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Abstract We combine the physics of gels with the
hydrodynamics of two-phase fluids to construct a set of
equations that describe the hydration dynamics of
polyelectrolyte gels. We use the model to address three
problems. First, we express the effective diffusion con-
stants for neutral and charged spherically distributed
gels in terms of microscopic parameters. Second, we use
the model to describe the locomotion of nematode
sperm cells. Finally, we describe the swelling dynamics
of polyelectrolyte gels used for drug release.
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Introduction

Gelatinous materials are ubiquitous in nature, from the
cell walls of bacteria (Burge et al. 1977) to the human eye
(Elliott and Hodson 1998). They find practical applica-
tions in fields as diverse as micromachines and drug
delivery (Cornejo-Bravo et al. 1995; Siegel et al. 1988).
The theory of gel swelling has a long history, beginning
with the early work of Flory and Katchalsky (Flory
1953; Katchalsky and Michaeli 1955). More recently,
Tanaka and colleagues have addressed the mechanical
aspects of gel swelling by treating a neutral gel as a linear

elastic solid immersed in a viscous fluid (Tanaka and
Fillmore 1979; Tanaka et al. 1973). Although they ne-
glected the motion of the fluid solvent, the model rea-
sonably explained swelling of a gel to a nearby
equilibrium volume fraction. Subsequent studies relaxed
the constraint of linear elasticity by appealing to a free
energy for the polymer mesh and defining the divergence
of the stress as the functional derivative of this energy
(Durning and Morman 1993; Maskawa et al. 1999;
Onuki 1989; Sekimoto et al. 1989; Yamaue et al. 2000).
Most of these works still neglected the fluid flow that
must accompany swelling. Wang et al. (1997) added in
fluid flow by application of two-phase flow theory;
however, they considered only the regime of small
polymer volume fractions and small gradients in the
volume fraction. Durning and Morman (1993) also used
continuity equations to describe the flow of solvent and
solution in the gel, but used a diffusion approximation
with a constant diffusion coefficient to obtain the fluid
motion. This assumption does not treat the dynamics of
the fluid and the gel on an equal footing, and so it only
roughly approximates the viscous drag coupling between
the fluid and the polymer. They also proposed a free
energy picture that did not include charged gels. Finally,
there is a sizeable literature treating the swelling of
polyelectrolyte gels in the context of cartilage mechanics.
Several authors have used multiphasic fluid models in
this setting that include osmotic effects (Gu et al. 1998;
Lai et al. 1991; Lanir 1996). Lanir (1996) derived a
constitutive relation for polyelectrolyte gels; however, he
did not treat the dynamics of the gel. Lai et al. (1991)
derived dynamic equations similar to those we derive
here using a triphasic theory that also accounts for the
flow of salt ions. This treatment, though rigorous in its
derivation of the dynamic equations, treats the free en-
ergy as a phenomenological function and derives a stress
that is only valid for small deformations. Moreover, the
energy is treated as a function of strain rather than a
functional of position.

In this paper, we draw on the work cited above to
unite gel mechanics with two-phase fluid dynamics. The
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resulting model provides a dynamic description of gel
hydration that is suitable for addressing several situa-
tions of biological interest. We derive the hydration
dynamics of a polyelectrolyte gel immersed in a coun-
terion fluid by combining a Flory-type free energy
functional with two-phase fluid dynamics. This model
enables us to compute the stresses that act within the gel
and to describe the motion of the gel and of the solvent.
We apply this model to provide a novel description for
the crawling of nematode sperm, and to describe the
swelling dynamics of medically important gels from the
dry state to equilibrium. Most of the conservation and
constitutive equations of the model have appeared in the
literature before; however, our derivation of the model is
simpler than others, and is more suitable for the bio-
logical applications we address.

