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Interactions of multiple molecular motors with bundles of actin and microtubule filaments form

the basis for many cytoskeletal processes including axonal growth, muscle contraction, cell

division and platelet formation. Continuum models based on generalized diffusion equations have

been suggested to quantify the dynamics of such active bundles. In highly cross-linked and

densely packed filament bundles, however, a major complication arises due to the multiple

interactions that each filament forms with its neighbors. To explore the effects of these

interactions, we used detailed computer simulations and studied the bundles with different types

of motors at different densities and boundary conditions. We found that highly cross-linked

bundles exhibit effects of long-ranged interactions that are sensitive to the boundary conditions.

In open bundles, these give rise to ‘telescopic’ patterns resulting in significant acceleration of the

filaments at the edges. In contrast, in ringed bundles, the long-ranged interactions ‘lock’ filaments

and slow down their movements. The filaments in loosely connected bundles, on the other hand,

undergo local diffusion-drift dynamics consistent with previous continuum models. Our

simulations also demonstrate the sorting phenomena in the mixed-polarity bundles and reveal

characteristic scales and conditions for spontaneous pattern formation in the bundle. We discuss

the relevance of our results for cytoskeleton systems such as microtubules in axons, platelet

formation, kinetochore fibers and actin bundles in motile cells.

1. Introduction

The cytoskeleton-intracellular scaffold-largely consists of

microtubules and actin filaments providing lines of transport

and communication in the cell and organizing cell movements

and division.1 Polarity of the cytoskeletal filaments (their

distinctive minus and plus ends) dictates the direction of

motion of the molecular motors. Each motor always ‘walks’

toward the same end of the filament, i.e. dynein-toward

microtubule minus end, kinesin-1-toward microtubule plus

end, etc. The molecular motors are often deployed to transport

vesicles and organelles, as well as to generate forces, in

addition to their participation in self-organization of the

cytoskeletal structures in the cell.2 In some of these processes,

the motors cross-link neighboring filaments and slide them

with respect to each other, as well as deform the filaments and

alter their dynamics.3

Some of the filament-motor structures, such as mitotic

spindle and lamella, are highly complex and multi-

dimensional, while others have a simpler architecture and

are more amenable to theoretical modeling. Here we examine

the sliding dynamics of one-dimensional, microtubule or

actin bundles (Fig. 1). There are multiple examples of the

microtubule bundles in cells.4,5 Of particular interest are the

microtubule bundles that power formation of blood platelets

frommegakaryocytes in bonemarrow.6When the megakaryocyte

reaches maturation, protrusions that consist of dense bundles

of microtubules enveloped by cell membrane are formed; these

bundles, in which hundreds of filaments are cross-linked by

dynein motors, expand to form elongated proplatelet shafts

that eventually branch, taper and break into thousands of

Fig. 1 Schematic illustration of a cross-linked microtubule bundle.

LB is the bundle length and L is the length of each filament. The arrow

of each filament shows the gliding direction of the motor protein on

the filament; for example, for a minus-end directed motor (i.e. dynein)

the arrow points in the minus-end direction of the filament. M is the

total number of potential overlaps between pairs of filaments in

the bundle, and Mb is the number of overlaps that are cross-bridged

by the motors (shadowed in the figure); wb = Mb/M is the fraction of

active overlaps is the bundle. In Fig. 1–3, binding domains at the

motors’ ends are marked with the small disc, while the motor (moving)

domains-with the ellipse.
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newly formed platelets. There is also a growing body of

evidence that similar microtubule-motor expansion is responsible

for growth and maintenance of axons,7 neurites8,9 and nerve

growth-cones.10

More complex microtubule-motor bundles are found in the

mitotic spindle of dividing cells.11 In the so-called inter-polar

bundles, microtubules of opposite polarity overlap at the

spindle ‘equator’ where kinesin-5 motors slide the microtubules

apart, thereby elongating the spindle.12 Kinesin-5 motor is

bipolar, namely, it has motor domains on both ends, so rather

than binding a filament at one end and sliding another

filament with the motor domain at the other end, kinesin-5

symmetrically uses two motor domains to slide both filaments

the motor is in contact with.13 The mitotic spindle consists of

many short microtubules14 densely crosslinked by various

motors, rather than of long filaments that span the entire

length of the bundle. These cross-linked microtubules can slide

on one another in a ‘piggy-backing’ fashion.15

Actin filaments also organize into the bundles cross-linked

by myosin motors and other bundling proteins. Most

notable examples of such bundles are muscle sarcomere and

stress-fiber of an adherent cell.16,17 Less organized contractile

actin-myosin bundles are observed across the motile appendages

of rapidly migrating cells.18 Another ubiquitous and dynamic

acto-myosin bundle is the contractile ring of dividing cells,19–21

in which the actin-myosin bundle has periodic boundary

conditions.

In this paper, we do not focus on a particular biological

process but rather investigate physical properties of the

filament-motor bundles. A number of elegant models have

been suggested for this purpose.12,15,19–26 Many of these

models, however, are limited to dilute concentrations

of motors and to local pairwise interactions between the

filaments. Here we use detailed computer simulations to

examine both low and high motor concentrations and to

explicitly account for the effects of high connectivity of the

filaments in the bundle. Our simulations predict several

interesting phenomena in the dynamic self-organizing

filament-motor bundles. We observe a marked difference in

the dynamics of loosely and highly interconnected bundles—

the latter form long-ranged interactions between the filaments

that can span the entire length of the bundle. This results in a

strong effect of the boundary conditions on the motion of the

filaments. In free and open bundles, ‘telescopic’ patterns form

that cause substantial acceleration of the filaments at the

bundle’s ends. In contrast, in ringed bundles, the long-ranged

motor-induced interactions between the filaments result in

significant slowing down: the motors act as brakes to the

filament sliding. Loosely connected bundles, on the other

hand, exhibit local diffusion-drift dynamics consistent with

previous continuum models. Our simulations also predict a

polarity sorting and periodic pattern formation in mixed

polarity bundles on the slow time scales.

2. Model

We use computer simulations to calculate the dynamics and

self-organization of the one-dimensional filament bundles

cross-linked by the molecular motors. Actin and microtubule

filaments are treated in a similar manner, as providing linear

tracks for the motors. Our approach is intermediate between

detailed molecular-level simulations that explicitly account for

all the motors and filaments in the system26 and continuum

approaches that extend the diffusion-advection equations to

include the motor-driven, active fluxes of the filaments.22–25

The latter provide equations for the evolution of the filament

densities; they successfully capture phenomena unique for

active systems, such as filament sorting, bundle contraction

and aster formation. The continuum approach, however,

usually assumes pairwise interactions between the filaments,

does not account for the dynamics induced in large, inter-

connected filament clusters of filaments, and is therefore

limited to the dilute motor densities. Our coarse-grained

approach keeps track of every filament, but treats the motors

in an averaged way, and allows exploring the filament

dynamics both in loosely and in densely connected bundles.

