the initial distributions was achieved during the first
few time steps. This means that at least a reflection symmetry evolved (on S1) with
reflection points at a distance of π.

2. For large uncertainty of turning σ, solutions converged to the homogeneous
distribution (see [6] for an analytical proof of this fact). Near the bifurcation point
the solutions converged to stationary distributions which have several mild humps.
The number of humps depends on the spectral properties of the turning frequency η
and the turning function v.

3. The smaller the uncertainty of turning σ was, i.e., the more exact the alignment
of two filaments was, the narrower and the higher the peak(s) were in the evolving
angular distribution.

In the first group of simulations we took angle-independent frequency of turning
η = 1/2π.

In the case of attracting turning functions, v(θ) = κ sin(θ) and v(θ) = κθ, and
with σ small enough, the evolving stationary distributions had a single maximum
(Figure 3) (except when the initial distribution had too much symmetry; see section
2.2) even if several eigenvalues besides the first were positive.

The shape of this distribution was independent of the initial conditions, with the
position of the maximum depending on the initial distribution in an unknown way.
Usually the maximum evolved near the biggest hump of the initial distribution: a
concentration of filaments around some direction behaves like an attractor.

In the case of the mixed attracting and repulsing interaction, characterized by the
continuous turning function v(θ) = κ

2 sin(2ψ) (angular convergence at acute angles
and divergence at obtuse angles) and with σ (dependent on κ) small enough, the
solutions converged to a double humped stationary distribution (Figure 4).

For large time the two peaks in the angular distribution had about equal heights.
The angle between the two peaks was close to π. The simulations revealed nontrivial
transitional dynamics of the angular distribution. Already within the first few time
steps, two humps of unequal height evolved. From then on the shape of the solution
did not change significantly. Nevertheless, the two humps grew in height at about
the same rate until the development seemed to slow down at times of order 100 (in
time units). Thereafter, the bigger hump shrank and the smaller one grew very slowly
until the two maxima became almost equal at times of order 1000. The bigger the
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Fig. 3. Total alignment in one direction in the case of an attracting turning function. The
first three eigenvalues are plotted in Figure 3a as functions of the attractivity coefficient κ. The only
unstable mode is the first one. The numerical solution of model equation (5.1) is shown in Figure
3b. For the simulation we used a second-order Euler scheme with variable time steps on 70 grid
points. The initial density (thick dashed line) was generated randomly with total mass equal to 1.
The parameter functions and values are η = 1, v(ψ) = κ

2π
sin(2πψ), κ = 0.5, and σ = 0.05. Then

c1 = 0.12. Note that we scaled the length of S1 to 1.

parameter σ was chosen, the faster the two humps reached equal height (there was
more exchange between the two angular aggregation centers).

Next, we undertook a group of simulations with angle dependent frequency of
turning. The frequency of interaction function was taken to be the periodic Gaussian
η = gρ (fibers interact frequently at small angles), and we have chosen the discontin-
uous turning function v(θ) = κθ describing attracting interaction. The eigenvalues cl
of (12) were calculated numerically. One of the conclusions was that for instability to
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Fig. 4. Pattern of alignment in two directions in the case of mixed attracting/repulsing actin-
actin interaction. Two filaments converge in the angular space if their interaction angle is in the
range (−π

2
, π

2
) ((− 1

4
, 1

4
) at the figure) and diverge if the interaction angle is obtuse. In Figure 4a

the first three eigenvalues are plotted as functions of the uncertainty of turning, σ. Only the second
mode is unstable. The parameter functions and values are: η = 1, (v(ψ) = κ

4π
sin(4πψ), (κ = 0.8,

and σ = 0.04. Note that we scaled the length of S1 to 1. Then c1 = −0.069 and c2 = 0.071. (4b)
For the simulation we used a second-order Euler scheme with variable time steps on 50 grid points.
The randomly chosen initial density (thick dashed line) with mass 1 is shown and the solution at
several times up to time 50 (at which time the solution is shown with the thick line in (4b) and
(4c)). At that time the left peak reaches its maximum. (4c) The higher left peak starts to shrink
while the smaller right peak continues to grow. The solution converges to a stationary distribution
with two peaks of equal height at the mutual angle π.
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Fig. 4. (cont.).

occur, the parameter σ must be smaller than ρ, otherwise the range of interaction ρ is
smaller than the exactness of alignment σ and no pattern can exist. We observed that
as both parameters ρ and σ were decreased, the first mode became unstable first. The
new feature in comparison to the first case was that higher-mode eigenvalues could
become larger than smaller-mode eigenvalues.