Methods

A model for polyelectrolyte gels

A polyelectrolyte gel is a charged, cross-linked polymer network
immersed in a fluid. Let / denote the volume fraction of the
polymer, so that in a unit volume of the gel a fraction of the
space, /, is occupied by the polymer and the remaining space is
fluid, (1)/). The total density of a unit volume of the system is
q=/qp+(1)/)qf, with qp and qf the density of the polymer and
the fluid, respectively. The positions of material points of the
polymer are given by the vector X, and we define the initial
position of those points at time t=0 by xinit. The vector
u=X)xinit defines the displacement of polymer subunits from the
initial position. Each of the components obeys a continuity
equation:

@ /qpð Þ
@t ¼ �rX � /qput

� �

@ ð1�/Þqfð Þ
@t ¼ �rX � ð1� /Þqfvð Þ

ð1Þ

where ut ” ¶u/¶t is the polymer velocity, v is the fluid velocity, and
rX is the gradient operator with respect to the positions X. Using
Eq. (1), and assuming that the fluid and polymer are incompress-
ible (qf=constant, qp=constant), gives the conservation equation:

rX � /2ut þ 1� /ð Þ2vð Þ ¼ 0 ð2Þ
As the polymer moves, the polymer volume fraction will change

from its initial value, /init ” /(t=0). The following geometrical
relationship between /, /init, and u is derived in Appendix A:

/
/init

¼ det Î þ @u
@xinit

� �
ð3Þ

where Î is the identity matrix. In this paper, we define the swelling
ratio as the ratio of the initial polymer volume fraction to its final
value: /init//. Equations (2) and (3) describe the kinematics of the
two-phase polymer–fluid system.

We shall treat only situations where the Reynolds number is
very low, so that the inertia of the polymer and the fluid are neg-
ligible compared to the drag forces between them. Therefore, to
describe the motion of the gel, we construct a force balance on each
phase, with the constraint that the viscous drag between the solid
and fluid phases are equal and opposite. For the fluid phase we
write a Stokes-like equation (Happel and Brenner 1986):

f v� utð Þ
|fflfflfflfflffl{zfflfflfflfflffl}

Drag force between
fluid and gel

¼ grX �
rX vþrX vT

2

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fluid shear stress

� rX p
|ffl{zffl}
Fluid

pressure gradient

ð4Þ

Here f is the drag coefficient between the polymer and the fluid, g is
the fluid viscosity, and p is the fluid pressure. This equation ex-
presses the balance between the force per unit volume acting on the
fluid component and the drag force per unit volume that acts be-
tween the fluid and polymer. The first term on the right side is the
fluid shear, and the second term is the hydrostatic pressure, which
we will later relate to the gel osmotic pressure. When the fluid shear
term is negligible, it is equivalent to Darcy�s law.

We model the polymer mesh as a deformable elastic substance
and write its equation of motion as a balance between the viscous
drag force and elastic force:

f 2ut � 2vð Þ ¼ 2f p ð5Þ

where f is the same drag coefficient as in Eq. (4), and fp is the force
per unit total volume that acts on the polymer. Adding Eqs. (4) and
(5), we find that:

rx � rT ¼ rx � rp �rxp þ grx �
rxvþrxvT

2

� �
¼ 0 ð6Þ

where rT=rp)pÎ+gðrx2vþrx2vTÞ=2 is the total stress and we
have used that the force per unit volume that acts on the polymer is
related to the polymer stress, rp, by 2f p ¼ r � rp. Equations (4)
and (5) are coupled because the hydrostatic pressure that acts on
the fluid is a function of the stress on the polymer. The coupling is
dictated by the volume conservation equation. To complete the
equations of motion we require an expression for the force per unit
volume acting on the polymer, f p.

In the literature, the polymer force per volume has been defined
either as the divergence of a polymer stress, or the functional
derivative of the free energy with respect to position (Onuki 1989).
We shall follow the latter strategy:

2f p ¼ rx � rp ¼ � /
/init

dF
dX

ð7Þ

where rp is the polymer stress tensor, F is the free energy, and d/dX
is the functional derivative with respect to X. The free energy of the
gel is the sum of four effects: the gel swells due to (1) the entropic
diffusion of its constituent chains and (2) their counterions; swelling
is countered by (3) the elastic forces in the chains and (4) inter-
chain attractive forces:

F ¼ Fmix þ Fion|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Expansion

þ Fel þ Fint|fflfflfflfflffl{zfflfflfflfflffl}
Contraction

ð8Þ

Figure 1 illustrates these effects in a cartoon. In this model, we
do not directly account for the electrostatic repulsion of fixed
charges on the polymer; however, when the ion diffusion is fast
compared to the dynamics of the polymer and the bath ionic
strength is low, the electrostatic effects do not contribute to the
total free energy (see Appendices B and C). In Appendix B we give
explicit expressions for each of these terms. The expression for rp

that results from taking the functional derivative of Eq. (8) is de-
rived in Appendices B and C. [These model equations are similar to
those derived for two-phase fluid flow without elastic forces derived
by He and Dembo (1997) and also the triphasic theory developed
by Lai et al. (1991).] The model gel is described by Eqs. (1, 2, 3, 4,
5, 6, 7, 8) with appropriate boundary conditions. The model vari-
ables are listed in Table 1.