A Bundle structure

We consider a cylindrical bundle consisting of N polar

filaments, where aL = NL/N and aR = 1 � aL = NR/N are

the fractions of the filaments oriented to the left and right,

respectively. All filaments are of the same length L; the entire

bundle’s length (that is constant in some simulations and can

change in the others) is LB (Fig. 1). We assume that the

filaments are closely packed in a hexagonal array where the

cross-sectional distance between neighboring filaments is

comparable to the size of a cross-linking molecular motor

(B50 nm). For sufficiently high concentration of the motors,

all M overlaps between neighboring filaments will be

cross-linked by the motors. For smaller motor concentrations,

both the fraction of the cross-linked overlaps, wb = Mb/M, as

well as the density of motors (per unit length) bound to the

filaments, l, will be lower. The parameter wb dictates the

connectivity of the filaments in the bundle. For small values

of wb, only pairs of filaments would interact, while for higher

values, larger filament clusters including triplets, quadruplets,

etc., would form. Above a characteristic threshold, wcb, the

bundle becomes mechanically percolated, i.e. interconnected

from one side of the bundle to the other. The threshold value,

wcb, is a geometric property of the bundle that depends on the

length of the filaments and their density (see below).

In order to show how the filament connectivity in the bundle

influences its dynamic properties, wb and l are treated as

constant model parameters. These parameters are mono-

tonically increasing functions of the motor concentration.

Derivation of an exact formula for the dependence of wb and
l on the motor concentration requires additional assumptions

and approximations about the nature of the filament-motor

interactions; these are beyond the scope of the present paper.

In addition, for the most part of this paper, we will be

concerned with the bundles that are not subjected to external

loads. In this case, simulations indicate that the length density

of the motors, l, plays a minor role, while connectivity

parameter wb has a marked effect on the dynamics.

Since the bundle is one-dimensional, the most significant

motion of the filaments is parallel to the principle axis of the

bundle, which we denote as the x-axis. We thus ignore
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stochastic, passive or active, lateral motion of the filaments in

the y � z plane. In the initial bundle configuration, we

randomly place the filaments at various points along the

x-axis and in the y � z plane, so that no filaments ‘collide’

on the same line normal to the y � z plane. During the

subsequent one-dimensional motion of the filaments, however,

it may happen that two filaments collide. Since the exact

location of the filaments in the y � z plane does not influence

the averaged dynamics of the filaments, while the connectivity

between the filaments does, we assume that when two

filaments move past each other on the same line, they can

maintain their interaction with the motors. This simplifying

assumption avoids overly time-consuming calculations and

has no effect on the results.

B Sliding of small filament clusters

We have investigated three types of cross-bridges that can

form in the bundles of cytoskeletal filaments. Two of these

types correspond to unipolar motors having motor domain at

one end and binding domain at another, like dynein and

kinesin-1, and to bipolar motors having motor domains at

both ends, like kinesin-5 and myosin-2, as illustrated in Fig. 2.

Usually the overlap region between neighboring filaments is

large enough to accommodate several motors, so there could

be more than one arrangement of the unipolar motors between

the filaments. In one limit, the orientation of all motors is

correlated, i.e. all motors have their motor domains on the

same filament (Fig. 2a,b); we call this case unipolar. In the

opposite limit, the motors bind the filaments independently of

each other and their orientation is random; each filament will

have an equal proportion of motor and binding domains

attached to it, as illustrated in Fig. 2c,d; we call this case

bipolar. The movement exerted by these two cross-linking

configurations are similar for antiparallel filaments but

different for parallel ones. Oppositely oriented motors in a

cross-link between the parallel filaments exert forces in

opposite directions inhibiting the filament gliding. Between

the antiparallel filaments, the effects of the motors add up no

matter what the orientation of the motors is. Bipolar motors

such as myosin-2 or kinesin-5 that have the motor domains on

both sides also form the bipolar cross-links. The behavior in

this case is similar to that of the uncorrelated unipolar motors

as long as the two motor domains of the same motor exert

their forces in an independent manner. While a bipolar

cross-link consisting of the unipolar motors and one consisting

of the bipolar motors may show a common averaged

force-velocity relation as we illustrate below, they differ in at

least one other respect: bipolar, but not unipolar, motors

translocate between the parallel filaments. This, like other

kinetic factors such as the on- and off-rates of the association

of motors with the filaments, influences the life time of the

cross-linking connection between two filaments. Such effects

are not directly relevant to the present work and are included

implicitly in the values of model parameters wb and l.

C Model equations

Here we derive the equations used to calculate the filament

movements. We assume that each bundle is cross-linked by

only one motor type and that the motors at the filament

overlaps are either completely correlated or randomly oriented

as shown in Fig. 2. For each such overlap, we use a motor

force-velocity relation to calculate the filament velocities. In

the low Reynolds number environment of the cell,27 the

velocity, ~vi, of the ith filament is proportional to the total

force, ~fi, applied to it by all motors connected to this filament:

x~vi = ~fi, (2.1)

where x is the drag coefficient of the filament in the bundle.

Typically, x is higher than the drag coefficient in aqueous

solution due to a weak binding motor-filament interactions in

the bundle that give rise to the so-called protein friction.28 The

drag coefficient value we used, 0.023 pN � sec/mm for

1 mm-long filament, is based on the diffusion constant

measurements in ref. 28. In the simulations, this value was

scaled by the filament lengths. For the bundles, since the motion

is one-dimensional we define ~fi = fi � x̂ and ~vi = vi � x̂.

We assume that the motors stochastically associate with and

dissociate from the filaments frequently, that the motors

occupy the overlapping regions between neighboring filaments

with the uniform density, l, and that the force that the motors

exert is additive and proportional to the total length lij of the

overlap between the neighboring filaments. The mean motor

number at the overlap is thus l � lij. Measurements of the

force-velocity relations for some motors29,30 suggest that the

simplest—linear—relation is a reasonable approximation

describing the motor mechanics. For simplicity, we also

assume that the filament-associated motors share the

load equally31,32 and omit the complex nonlinear effect of

indirect inter-motor interactions. Usually, the drag force

resisting the movement of the 10 mm-long filament,

xvi B 0.2 pN � sec/mm � 0.2 mm/sec B 0.04 pN is much

smaller than the characteristic stall force (in the pN range) of

just one motor. Normally, more than one motor slides each

filament,11 so in the relevant limit, the effective viscous drag is

negligible, and the total motor forces applied to each filament

approximately balance to zero.

To use appropriate force-velocity relations, we have to

distinguish between the different types of cross-links (Fig. 2).

Fig. 2 Schematic illustration of three possible arrangements of

molecular motors in interactions between neighboring filaments.