Figure 5 shows that even if the second-mode eigenvalue was bigger than the first
one, eventually only a single peak survived though transiently two humps developed.

Indeed, early in the development two humps evolved, one of which usually grew
faster than the other one. The two peaks were approximately at an angle π from each
other, and they coexisted for some time then moved toward each other. At this same
time the smaller peak began to flatten out, while the larger peak slowed down.

If the values of both parameters ρ and σ were very small (providing many unstable
modes), then a large number of approximately equidistantly spaced humps evolved
at the beginning of the simulations. The number of humps depended mainly on the
parameter values and on the initial distribution. The characteristic relaxation times
increased rapidly, and rarely (depending on initial conditions) convergence to the
single peak could be observed.

Finally, we simulated orthogonal alignment choosing η(θ) = 1
2 (gρ(θ− π

2 ) + gρ(θ+
π
2 )) (the filaments interact with high probability if they are orthogonal to each other)
and the continuous turning function v(θ) = −κ2 sin(2θ) (cells converge at obtuse angles
and diverge at acute angles). The numerical simulations showed (in agreement with
the calculations of the eigenvalues of the corresponding stability problem) that four
equally spaced peaks’ distribution evolved (Figure 6).

6. Discussion. The analysis of our model confirms that biologically feasible
types of actin-actin interaction lead to the observed angular patterns. The main
qualitative result of our work is that bifurcation from angular disorder to alignment
occurs when the uncertainty of turning is smaller than some critical value. This critical
uncertainty decreases to zero in cases of both no turning at all and exact exchange.
Also, the model demonstrates how a single equation with quadratic nonlinearities and
turning to “intermediate” angles can provide pattern formation. (The earlier model
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Fig. 5. Alignment to a single direction in the case of an attracting turning function through
transitory states with two peaks in the angular distribution. Figure 5a shows the first three eigen-
values as functions of the uncertainty of turning σ. For small σ three eigenvalues are positive, and
higher-mode eigenvalues may be larger than the first one. All other modes are stable. The parameter
functions and values were η = gρ, ρ = 0.1, v(ψ) = κψ, κ = 0.5, and σ = 0.03. Note that we scaled
the length of S1 to 1. Then first and second modes are unstable: c1 = 0.049, c2 = 0.075. Note that
c1 < c2. (5b) For the simulation we used a second-order Euler scheme with variable time steps on
80 grid points. The initial density with mass 1 is shown with the thick dashed line. Initially two
predominant directions of alignment evolve. At time 28 both peaks reach their maximal height (the
solution at time 28 is shown with a thick line in (5b) and (5c)). (5c) Then the two peaks shrink
while moving toward each other. They merge and a single peak develops. Note that the scaling on
the density axis is different in Figures (5b) and (5c).
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Fig. 5. (cont.).

of [2] gives nontrivial results only with two equations; see also [4].
The distinctive feature of our model is that the physical origin of disorder is

the uncertainty in the angle of turning (caused by the flexibility of the actin-binding
proteins) rather than angle-independent rotational diffusion. Of course, a too-low
amount of actin-binding protein (i.e., w ≈ 1), and, therefore no biased turning, also
leads to disorder.

As long as only one mode is unstable near the constant solution, its number
often predicts the number of directions of alignment or the number of maxima of the
stationary solution which will evolve globally. We confirmed this prediction with the
help of numerical simulations. In fact, a detailed bifurcation analysis [6] shows that
near the first bifurcation, the stationary solution is of the form 1

2π + c1c2
A cos(2πθ),

where c1 > 0 is the eigenvalue of the bifurcating first mode, c2 < 0 is the eigenvalue
of the second mode, and A is a constant. Linear stability analysis and numerical
simulations also agree in the cases of bipolar and orthogonal alignment.