Results

Applications of the model

Diffusive swelling of gels

One of the earliest dynamic models for a gel was for-
mulated by Tanaka and colleagues (Tanaka et al. 1973).
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They assumed that the fluid remained stationary and
that the gel polymer behaved as a linear elastic solid. For
the swelling of a spherically symmetric gel, these
assumptions led to a diffusion equation with a diffusion
coefficient as the ratio of the elastic modulus to the drag
coefficient between the fluid and the gel. This model fit
well the experiments on the swelling of neutral gels near
equilibrium. Since then, a number of dynamic models
have been proposed that introduce a nonlinear elastic
constitutive relation for the gel polymer or incorporate
solvent coupling. All of these have been shown to reduce
to a diffusion equation in the limit that the relative
change in volume of the gel is small. Likewise, our model
also reproduces this result (see Appendix D). This dif-
fusive behavior arises for small changes in the gel vol-
ume as the motion of solvent becomes negligible and
deformations of the polymer remain in the linear elastic
regime. These were the assumptions used to derive the
original diffusive model (Tanaka et al. 1973).

However, we can make further progress: since the
model utilizes a microscopic constitutive relation with
experimentally measurable parameters, the diffusion
coefficient for the gel can be estimated as a function of
microscopic model parameters. Using the linearized
model equations given in Appendices D and E with
reasonable values for the gel parameters (see Table 2),
we compute the diffusion coefficients for neutral gels
with a 5% and 2.5% equilibrium polymer volume frac-
tion: D5=6.8·10)7 cm2/s and D2.5=4.6·10)7 cm2/s,
respectively. These values are comparable to the diffu-
sion constants observed experimentally for gels. For
these volume fractions, the ratio D5/D2.5=1.45 has been
experimentally measured for neutral gels (Tanaka et al.
1973). The model also elucidates the dependence of the
diffusion constant on the free counterion charge.
Figure 2 shows how the swelling rate increases with the
effective free ion charge per monomer, a. As the gel
polymer becomes more charged, the diffusion constant
increases. Qualitatively, this effect is due to the contri-
bution of the counterions to the osmotic pressure at the
gel boundary, so that polyelectrolyte gels swell much
more rapidly than neutral gels.

Crawling of nematode sperm

Many cell types can glide across a surface while main-
taining their overall shape using a motile appendage
called a lamellipod (see Fig. 3a) (Bray 2001). The sperm
of the nematode Ascaris suum has attracted much
attention recently because it represents a ‘‘stripped
down’’ version of a motile cell (Bottino et al. 2002;
Roberts and Stewart 2000). The sperm cell is tens of
microns long and wide and a few microns high. It ad-
vances steadily at a rate of �0.1 lm/s. A polymer net-
work permeates the ventral surface consisting of flexible
filaments composed of major sperm protein (MSP). The
filaments are positively charged, having polymerized
from highly basic dimers. Strong hydrophobic interac-
tions between the polymers aggregate them into higher
order rope-like complexes. The cell body that contains
the nucleus and mitochondria rides atop the cytoskeletal
network at the rear of the cell (see Fig. 3). Mitochon-
drial activity maintains a spatial pH gradient across the
lamellipod such that the cytoplasm at the rear is acidic
with respect to the front of the cell. There is evidence
that the local pH controls motility by affecting cell
adhesion, protrusion, and contraction (Bottino et al.
2002).

The strength of adhesion of the lamellipod to the
surface increases with decreasing pH. Thus the cell at-
taches to the surface strongly at the front and weakly
towards the rear. At the leading edge of the cell MSP
dimers assemble onto the tips of existing polymers,
pushing the leading edge forward (Bottino et al. 2002;
Mogilner and Oster 1996). The rate of protrusion is
indirectly regulated by the pH gradient and decreases
with cell length. MSP filaments depolymerize in the low
pH environment at the rear of the cell and MSP dimers

Table 1 Model variables

Symbol Definition Units

/ Volume fraction of gel Dimensionless
u Gel displacement cm
t Time s
v Fluid velocity cm/s
x Position cm
p Hydrostatic pressure dyn/cm2

r Gel stress dyn/cm2

F Free energy dyn cm
Cb Counterion concentration M
h Stress due to changes in volume Dimensionless