Upper and bottom rows show parallel and antiparallel pairs of

filaments respectively. Arrows show the direction of filament motion

induced by the motors.
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For the unipolar motors, the binding (‘head’) domain of the

motor will be denoted by h, and the motor (‘leg’) domain—by l.

For any particular motor (e.g., kinesin/dynein), the ‘leg’

always moves toward the same (plus or minus) end of the

filament, which in turn defines the orientation of the filament.

Thus, the walking direction of the motor is the direction of the

filament along the x-axis, n̂i = nix̂ = �x̂. For instance, if

ni = �1 and the motor is minus-end directed, it means that the

minus-end of that filament points in the negative direction of

the x-axis.

(i) Orientationally correlated unipolar motors: we first

consider the case when all motors within each overlap region

are oriented in the same manner, i.e. they have their motor

domains on one filament and binding domains on the other.

Theoretically, this situation is expected when the binding

of the motors to the filaments is highly coordinated and

cooperative, for instance due to steric interactions between

the motors or between the motors and the filaments. While not

much is known about the orientation of motors in the crowded

environment of these bundles, some indirect evidence for such

an arrangement of motors exists, see refs. 33–36. Interestingly,

we show below that the lower symmetry of this type of

interaction gives rise to richer dynamics. For the correlated

unipolar motors, we have the following force-velocity relation:

fi ¼ �llijh fs ni �
vjh � vi

v0

� �
¼ �fjh : ð2:2Þ

In this notation, the subscript jh means that the binding

domains are associated with a neighboring filament j while

the motor domains are connected to the filament i; the factors

fs and v0 are the stall force and free velocity of the motors. The

factor llijh in this formula is responsible for the additive forces

of all motors at the overlap, and the expression in the square

brackets describes the effective force decrease due to the

relative filaments’ sliding in the direction ‘preferred’ by

the motors. For an interconnected bundle with multiple

cross-linked regions of this form we have:

fi ¼ �lfs
X
jh

lijh ni �
vjh � vi

v0

� �

þ lfs
X
jl

lijl njl �
vi � vjl
v0

� �
; ð2:3Þ

where the first sum corresponds to neighboring filaments that

interact with the motors the binding domains of which are

on the ith filament, while the second sum corresponds to

neighboring filaments moved by the motors that interact with

the motors the motor domains of which are on the ith filament.

(ii) Orientationally uncorrelated motors: when the association

of the motor proteins to a pair of neighboring filaments is

independent and orientationally uncorrelated, we sum the

contributions of the two populations of motors in that overlap

region; this leads to the following force-velocity relation:

fi ¼
1

2
llij fs ðnj � niÞ þ

2ðvj � viÞ
v0

� �
: ð2:4Þ

The factor 1/2 reflects the probability of a motor to associate

with either of its ends with each filament. Note that for a

parallel filament pair (nj = ni), eqn (2.4) predicts that if the

filaments do not move relative to each other (vi = vj), then the

motor forces cancel each other, fi = 0. In contrast, in the

correlated motor case, the motors exert significant sliding

forces on a pair of parallel filaments gliding with the

same velocity. For an antiparallel pair, eqns (2.4) and

(2.2) are equivalent. Thus, for antiparallel filaments there is

no difference between the orientationally correlated and

uncorrelated binding cases. Finally, to generalize eqn (2.4)

for a bundle that consists of many cross-linked regions of

orientationally uncorrelated motors, we write:

fi ¼
1

2
lfs
X
j

lij ðnj � niÞ þ
2ðvj � viÞ

v0

� �
: ð2:5Þ

(iii) Bipolar motors: the bipolar motors’ force-velocity relations

are very similar to those of the uncorrelated unipolar motors

assuming that the motors generate forces independently of each

other. If such motor is connected to a pair of filaments, i and j, it

exerts equal and opposite forces fi = �fj on them. Using the

linear force velocity relation for each of the motor domains, we

have: fi = �fs[ni � (vm � vi)/v0] and fj = �fs[nj � (vm � vj)/v0].

We thus find the equation for the velocity of the motor

between two filaments sliding with velocities vi and

vj: vm = 1
2[vi + vj + v0(ni + nj)]. Substituting this formula into

the expression for fi, we find:

fi ¼
1

2
fs ðnj � niÞ þ

vj � vi
v0

� �
: ð2:6Þ

Thus, for a bundle that is cross-linked by the bipolar motors,

we have:

fi ¼
1

2
lfs
X
j

lij ðnj � niÞ þ
vj � vi
v0

� �
: ð2:7Þ

The only apparent difference between the bipolar and

uncorrelated unipolar motors is that bipolar motors slide the

antiparallel filaments with free velocity that is twice as large as

that generated by the uncorrelated unipolar motors. For this

reason, below we discuss only two cases: the correlated

unipolar motors, which we simply call from now on unipolar

motors, and the bipolar motors. The results for the bipolar

and uncorrelated unipolar motors are qualitatively similar.

Some previous models assumed that the motors ‘linger’ at

the filaments’ ends.22,24,25 As a result, the motors with such

properties have a tendency to focus the similar filament ends

together.22 Effectively, this leads to emergence of loose and

dynamic ‘sarcomeres’ in which two or more filaments have, for

example, plus ends in the middle of the cluster and minus ends

sticking out. The bipolar motors then tend to converge many

clusters like that, similarly to bipolar myosin-2 contracting the

actin sarcomeres in muscle and stress fibers. In contrast, in this

paper we implicitly assume that the motors ‘slide off’ the

filament ends without delay upon reaching the ends. As a

result, the individual filaments in our model tend to slide past

each other, and our simulations never produce the contractile

behavior characteristic for some actin-myosin systems that

was captured by some of the earlier models.22

Eqn (2.1) together with eqns (2.3), (2.5) or (2.7) (for each of

the filaments in the bundle) constitute the self-consistent set of

algebraic linear equations for the forces and velocities of the

4824 | Phys. Chem. Chem. Phys., 2009, 11, 4821–4833 This journal is �c the Owner Societies 2009



filaments. The computational procedure underlying the

simulations is as follows: at each computational step, the

inter-filament overlaps are identified for the given bundle’s

spatial configuration, and the fraction of the overlaps

determined by the parameter wb is randomly assigned to be

associated with the motors. Then, a linear solver determines

the velocities of each filament, and the filaments are

propagated along the x-axis by a small distance, vi � dt, where

dt B 0.1 sec is the time step sufficiently small compared to the

characteristic time of the interactions between the neighboring

filaments. We generated the initial filament positions using

a random uniform distribution and simulated the bundle

dynamics for each of these initial distributions for a time

sufficient to detect essential bundle’s behavior. Repeated, this

procedure results in trajectories of the filaments in the bundle

that can be averaged (over the ensemble of initial bundle

configurations and/or time, as described below) providing

quantitative description of the bundle’s behavior.