Numerical calculations have shown that the mode which becomes unstable first,
in general, dominates the angular distribution on long time scales even if other modes
are also unstable. We proved the stability of peak-like distributions in the case of
exact alignment, attracting turning mechanism and constant frequency function, η.
We conjecture that (with these assumptions) this peak is the only nontrivial stable
stationary solution and that this holds true also if the frequency function is non-
constant and nonzero everywhere. The second conjecture is that the stability and
uniqueness of the peak-like stationary solution also holds for 0 < σ � 1.

The smaller the turnings are, the more modes are unstable, which makes it hard
to interpret the results of the linear stability analysis. Numerical simulations demon-
strate that in this situation several “aggregation” centers in the angular distribution
develop in the beginning. Later, the neighboring centers can merge. Merging consists
of two processes: drifting of the centers toward each other, and the changing of the
heights of the corresponding peaks. The time scales of convergence to the stable an-
gular distribution may be very large. To treat this problem mathematically one has
to perform a multiscale perturbation analysis. At biologically realistic times, the sta-
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Fig. 6. Formation of four directions of alignment in the case of attraction toward an orthogonal
configuration (specific mixed attracting/repulsing actin-actin interaction). Two filaments converge
in the angular space if their interaction angle is obtuse and diverge if this angle is acute. In Figure
6a eigenvalues for the first five modes are plotted as functions of the attractivity coefficient κ. All
modes except the fourth mode are stable. The parameter functions and values are (gρ is the periodic

Gaussian) η(ψ) = 1
2

(
gρ(2π(ψ − 1

2
)) + gρ(2π(ψ + 1

2
))
)
, ρ = 0.1, v(ψ) = − κ

4π
sin(4πψ), κ = 0.5, and

σ = 0.01. Then c4 = 0.05. We used a second-order Euler scheme with variable time steps on 100
grid points. Note that we scaled the length of S1 to 1. (6b) The randomly chosen initial density
(thick dashed line) with mass 1 is shown as well as the solution at several times up to time 108. At
that time the second peak reaches its maximum. (6c) The second and third peak shrink while the first
and fourth peak continue to grow. The solution converges very slowly to a stationary distribution
with four peaks of equal height at mutual angles π

2
. At times near 6000 all peaks have about equal

mass.
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Fig. 6. (cont.).

ble angular distribution does not have time to evolve. Thus, for a long time, various
quasi-stationary patterns may be observed.

The nature of the transitions between different types of angular order as a re-
sult of a change in the type of interaction (e.g., when the concentrations of different
actin-binding proteins suddenly change) is especially interesting when the underlying
symmetry changes. The characteristic time of transition to the new pattern depends
on the symmetries of the initial and final interactions (and on which of the symmetries
is the higher one). In fact numerical simulations (which we do not present here in
detail) show that the transition from four to two peaks goes through a transitory ho-
mogeneous distribution and is faster than the inverse transition when two new peaks
appear.

Appendix A. The following example is due to M. Stoll [19]. Define

v(θ) =

{
1
2θ for |θ| < Θ,
0 for Θ ≤ |θ| < π.

Figure 7 shows the graphs of Θ 7→ σ̄l(Θ), where cl(Θ, σ̄l(Θ)) = 0 for l = 1, 2, 3, and
Θ 7→ σ̄kl(Θ), where ck(Θ, σ̄kl(Θ)) = cl(Θ, σ̄kl(Θ)) for (k, l) = (1, 2), (1, 3). Straight-
forward calculations lead to explicit formulas for cl(Θ, σ), σ̄l(Θ), and σ̄kl(Θ).

Filaments interact at all angles (because η = const) but they do not turn at
interaction angles larger than Θ. In actual fact the interaction radius is restricted.
Small interaction radius favors the (at least initial) formation of several aggregation
centers. This explains the large higher modes.

Note that this turning function is not attracting, according to the definition.
However, a suitable and sufficiently small (continuous) perturbation of v leads to an
attracting turning function, while the qualitative features of Figure 7 are preserved.