Fig. 1 Cartoon illustration of the terms in the free energy
expression (Eq. 1). The counterion swelling pressure (left panel)
arises from the diffusion of the mobile counterions (+) to the fixed
fiber charges ()) that give rise to the Donnan potential at the gel
surface. The contractile elastic pressure (right top) arises from the
transverse thermal fluctuations of the gel fibers that tend to pull the
crosslinks together. The fiber interaction (right bottom), which may
be electrostatic or hydrophobic, also tends to deswell the gel by
reducing the chain entropy
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are recycled from the rear to the front by simple diffu-
sion. The model of Bottino et al. (2002) is based on the
assumption that at high pH the MSP polymers aggre-
gate into bundles storing elastic energy and generating
the force of protrusion. Then, in the low pH environ-
ment under the cell body, the adhesions between the
filaments weaken and the complexes dissociate. This
releases the elastic energy stored in the gel so that it can
entropically contract and pull the rear of the cell for-
ward.

Bottino et al. (2002) developed a 2-D finite element
model of the moving sperm cell, where the MSP gel was
treated as elastic solid and the fluid part of the cyto-
plasm was neglected. Here we consider the sperm cell
cytoskeleton as a hydrated polyelectrolyte gel governed
by the equations derived in this paper. This allows us to
advance the model of cell crawling by explicitly taking
into account the movement of the liquid fraction of the

cytoplasm and including the effects of ion osmotic
pressure. This allows us to compute the forces of the gel
contraction microscopically, rather than relying on a

Table 2 Model parameters
Symbol Definition Value and units

/init Initial polymer volume fraction 0.025, 0.1
f Drag coefficient between the polymer

and the fluid
2·1011 dyn s/cm4 (Tanaka and
Fillmore 1979)

g Fluid viscosity 100 dyn s/cm2

Vm Volume of a monomer 0.1–1 nm3 (English et al. 1996)
l Gel shear modulus 200 dyn/cm2 (Tanaka and

Fillmore 1979)
/0 Material parameter setting unstressed

volume fraction
�0.1

kBT Thermal energy �4.1 pN nm
NA Avogadro�s number 6.02·1023
Nx Number of monomers between crosslinks �10–100 (English et al. 1996)
v Flory interaction parameter 0.6 (English et al. 1996)
D Diffusion coefficient of the gel �10)7 cm2/s (computed here)
a Number of charges per monomer �0.05 (assumed)
Cb Bath ion concentration �0.07 M (assumed)
j Permeability of gel/solvent interface �10)9 cm3/dyn s

Fig. 2 Model prediction of the swelling of a polyelectrolyte gel
compared to a neutral gel. a is the effective number of counterions
per gel monomer. The circles are data points from Tanaka et al.
(1973). The curves for a=0.2 and 0.4 were computed from the
linearized model equations given in Appendices D and E

Fig. 3 a Side view of a crawling nematode sperm showing the gel
strip model. (b) Asymptotically stable stationary distributions of
the polymer volume fraction, stress, and velocity and of the fluid
velocity from the rear to the front of the cell. (c) Trajectories of the
front and rear ends of the 1-D cytogel strip. Over a few hundred
seconds the cell length regulates to a constant value
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phenomenological contractile stress constitutive rela-
tion. Following Bottino et al. (2002), this model assumes
rubber-like elasticity for the MSP polymer: individual
filaments appear to be fairly flexible; there are no direct
measure of their persistence length but negatively
stained filaments are curved and bent on the scale of tens
of nanometers. We neglect chemical reactions in our
equations of mass balance because of the very high
(�4 nM) concentration of MSP in the cytoplasm
(Roberts and Stewart 2000). There are experimental
indications (Bottino et al. 2002; Roberts and Stewart
2000) that a small number of enzymes activate MSP
dimers into a polymerizable state, and that this is the
rate-limiting factor for MSP fiber assembly. Also, dif-
fusion of MSP dimers is fast enough to recycle the di-
mers from the rear to the front of the cell. Because of
these factors, equations of chemical kinetics and diffu-
sion uncouple from the equations for MSP gel, and our
model for the gel is self-consistent. The situation is more
complicated for actin gels, and future work will incor-
porate semi-flexible polymer energies and reaction-dif-
fusion kinetics into the gel dynamic model to explore the
quantitative differences between rubber-like and semi-
flexible polymers and the role of MSP turnover. Here we
report the results of a 1-D simulation of a proximal-
distal transect of the cytoskeletal gel strip at the center of
the lamellipod. A 2-D simulation that takes into account
processes at the cell sides is much more involved
numerically; this work is in progress and will be reported
elsewhere; however, the 1-D model illustrates all of the
basic features driving the cell locomotion.