D Typical interactions in small clusters of parallel filaments

The filament dynamics in large interconnected bundles is very

complex, which is exactly the reason for explicit computer

simulations, so to build intuition for the analysis of the dense

bundles, it is useful to consider small filament-motor clusters

first. Fig. 3 illustrates clusters of three and five parallel

filaments bundled in a cylindrical fashion connected by

the unipolar motors in a number of different ways. In the

appendix, we provide the analytical solutions of the algebraic

eqns (2.1), (2.3) for all these cases.

The most interesting filament-motor clusters in Fig. 3a,d

show an interaction type that we call ‘telescopic’. This special

configuration is defined by three requirements: (1) the whole

bundle is interconnected (there are no two sub-bundles not

connected by the motors to each other), (2) in any sub-cluster

of three filaments, there are only two interconnected overlaps,

and (3) for any filament that is connected to two other

filaments, motors in one of these connections are associated

with the given filament with the binding domain, and in

another connection—with the motor domain. These filament

clusters ‘open’ like ‘telescopes’: the filament in the middle stays

put, two filaments next to it slide to the right and left with the

speed almost equal to the free motor gliding rate, next two

filaments slide in the ‘piggy-backing’ fashion on those two

filaments with similar relative rate, and so on. The calculations

in appendix show that in the absence of the external load and

when the drag on the filaments from the protein friction is

negligible, the filaments at the end of the 3-filament telescopic

cluster (Fig. 3a) slide outward with the free motor speed v0,

while the filaments at the end of the 5-filament telescopic

cluster (Fig. 3d)—with the speed 2v0. It is easy to demonstrate

that in this limiting case (no load and low drag), the velocity

of the filaments in the telescopic cluster of N filaments is

sequentially augmented and linearly graded toward the cluster

edges, so that the filaments at the ends of the bundle spread

out with the speed 1
2(N � 1)v0, several times greater than the

free motor speed.

In the interconnected telescopic clusters, the minimal

possible number of inter-filament overlaps are occupied by

the motors. If additional motors are added, so that all three

pairs in the sub-clusters of three filaments are connected by the

motors (Fig. 3b–c,e–h), then the filaments’ gliding slows down.

For example, if the third motor is added to the 3-filament

cluster, this third motor acts as either ‘soft’ (Fig. 3c) or ‘hard’

(Fig. 3b) brake: in these cases, the speed of the filaments at the

ends slows down from v0 to 2v0/3 and to zero, respectively.

Similarly, just one additional motor slows down the speed of

the edge filaments in the 5-filament cluster from 2v0 to 5v0/3

(Fig. 3h), 4v0/3 (Fig. 3f), v0 (Fig. 3g) and 2v0/5 (Fig. 3e).

Fig. 3 Several examples of small clusters of 3 and 5 parallel filaments. The figure shows the connectivity between the filaments; right diagrams

show a cross-sectional view of the cluster (with arrows denoting the motor domains). Panels a and d show ideal ‘telescopic’ configurations; other

panels show more crowded connections that lead to slower dynamics of the filaments. See the text for details and the appendix for analytical

solutions of the equations of motion for these clusters.
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Comparing the 5- and 3-cluster cases suggests that dense long

filament bundles would still exhibit the telescopic property

only partially diminished by some motors acting as ‘brakes’:

the more filaments there are in the bundle, the more

‘piggy-backing’ effect will lead to the acceleration of the

filaments at the bundle edges. In the following sections, we

show how these considerations are manifested in the dynamics

of the large bundles subject to various boundary conditions.

We emphasize that this telescopic effect is the property of the

unipolar motors; the bipolar motors simply try to equalize

speeds of the parallel filaments.

3. Results of computer simulations

We simulated hundreds of bundled filaments of equal

length L = 10 mm that were initially randomly and uniformly

distributed over the distance of tens to hundreds of microns

in a tightly packed bundle configuration. In all simula-

tions, the total stall force of the characteristic number of

motors per filament was at least an order of magnitude greater

than the effective viscous drag force per filament. In the

computer experiments, we varied (1) initial filament density,

(2) boundary conditions, (3) bundle motor-mediated connecti-

vity, (4) polarity (fraction of left- and right-oriented filaments),

(5) type of motors (unipolar and bipolar). In this section,

we describe the resulting bundle dynamics in all these

different cases.

A Free expansion and sorting of filament bundles

Several characteristic properties of the dynamics and

self-organization of the one-dimensional bundles can be

demonstrated on the simple example of a free expansion of a

mixed-polarity bundle: An equal mixture (NL = NR = 50) of

right- and left-oriented filaments of equal length L = 10 mm,

initially arranged in a short (LB = 20 mm) homogeneously

mixed bundle, was allowed to expand freely. In this simulation,

the bundle is saturated with motors so that all filament

overlaps are cross-linked by motors (wb = 1). The dynamics

of such bundles cross-linked by either unipolar or bipolar

motors are shown in Fig. 4.

The bipolar motors ‘sort out’ the bundle in a very simple

way: filaments of the same polarity do not move relative to

each other, while two sub-populations of the opposite polarity

filaments slide past each other with the constant speed that is

twice the free velocity of the motor domains, 2v0 (Fig. 4a–c).

Fig. 4b shows that the density profile of each filament

sub-population maintains its uniform shape and drifts at the

Fig. 4 Free expansion and spontaneous sorting of the mixed polarity bundles. Besides the ‘snapshots’ of the filament spatial distributions and

velocity fields across the bundle, we also show the plots of: (1) average filament displacement as a function of time defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hxðtÞ2i

q
¼ ð
PN

i¼1ðxiðtÞ � xið0ÞÞ2=NÞ1=2, where xi(t) is the position of the center of the ith filament at time t; (2) average filament velocity as a

function of time defined as hvðtÞi ¼
PN

i¼1 viðtÞ=N, where vi(t) is the velocity of the ith filament at time t; (3) filament density at given times defined as

the number of filaments that have any of their parts in a segment of unit length at given location; (4) velocity density at given times defined as the

number of filaments that have their velocities in the unit velocity interval. a. The average filament displacement
ffiffiffiffiffiffiffiffiffi
hx2i

p
as a function of time for the

two motor types (unipolar in purple, bipolar in orange). The inset shows the average velocity of the left- (blue/cyan) and right- (red/pink) oriented

filaments; lighter colors are for bipolar motors. Panels b (bipolar) and d (unipolar) show the respective filament density plots at several times; the

insets shows simulation snapshots of the bundle at t = 60 sec. Panels c (bipolar) and e (unipolar) compare the velocity distributions at t = 60 sec.

The inset in panel c shows the velocity field at t= 60 sec. Blue/red arrows are for the left/right-oriented filaments; the arrow shows the direction of

movement and its length is proportional to the speed of the filament. All curves are for the high motor density case (wb = 1).
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constant speed (see the narrow velocity distribution of the

filaments in Fig. 4c). The average filament displacements thus

increase linearly with time for tB 70 sec until the sliding stops

abruptly when the bundle is entirely sorted out into two

sub-bundles of parallel filaments with no overlap between

them (Fig. 4a).