MODEL FOR ORIENTATIONAL DISTRIBUTION OF ACTIN 807

Θ

0

0.02

0.04

0.06

0.08

0.1
σ

1

1,2

2,1

2,1,3
2,3,1

3,2,1

ππ/30 2π/3

Fig. 7. The curves σ̄l for l = 1, 2, 3 (solid lines) and σ̄kl for (k, l) = (1, 2), (1, 3) (dashed
lines) and (k, l) = (2, 3) (dotted line). The turning function is defined in Appendix A, and gσ is the
periodic Gaussian. The numbers denote which mode number is unstable, the numbers’ order shows
the relative size of the eigenvalues (e.g., 2, 1, 3 means that c2 > c1 > c3 > 0).

Appendix B. The explicit solution of (4.4) for an initial distribution f̃0 can be
found in the following way:

f̃(., t) = et(−id+Lv+Lid−v)(f̃0)

= e−t et(Lv+Lid−v)(f̃0) = e−t
∞∑
k=0

tk

k!
(Lv + Lid−v)k(f̃0),

where the second equality holds because id and Lv +Lid−v commute. The definitions
of Lv, Lid−v in (4.5) yield that this generalized function acts on a test function Φ as
follows:

〈f̃(θ, t),Φ(θ)〉 = e−t
∞∑
k=0

tk

k!

∑
γ∈Υ(k)

〈f̃0(θ),Φ ◦ γ(v, id− v)(θ)〉,

where Υ(k) := {γ = (γ1, . . . , γk) ∈ {0, 1}k} is the set of all k-fold permutations and
γ(v0, v1) := vγ1

◦ · · · ◦ vγk .
We will now show that for test function Φ on

〈f̃(θ, t),Φ(θ)〉 → 〈f̃0(θ), θ〉Φ′(0) for t→∞.(B.1)

Taylor expansion of Φ ◦ γ(v, id− v)(θ) in θ = 0, and the facts that 〈f̃0(θ), 1〉 = 0 and∑
γ∈Υ(k) γ(v, id− v) = id yield

〈f̃(θ, t),Φ(θ)〉

= 〈f̃0(θ), θ〉 Φ′(0) + e−t
∞∑
k=0

tk

k!

∑
γ∈Υ(k)

〈
f̃0(θ),

1

2
Rγ(θ)γ(v, id− v)(θ)2

〉
,
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where Rγ is a remainder term with max−π≤θ≤π |Rγ(θ)| ≤ max−π≤θ≤π |Φ′′(θ)| for all
j ≥ 0.

We want to prove that

e−t
∞∑
k=0

tk

k!

∑
γ∈Υ(k)

〈
f̃0(θ),

1

2
Rγ(θ)γ(v, id− v)(θ)2

〉
→ 0 for t→∞.

Because |Rγ | ≤ max |Φ′′| and e−t
∑∞
k=0

tk

k! = 1, it suffices to show that∑
γ∈Υ(k)

γ(v, id− v)(θ)2 → 0 for k →∞ uniformly in θ ∈ [−π + δ, π − δ]

for all 0 < δ < π.
Let 0 ¡ θ < π and u(θ) := max0≤ψ≤θ max{v(ψ), (id − v)(ψ)}. Because v is

attracting, i.e., 0 < v(θ) < θ and 0 < (id− v)(θ) < θ, it follows that 0 < u(θ) < θ and
(uk(θ))k≥1 is monotonically decreasing. Hence uk(θ)→ 0 for k →∞. The definition
of u implies that γ(v, id− v)(θ) ≤ uk(θ) for any γ ∈ Υ(k); hence, γ(v, id− v)(θ)→ 0
for k → ∞ uniformly in γ ∈ Υ(k). Since [0, π − δ] is compact, convergence is also
uniform in θ.

Altogether we have for ε > 0 fixed and k large enough

0
∑

γ∈Υ(k)

γ(v, id− v)(θ)2 < ε
∑

γ∈Υ(k)

γ(v, id− v)(θ) = ε

uniformly in θ ∈ [0, π − δ], and because v is odd, convergence holds uniformly on
[−π + δ, π − δ]. This completes the proof of statement (B.1).
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