We model the dynamics of the 1-D cytoskeletal strip
of gel solving the model equations (Eqs. 1, 2, 3, 4, 5, 6, 7)
on a moving boundary domain. The quantitative details
are presented in Appendix H. The rates of movement of
the cell leading and trailing boundaries are given by the
boundary velocities plus the rate of polymerization at
the front and depolymerization at the rear, respectively.
We assume that the depolymerization rate is constant.
We make the following assumptions consequent on the
proximal to distal pH gradient. (1) The polymerization
(protrusion) rate at the front is a decreasing function of
the cell length. (2) There is an effective viscous drag
between the cytoskeleton and the substratum; the cor-
responding viscous drag coefficient increases signifi-
cantly anterior to the cell body. (3) We model the
unbundling of MSP filaments at the rear by increasing
the number of MSP dimers between adjacent crosslinks
under the cell body. We complement the model equa-
tions by the conditions of zero gel stress at the bound-
aries and no fluid flow through the leading edge
boundary. This amounts to assuming that the major
fluid flow into the basal gel strip comes from the cyto-
plasm ‘‘above’’ the ventral layer we are modeling. From
the viewpoint of the 1-D model this enters as a distrib-
uted fluid source.

Figure 3c shows the trajectories of the leading and
trailing edges of the cell. After initial transients decay,
the steady mode of locomotion evolves such that the

cell achieves a constant length of tens of microns,
similar to the observed length. It advances at the rate
of few tenths of micron per second, in agreement with
experimental observations (Roberts and Stewart 2000).
In the coordinate system moving with the cell, constant
spatial distributions of densities, velocities, and forces
inside the cell also evolve. Figure 3b shows asymptot-
ically stable spatial distributions of the polymer volume
fraction, stress, gel and liquid velocities. The highly
crosslinked, unstressed gel has a steady-state polymer
volume fraction �0.03. At the rear of the lamellipod,
just in front of the cell body, the number of crosslinks
drops precipitously. Longer flexible polymer chains
between the adjacent crosslinks have a tendency to coil,
like rubber strands (see Appendix H), so that the
polymer volume fraction, /0, increases. External and
internal viscous drag retards the polymer volume in-
crease. Thus a contractile gel stress develops that
reaches its maximum at the center of the cell. The
predicted total contractile force is tens of nanonewtons,
comparable to that estimated experimentally for some
other crawling cells (Oliver et al. 1995). This contractile
stress does not affect the front of the cell because the
adhesion to the substratum is strong at the front.
However, because the adhesion is weak at the rear, this
contractile stress pulls the rear of the cell forward. The
contractile stress tends to compress the gel at the rear
of the cell, where the polymer volume fraction reaches
a new steady value of �0.045, relieving stress at the
rear.

The rate of advancement of the leading edge is equal
to the polymerization rate. The steady state velocity of
�0.1 lm/s at the cell rear is a consequence of the gel
contraction velocity that just balances the constant
polymerization rate at the front. The balance of forces is
such that if the lamellipod increases in length the pro-
trusion velocity decreases, while at smaller length it in-
creases, so the cell length is stable. The boundary
condition at the front ensures that the fluid velocity is
zero there. However, in the middle of the cell, the large
contractile stress creates a significant hydrostatic pres-
sure which drives the fluid phase of the cytoplasm both
forwards and backwards. At the very rear of the cell, the
water escapes upward into the region of the cell around
the cell body, where the cytoskeletal gel is less dense.
Consequently, the cytoplasm near the dorsal surface of
the cell should convect towards the front where new gel
is polymerized. Computations show that the movement
of the fluid is slow (a few nanometers per second) in
comparison with gel movements. This justifies the cor-
responding assumption made by Bottino et al. (2002).
Thus, the model illustrates how stable rapid migration is
achieved, so that the cell length and velocity regulate to
constant values.