The interaction between the filaments moved by the

correlated unipolar motors results in richer dynamics. In this

case, too, the mixed bundle is unstable and is sorted out into

two sub-bundles of parallel filaments (Fig. 4a,d–e). The

relative sliding velocity of the sub-bundles, however, is not

constant: the filaments accelerate up to t B 70 sec and then

decelerate at later times. This observed acceleration of the

filaments at early times is the result of the telescopic expansion

of the bundle, in which the filaments are moving faster near the

edges (Fig. 4e). In the beginning, when the bundle is dense, too

many motor-mediated connections between the parallel

filaments work as ‘brakes’, then partial expansion lowers the

density and makes the number of inter-filament connections

optimal for the telescopic expansion. Yet later, the bundle

density decreases so much that the filaments gradually loose

their contacts with other filaments in the bundle, sliding

becomes infrequent, and the spread slows down. The motion

at later times becomes diffusive (Fig. 4d). The filaments in the

parallel sub-bundles, besides drifting away from the bundle

center, are performing a random walk in one dimension being

actively pushed bidirectionally by the motors, so that the

filament velocity distribution is Gaussian (Fig. 4e).

B Effects of motors density and boundary conditions on

filament dynamics

The previous simple example shows that the filament dynamics

depends not only on the type of the motors and bundle

polarity, but also on the internal structure and connectivity

in the bundle. To understand these dependencies in detail,

we investigate the differences between loosely and densely

connected bundles. We start with the bundles of parallel

filaments, and because bipolar motors have no effect on the

parallel filaments, we only consider the case of the unipolar

motors. To investigate the dependence of the dynamics on the

filament density, we simulated (1) ringed bundles of the

constant lengths with periodic boundary conditions, and (2)

‘free open’ bundles of the constant lengths with absorbing

boundary conditions, so that the filaments crossing the bundle

ends disappear, while new filaments are constantly nucleated

at random positions in the bundle at a rate that guarantees a

constant total number of filaments (Fig. 5c).

Fig. 5 shows the filament trajectories and velocities in these

bundles for various fractions of active (motor-linked) overlaps

and filament densities. As expected, there are no boundary

effects when the motor density is low (wb t 0.1) and only small

clusters of filaments form in the bundle. At these concentrations,

the filaments perform a random walk with long pauses

(Fig. 5b) that result from long periods of no contact with

any motors. These long pauses result in the sub-diffusive

behavior of the filaments (data not shown). The average

Fig. 5 Comparing the filament dynamics in free and open parallel bundles with that in ringed parallel bundles. (a) The average filament speed as a

function of the active cross-bridge fraction, wb, for three values of density (100, 200 and 300 filaments per 400 mm-long bundle), and for two

different boundary conditions. (b) Several typical filament trajectories in the 200-filament bundle for various connectivities and boundary

conditions. (c) Average spatial velocity profiles in free bundles of three different lengths showing the graded filament velocity. (d) Occasional

breaking of closed chains of filaments in dense ringed bundles (wb=0.8) causing rapid spikes of sliding. The average velocity was calculated as in

Fig. 4. The average spatial velocity profiles were computed by recording the velocities of the filaments passing through given locations and

averaging these velocities over long time intervals.
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filament velocities increase linearly with the connectivity

parameter wb and are smaller than the free motor velocities

(Fig. 5a).

At higher motor and/or filament densities, we find a

qualitatively different dynamics once a threshold fraction of

active cross-bridges is reached. This threshold fraction

corresponds to a percolation transition in which inter-

connected clusters of filaments spanning the entire length of

the bundle form. This percolation threshold is a geometric

property of the three-dimensional hexagonal organization of

the filaments in the y � z plane and their spread along the

x-axis. The numerical value of the threshold fraction depends

on both the length density of the filaments, N/LB, and on the

filament length. We find that wcb varies from B0.2 for

300 filaments to B0.4 for 100 filaments. For comparison,

the bond-percolation threshold is 0.34 for a two-dimensional

triangular lattice and 0.25 for a three-dimensional cubic

lattice.37

When wb 4 wcb, the behaviors of the open and closed (ringed)

dense bundles are drastically different. In the free bundle

with open edges, the filaments expand rapidly, with speeds a

few-fold greater than the free motor speeds (Fig. 5a). The

average filament speed increases as a function of both the

filament and motor density (Fig. 5a), however, this increase is

smaller when the densities become too high (Fig. 5a) because

too many motors work as brakes in very dense bundles.

Fig. 5b,c shows that the speed of individual filaments

increases toward the bundle ends, that the speed is graded

approximately linearly across the bundle, and that the

maximal velocity at the bundle ends increases with the bundle

length. These effects result from the telescopic interactions that

develop in the highly connected bundles. Small nonlinearities

of the velocity profiles seen most prominently in the long

bundles (Fig. 5c) stem from the lower filament density near

the edges.

In the ringed morphology, the filaments form closed circular

chains at wb 4 wcb. The filaments movements becomes

significantly slower than those in the open bundles

(Fig. 5a,b). Above the percolation threshold, the average

filament speed does not depend on the filament density and

decreases with wb (when more connections ‘lock’ the filament

chains together). Fig. 5d shows an interesting behavior of the

dense ringed bundles of parallel filaments: once in a while, the

closed interconnected filament chains get disconnected at

random positions and open up. These transient events

(appearing as speed spikes in Fig. 5d and as jumps of the

individual filament trajectories shown with the arrow in

Fig. 5c) lead to very brief episodes of rapid filaments’ gliding.

While these events are aperiodic and infrequent, they are

typical for the dense parallel ringed bundle.

Fig. 6 summarizes the dynamics of the mixed bundles with

unipolar motors in open and ringed geometries for high and

low motor densities. After a short equilibration period

(B200 sec), the filament velocity distribution reaches a

quasi-steady state. (We show below that for low-density

bundles, the velocity decrease afterB100 min due to a peculiar

pattern formation.) As expected, for low values of wb, the

motion of the filaments is independent of the boundary

conditions: the velocity distributions are essentially the same

in the open and ringed bundle (Fig. 6b,d). The filament

velocities are independent of the location. The variance of

the velocities is high, but most of the left/right-oriented

filaments glide to the right/left.

In contrast, at high motor densities, the behavior is

drastically different in the ringed and open bundles

(Fig. 6a,c). In the open bundles, the velocity distributions of

the filaments are wide and flat, while in the ringed bundle, they

are peaked around �v0/2. In the dense open bundles, filaments

of the same orientation organize into two telescopic sub-bundle

expanding in the linearly graded way (Fig. 6c), so that the

filament velocities are proportional to the distance from the

center of the bundle. In contrast, in the ringed bundle, these

two sub-populations are locked together. In addition, in both

geometries, two sub-bundles glide relative to each other with

the free motor velocity.

Dynamics of the mixed bundles cross-linked by the bipolar

motors is shown in Fig. 7. Unlike for the unipolar motor

Fig. 6 Dynamics in ringed and open mixed polarity bundles of length

LB = 400 mm with NR = NL = 200 filaments cross-linked by the

correlated unipolar motors. Upper panels show velocity distributions

for all filaments averaged over time and space; lower panels show

time-averaged velocity profiles along the x-axis computed as described

in Fig. 5. Blue/cyan colors are for left-oriented filaments; red/pink

colors are for right-oriented filaments; the lighter colors are for the

ringed bundles. The calculation of the velocity distributions included

only filaments that have at least one motor-mediated connection to

other filaments and excluded all those filaments that are unconnected

and thus stationary in the bundle. At low cross-bridge densities (right

panels), there is no difference between the two bundle geometries.

Right oriented filaments (red/pink) move mainly to the left and left

oriented filaments (blue/cyan) move mainly to the right. For densely

interconnected bundles (left panels), there is a profound influence

of the boundary condition on the filament dynamics. The ring

morphology of the bundle results in significantly slower motion of

the filaments. In contrast, in the free bundle the velocity distribution is

wide and flat (a) and the velocity profile is graded along the bundle

axis. Interaction between antiparallel filaments leads to an average

difference of v0 between the two sub-populations of filaments. In

addition, in the open bundle, the filaments expand in spatially graded

telescopic fashion.
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bundles, no telescopic interactions develop because parallel

filaments do not move relative to each other, so there is no

significant effect of either geometry or motor density on the

filament movements. The only ‘trivial’ effect is that at lower

motor densities, a greater fraction of filaments is unconnected

to other filaments and so the average velocity of the filaments

decreases. On the average, left/right-oriented filaments glide to

the right/left; there is no dependence of the velocities on the

location in the bundle. Interestingly, the insets in Fig. 7a,b

show that the mean velocities slow down with time on the

scale of tens of minutes. This effect is a consequence of the

filament sorting and formation of parallel clusters of filaments

(discussed in detail below) that can no longer be moved by the

bipolar motors.

C Effective diffusion and drift in loosely connected bundles

In the loosely connected bundles, where the fraction of active

overlaps between the filaments is smaller than the percolation

threshold, wb o wcb, only small interconnected filament clusters

form transiently, and the dynamics is independent of the

bundle geometry. In this case, we observed that the individual

filaments undergo effective drift and diffusion (Fig. 8). We

focus here on the bundles with the unipolar motors where

the dynamics is more interesting and use periodic boundary

conditions to ensure a constant average filament density.

Fig. 7 Dynamics in the mixed bundles powered by the bipolar

motors. All parameters and averaging are the same as in Fig. 6. Upper

panels show averaged velocity distributions and lower panels show

velocity profiles along the x-axis 2 min after the simulation started.

Blue/cyan colors are for left-oriented filaments and red/pink colors for

right-oriented filaments; the lighter colors are for the ringed bundles.

The insets in panels a,b show slow decrease of the filament movements

due to formation of the polarized domains.

Fig. 8 Diffusion-drift dynamics of loosely connected bundles with the unipolar cross-bridges. (a) The average filament displacement as a function

of time for various mixtures of right and left oriented filaments. The inset shows this function for a parallel bundle in the first 300 seconds; dashed

line is a fit to eqn (3.8), solid line is the fit to the Einstein relation, hx2Li= 2Dt. (b) The drift coefficient as a function of the polarity ratio for various

values of the parameter wb. The drift increases with wb as seen in the inset. (c) Typical velocity distributions of the right- (blue) and left-(red)

oriented filaments in the mixed bundle (aL = aR =0.5) and of all filaments in the parallel bundle for wb =0.15. In the parallel bundle, the filaments

move bidirectionally and the distribution is symmetric. In the mixed bundle, right/left-oriented filaments move mainly to the left/right. (d) The

velocity correlation function Cv(t) = h(vL(t) � �vL)(vL(0) � �vL)i/h(vL(0) � �vL)
2i as a function of time for various values of the polarity ratio and for

wb = 0.15. (e) Effective diffusion coefficient as a function of wb. (f) Typical velocity distributions in the parallel bundles for various values of wb.
(g) The velocity correlation function in the parallel bundle as a function of time for various values of wb.
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Fig. 8a shows the average filament displacement as a

function of time for four cases of the bundle polarity:

{aL,aR} = {0.0,1.0},{0.1,0.9},{0.3,0.7},{0.5,0.5}. For all these

cases, we found that the following expression:

hx2Li ¼ 2Dt 1� tC
t
ð1� e�t=tCÞ

h i
þ �v2L t

2 ð3:8Þ

fits very well the average left-oriented filament displacement

obtained from the numerical simulations (Fig. 8a) indicating

that effectively the filaments undergo the superposition of drift

with the constant rate �vL and diffusion characterized by the

constant diffusion coefficient D. An equivalent equation holds

for the right-oriented filaments, with a different drift velocity.

The average drift velocities of the right- and left-oriented filaments

obey the following relation: aL�vL = aR�vR, so there is no average

filament flux in the mixed-polarity bundle. Thus, in an uneven

mixture of filaments, the filaments in minority effectively drift

unidirectionally by interacting mainly with oppositely oriented

filaments. In contrast, the filaments in majority mainly interact

with alike filaments, and their motion is essentially diffusive.

Fig. 8c shows the velocity distributions in the bundles.

Fig. 8b shows the mean filament speed as a function of the

fraction of the filaments of this polarity in the bundle. We find

the linear relation between the speed and polarity: �vL/v0 =

v0L(1� aL), where v
0
L is an increasing function of the fraction of

active overlaps in the bundle, wb. This numerically established

linear relation supports assumptions made in the earlier

models.22

In eqn (3.8), parameter tC is the sliding correlation time,

which turns out to be approximately equal to 30 sec (Fig. 8d):

for approximately 30 sec, the filaments persistently slide past

each other until they engage with other filaments and change

their velocity. The correlation time is independent of the

polarity ratio a and of the parameter wb (Fig. 8d,g). We found

in the simulations that tC B L/v0 (data not shown), so the

correlation time increases with the filament length and

decreases with the free motor velocity.

For times longer than tC, the filaments perform a

one-dimensional random walk. We found that the filaments’

effective diffusion coefficient,D, is of the order of L � v0, so it is

an increasing function of the filament length and free motor

velocity. The diffusion coefficient also increases with the bundle

connectivity wb (Fig. 8e) due to the increase of the width of the

velocity distribution in larger interconnected filament clusters at

higher connectivity (Fig. 8f). The magnitude of the effective

diffusion coefficient is D B 0.1 mm2/sec for L = 2 mm and

v0 = 0.2 mm/sec. This value is comparable to the thermal

diffusivity of a 2 mm-long free microtubule in an aqueous

solution;28 of course, the stochastic motion of a filament in a

bundle is not due to the thermal agitation, but results from the

motor-generated sliding. Note that while the thermal diffusion

decreases with the filament length, the effective motor-dependent

diffusion increases with L.