Swelling and hydration dynamics in drug delivery

Gel swelling has many applications in the field of drug
delivery. One method is to chemically bind the drug to
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the gel matrix and release it enzymatically (Tzafriri
2000; Tzafriri et al. 2002). Another method is to trap a
drug within the polymer mesh of a dehydrated gel.
When the gel is ingested, the gel swells until the mesh
spacing is large enough for the drug to diffuse out of
the network. In this way, it is possible to control the
rate at which the drug is administered. To quantify this
effect it is important to understand the dynamics of a
gel swelling from a dry state, and there has been a
wealth of experiments on the swelling of gels from the
dry to equilibrium volume fraction. These curves tend
to show a biphasic behavior where the gel initially
swells at a fairly constant rate, then goes through a
very rapid transition, and finally settles down to its
equilibrium configuration (Siegel et al. 1988). This
swelling behavior has been attributed to a dry core that
inhibits the swelling until the core hydrates, after which
the rest of the gel can swell more freely. Previous the-
oretical work has shown that under certain conditions
a sharp moving interface arises between a dry and
swollen region (Tomari and Doi 1995). Recent experi-
ments verified the existence of this dry core region
during the swelling of a spherical poly(0.75 sodium
acrylate–0.25 acrylic acid) gel (Budtova and Navard
1998). Here we show that our model explains quanti-
tatively the hydration dynamics of a swelling gel from
the dry state.

We use a dynamic equation for the polymer volume
fraction, /, in a Lagrangian frame of reference with
respect to the initial coordinates (see Appendix E) and
solve the equations for a spherically symmetric volume,
whereupon the coupled dynamic equations for the gel
reduce to one equation (Eq. E4). To determine whether
these equations can model the swelling of a spherical
gel from a dry, glassy state to the swollen, rubbery
state, we compute the model equations in the two-
phase region by adjusting the Flory interaction
parameter so that the free energy of the gel is bistable
(i.e., it possess two minima). The first of these minima
represents the glassy state at high volume fractions
where polymers tend to associate and align. The other
minimum represents the swollen state of the gel. At
high volume fractions, polymer attraction drives the
formation of the glassy state; we model this behavior
by making the polymer–polymer interaction a function
of the volume fraction (see Appendix B). Following the
experimental conditions, we solve Eq. (E4) for the
swelling of an initially dry sphere, using a drag coeffi-
cient between the fluid and solid components that de-
pends on the polymer volume fraction (see Appendix G
and Budtova and Navard 1998). As in the experiments,
we plot both the normalized radius of the sphere, R(t)/
Rmax, and the normalized radius of the dry core versus
time, where Rmax is the final swollen radius of the
sphere. The solution shown in Fig. 4 is consistent with
the suggestion of Siegel that the presence of the glassy
core puts a constraint on the swelling of the rubbery
periphery (Siegel et al. 1988). Once the swelling front
reaches the center of the gel, the glassy core disappears

and the swelling is unconstrained. At this point, a
sudden acceleration is observed when the glassy core
disappears (see Fig. 4). After this transient acceleration,
the swelling slows and the radius approaches its equi-
librium value. A more complete physical description of
this process will be presented elsewhere (Burfoot and
Wolgemuth, unpublished).

Since we can fit the observed swelling behavior by our
model, this suggests that optimization techniques could
be applied to ‘‘program’’ release rates from gels with
simple geometries, e.g. spheres, cylinders, and disks. The
experimental data from the dynamics of swelling also
allows us to predict the microscopic parameters that are
used in our model (see Appendix G).

Fig. 4 The swelling of an initially dry polyelectrolyte sphere to its
equilibrium volume. Data points (open and closed triangles) are
taken from Budtova and Navard (1998, Fig. 2). The top curve
shows the time course of the external radius of the gel. The lower
curve corresponds to the radius of the interface between the dry
core and the swollen phase. The insets illustrate the swelling of the
sphere and the disappearance of the dry core. The acceleration in
the swelling that occurs once the dry core vanishes is labeled
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Conclusion

We have assembled a model for the dynamics of poly-
electrolyte gels from previously published components
that treat the gel as an elastic solid immersed in fluid. We
describe the dynamics by conservation equations for
polymer and fluid complemented by Stokes-like stress
balance equations for the polymer and fluid. The principal
novelty of the model is that it combines two-phase fluid
flow, functional derivatives and a free energy derived from
Flory theory that contains microscopically measurable
parameters. Though none of these separate concepts is
new, this model fully integrates them into a fairly simple
theory, generating predictions that can be tested against
experimental data.