The diffusion-drift dynamics of individual filaments

predicted by the simulations are consistent with the Langevin

model:38

dv

dt
¼ � v

tC
þ �v

tC
þ fr ð3:9Þ

with the random force fr. From the solution of the Langevin

equation38 one can derive eqn (3.8) and the exponential decay

of the velocity correlation function.

D Filament sorting and pattern formation in the bundle

As noted above, when we investigated the velocity distributions,

we noticed that the quasi-steady state distributions evolved on

the scale of minutes, but then very slow changes in the filament

positions and velocities began to emerge on the scale of tens of

minutes. To understand these processes, we simulated long

filament bundles for a few hours (of real, not computational

time). We used the periodic boundary conditions, but the open

bundles behaved similarly (data not shown). The results

exhibited in Fig. 9 demonstrate the unexpected phenomenon

of the spontaneous pattern formation: on the scale of tens of

minutes, periodically arranged unipolar domains of filaments

started to emerge in the bundles where equal fractions of the

right- and left-oriented filaments were initially uniformly mixed.

To trace the domain growth dynamics, we calculated the

spatial polarity correlation function Cn(d) = hn(d)n(0)i where
the average is taken at a given time over all filaments in the

bundle and for all of hundreds of simulated bundles. Here d is

the distance along the x-axis between each given filament and

any other filament in the bundle; n = �1 is the respective

filament polarity. Typical plots of the polarity correlation

function are shown at consecutive times as insets in Fig. 9.

These plots demonstrate that for both loose and dense bundles

with the bipolar motors and loose bundles with the unipolar

motors, the polarity correlation is positive for small distances,

negative for greater distances, and then the filaments get

uncorrelated at yet greater distances. This behavior implies

that, on average, any filament in the bundle is surrounded by

similarly oriented filaments in its vicinity and by oppositely

oriented filaments at longer distances. The first zero of the

correlation function is the average size of the unipolar filament

domain, or the pattern period.39 The characteristic size of the

unipolar domains is a few tens of microns (few filament

lengths), and it grows with time in a sub-linear manner

(Fig. 9). Tracing the evolution of this period with time allows

us to calculate the growth rate of the unipolar domains

(Fig. 9).

For the low unipolar motor density (Fig. 9a), this pattern

formation can be explained qualitatively as follows: inter-

actions between the antiparallel filaments give rise to the

relatively fast local sorting of the filaments by their polarity,

as in Fig. 4. Then, interactions between the parallel filaments

in the unipolar domains result in a slower diffusive motion that

gradually increases the domain size. Whenever a filament of

the opposite polarity moves into such domain, this filament

rapidly slides to the neighboring domain—this keeps the

polarity separation. The plots of the correlation function

Cn(d) show that the domains grow sub-linearly with time,

hdi B t0.65. Interestingly, a similar characteristic time

dependence with a power law of t2/3 is known in the process

of spinodal decomposition in unstable liquids or solids in the

inertial regime, where de-mixing happens spontaneously

throughout the system.39 In contrast, densely connected

bundles (wb = 0.8) with the unipolar motors remain
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homogeneously mixed and no ordering is observed as seen in

Fig. 4b. The explanation for this behavior relies on the

formation of the long-range telescopic interactions. These

interactions result in global correlations of the filaments across

the whole bundle, which, as far as the filament polarity is

concerned, mixes the bundle.

Similarly, the bundles with the bipolar cross-bridges

(Fig. 4c,d) self-organize into the periodic patterns, alas at

both small and high motor density, because in this case the

telescopic interactions do not form as the bipolar motors do

not exert forces on the parallel filaments. For the same reason,

the bipolar motors do not generate the effective diffusion

within the unipolar filament domains, so the domain size

increases much slower with time in this case (as Bt1/3 for the

loose bundles compared to Bt2/3 for the unipolar motors).

The rate of the domain size increase grows with the bundle

connectivity wb (Fig. 4c,d) because in the denser bundles more

motors shuffle the filaments more vigorously.

4. Discussion

Our computational study predicts the rich variety of dynamics

exhibited by the filament-motor bundles. First, when the

bundles are ‘loose’ (less than 25–30% of the overlaps between

the neighboring filaments are cross-linked by the motors), the

filaments undergo effective diffusion and drift. We find that the

drift rate for a given filament is the linear function of the

density of the opposite polarity filaments, which supports the

assumption of the quasi-local continuous approach pioneered

in ref. 22. The drift rate increases with the connectivity of the

bundle. Our theory gives the estimate of the effective diffusion

coefficient resulting from the active motor sliding, which is of

the order of the motor speed multiplied by the filament length,

and is not sensitive to the bundle density and polarity.

This estimate gives a mechanistic support to the earlier

phenomenological theories.

Second, our simulations demonstrate the nonlocal behavior

of the dense bundles not captured by the earlier models. We

predict that when more than 25–30% of the overlaps between

the neighboring filaments are cross-linked by the motors, the

percolation transition takes place, and the whole bundle

becomes interconnected. In this case, drastically different

behaviors are exhibited by the bundles with free ends and by

the bundles closed into a ring, and in the cases of the uni- and

bipolar motors. For the ringed bundles, any type of motors

simply ‘lock’ the filaments in two sub-bundles of the left- and

right-oriented filaments, and then these two sub-bundles

slide relative to each other with the free motor speed.

Same behavior occurs in the open bundles cross-linked by

the bipolar motors. However, a novel phenomenon of the

‘telescopic’ expansion takes place in the open bundles

cross-linked by the unipolar motors that bind in the same

Fig. 9 Polarity sorting and domain formation in the mixed polarity bundles. 800 mm-long bundles consisting of NL = NR = 200 filaments were

simulated with periodic boundary conditions. The panels show the bundle configurations (a,b—unipolar, c,d—bipolar motors; a,c—loose,

b,d—dense bundles) evolved in 1.5 hour from the initial random uniform filament distribution. The upper parts of the panels show the projections

of all filaments onto the x � z plane. Each bar represents a 10 mm-long filament (blue/pink code the left/right-oriented filaments, respectively). Small

arrows represent the active cross-bridges (blue/yellow arrows stand for the unipolar/bipolar motors, respectively). The lower parts of the panels show

the average lengths of the unipolar filament domains (pattern period calculated from the correlation function, see text) as functions of time. The insets

plot the polarity correlation function as a function of the inter-filament separation d for every 200 sec (changing from cold to hot colors).
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orientation within each inter-filament overlap. In this case,

each sub-bundle of the parallel filaments expands rapidly, and

the filament velocities are increasing linearly in space from the

center of the bundle outward. Due to the ‘piggy-backing’

effect,15 the filaments near the edges of the bundle can slide

with rates that are much greater than the speeds of the

individual motors.

Finally, our simulations make important novel prediction

about the self-organization and sorting phenomenon in the

mixed-polarity bundles that takes place on the scale of the tens

of minutes. The simulations suggest that a homogeneous

mixture of the filaments of the opposite polarity is unstable,

and that the bundle spontaneously sorts out to form periodic

clusters of filaments of the opposite polarity, because any

antiparallel filament is rapidly moved by the motors into the

neighboring opposite cluster, while the parallel filaments

within the cluster move relative to each other slowly. Never-

theless, even parallel filaments disperse; as a result, the period

of the pattern, which is initially equal to a few filament lengths

slowly, in a sub-linear way, increases.

This pattern vaguely resembles the periodic structure of the

actin-myosin stress fibers, and there is a possibility that the

predicted phenomenon is a part of a gamut of processes

responsible for the stress fiber organization. We emphasize

again that we did not test the possibility of the motors

‘lingering’ at the filament ends. Earlier models22 established

that in that case a contraction of the bundle (behavior

not captured by our theory) is possible due to transient

quasi-sarcomere structures in the bundles.

The existent experimental data is not detailed and quantitative

enough for a detailed comparison of the simulations with the

experimental results. Many types of, for example, microtubule

bundles in cells are known, both consisting of parallel

(in neurons7 and kinetochore fibers15) and mixed-polarity

(in dendrites40 and in the proplatelet shafts6). In most cases, it

is unclear how many types of motors cross-link the bundle, and

what are the errors and artifacts of the velocity measurements.

However, there are some early indications that soon the

quantitative experiment/theory comparison will be possible. A

narrow velocity distribution in the ringed bundles has been

reported recently for the annular microtubule bundles in blood

platelets,41 as predicted by our theory. On the other hand, a

wide velocity distribution in the open bundles of the mitotic

spindle has been observed,12 again in agreement with one

of our predictions. Perhaps in the future some other detailed

predictions, such as the estimates of the effective diffusion and

drift rates and bursts of gliding in the ringed bundles, can

be tested.

Before such tests take place, however, our model has

to include a number of factors omitted in this study for

simplicity. First, the cell biological bundles consist of the

filaments of variable lengths, and there are indications

of a qualitatively different behavior among long and short

sub-populations.7 Second, usually the filaments turn over

relatively rapidly.42 Third, the bundles are often subject to

the external forces—for example, we did not consider the

possibility that the ringed bundle expands or contracts (like

in the cytokinetic ring), because to make such simulation

meaningful, one has to consider the physical effects of

curvature, cell cortex tension, etc. Last, but not least, some

of the motors are very likely to connect the bundles to other

cytoskeletal structures in the cell, and usually more than

one type of motors cross-link the filaments. Despite these

limitations, our model is the step necessary for mechanistic

understanding of the cytoskeletal dynamics.

Appendix

We provide here the closed-form expressions for the velocities

of the filaments in the clusters of Fig. 3. In the equations

below, all velocities marked with the tilde sign are scaled by

the free motor velocity, v0. We assume that all overlaps

between filaments are of the same length, l, and have the same

density of motors, l, and thus Fs = llfs.
Three-filament clusters:

Panel a: ~v1 ¼ � ~v3 ¼ Fs�fex
Fsþxv0, ṽ2 = 0. In the limit xv0/Fs - 0:,

~v1 ¼ � ~v3 ¼ Fs�fex
Fs

, v2 = 0.

Panel b:

~v1 ¼ � ~v3 ¼ � fex
3Fsþxv0, ṽ2 = 0. In the limit xv0/Fs - 0:,

~v1 ¼ � ~v3 ¼ � fex
3Fs

, ṽ2 = 0.

Panel c:

~v1 ¼ � ~v3 ¼ 2Fs�fex
3Fsþxv0, ṽ2 = 0. In the limit xv0/Fs - 0:,

~v1 ¼ � ~v3 ¼ 2Fs�fex
3Fs

, ṽ2 = 0.

Five-filament clusters:

Panel d:

~v1 ¼ � ~v5 ¼ ðFs�fexÞð2Fsþxv0ÞF2sþ3xv0Fsþx2v20
, ~v2 ¼ � ~v4 ¼ FsðFs�fexÞ

F2sþ3xv0Fsþx2v20
, ṽ3 = 0.

In the limit xv0/Fs - 0:, ~v1 ¼ � ~v5 ¼ 2ðFs�fexÞ
Fs

,

~v2 ¼ � ~v4 ¼ Fs�fex
Fs

, ṽ3 = 0.

Panel e:

~v1 ¼ � ~v5 ¼ � fexð2Fsþxv0Þ
5F2sþ5xv0Fsþx2v20

, ~v2 ¼ � ~v4 ¼ � Fsfex
5F2sþ5xv0Fsþx2v20

,

ṽ3 = 0.

In the limit xv0/Fs - 0:, ~v1 ¼ � ~v5 ¼ �2fex
5Fs

, ~v2 ¼ � ~v4 ¼ � fex
5Fs

,

ṽ3 = 0.

Panel f:

~v1 ¼ � ~v5 ¼ �ð2Fs�fexÞð2Fsþxv0Þ3F2s�xv0Fs�x2v20
, ~v2 ¼ � ~v4 ¼ � Fsð2Fs�fexÞ

3F2s�xv0Fs�x2v20
,

ṽ3 = 0.

In the limit xv0/Fs - 0:, ~v1 ¼ � ~v5 ¼ �2ð2Fs�fexÞ
3Fs

,

~v2 ¼ � ~v4 ¼ �2Fs�fex
3Fs

, ṽ3 = 0.

Panel g:

~v1 ¼ � ~v5 ¼ Fsð3Fs�4fexÞþðFs�fexÞxv0
3F2sþ5xv0Fsþx2v20

,

~v2 ¼ � ~v4 ¼ � Fsðfexþxv0Þ
3F2sþ5xv0Fsþx2v20

, ~v3= 0.

In the limit xv0/Fs - 0:, ~v1 ¼ � ~v5 ¼ 3Fs�4fex
3Fs

,

~v2 ¼ � ~v4 ¼ �fex3Fs
, ṽ3 = 0.

Panel h:

~v1 ¼ � ~v5 ¼ Fsð5Fs�4fexÞþðFs�fexÞxv0
3F2sþ5xv0Fsþx2v20

,

~v2 ¼ � ~v4 ¼ � Fsð2Fs�fexþxv0Þ
3F2sþ5xv0Fsþx2v20

, ~v3= 0.

In the limit xv0/Fs - 0:, ~v1 ¼ � ~v5 ¼ 5Fs�4fex
3Fs

,

~v2 ¼ � ~v4 ¼ 2Fs�fex
3Fs

, ṽ3 = 0.
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