The model allows us to derive an effective diffusion
equation for the swelling of neutral and charged gels that
generalizes previous work, and accounts for the fluid
movements that accompany gel swelling and de-swelling,
factors that have been largely neglected heretofore. This
enables us to express the effective diffusion coefficient of
the gel in terms of microscopic, rather than phenomeno-
logical macroscopic, parameters, revealing how swelling
accelerates as the gel charge increases. The main novel
application of the model is the quantitative description of
the lamellipodia of the nematode sperm cell. The model
explains the nature of contractile stress that, when cou-
pled to graded adhesion and depolymerization, drives the
cell forward. The model reproduces some important fea-
tures of steady cell movement. Finally, we model the
isotropic swelling of charged gels. Solving themodel in the
two-phase region accounts for the glassy state of the dry
gel. The model captures the qualitative features of the
experimental data on the swelling of spherical gels em-
ployed for controlled drug release, and explains the ob-
served biphasic swelling dynamics. This theory describes
semi-quantitatively the swelling of a gel from the dry state
all the way to equilibrium.

Future elaborations of the model can deal with spe-
cific geometries where shear stresses are important and
swelling is driven or accompanied by chemical kinetics.
This should be useful in a number of fields, including
biomedical applications and cell mechanics.
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Appendix

Appendix A: elasticity and functional derivatives

To define the stress tensor for the polymer mesh,
Tanaka et al. (1973) originally assumed that the gel

could be treated as an elastic solid with an elastic energy
given by:

Fel ¼
Z

l uik �
1

3
ujjdik

� �2

þ 1

2
Ku2

jj

" #

d3x ðA1Þ

Here the components of the strain tensor are
uik ¼ @ui=@Xk þ @uk=@Xið Þ=2, l is the shear modulus,
and K is the bulk modulus. The first term in the integral
is the energy associated with shear deformations of the
solid and the second term is the energy associated with
changes in volume. Moreover, they assumed that the
solvent was stationary and set the viscous drag force
acting on the gel polymer equal to the force obtained
from the functional derivative of this energy (Tanaka
et al. 1973). Here we introduce a more complete
description of the free energy of the polyelectrolyte gel
by taking into account not only the elastic energy but the
mixing, counterion, and polymer interaction energies as
well (English et al. 1996).

The energy we will use is dependent on two
parameters, the metric determinant,

ffiffiffi
g
p ¼ /init

/ , and the

trace of the metric, Tr gij
� �

¼ @Xi
@xj

@Xi
@xj
. As such, the

energetic cost for deformations of the gel can be writ-
ten as:

F ¼
ZZZ

V
H /ð Þ þ /

/init

! Tr gij
� �� �� �

d3X ðA2Þ

with Q and ! functions that describe the energetic cost
for volume and volume/shear deformations, respec-
tively, and the integral being taken over the volume of
the gel, V. This appendix defines notation and shows
how functional derivatives are calculated and used to
derive the forces per volume that act on the polymer
mesh.

We begin by defining the position of points in the
polymer mesh through the vector X. The initial position
of the polymer mesh at time t=0 is xinit=x(t=0). From
this, we can define the displacement vector for these
material points as u=X)xinit. The volume fraction of
the polymer is obtained from this by:

/init

/
¼ det

@X
@xinit

� �
¼ det Î þ @u

@xinit

� �
¼ ffiffiffi

g
p ðA3Þ

with /init the initial polymer volume fraction and Î the
identity matrix. Using this notation, we now discuss how
to derive the force from a given energy function. To
better elucidate the method, we begin by considering
only deformations that change the volume. The varia-
tion in the energy is taken with respect to the initial
position vector, xinit, over the initial volume, V0, as the
limits of this integration are not altered by the variation:

dF ¼
ZZZ

V0

@

@/
/init

/
H /ð Þ

� �
d/d3xinit ðA4Þ

It can be shown (Onuki 1989) that:
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d/ ¼ �/
X

l;m

@xinit;m
@Xl

� �
@

@xinit;m
dXl

� �
¼ �/

X

l

@

@Xl
dXl

� �

ðA5Þ

Substituting this expression into Eq. (A4) and
transforming back to the displaced coordinates, we ob-
tain:

dF ¼
ZZZ

V
� /2

/init

� �
@

@/
/init

/
H /ð Þ

� �X

l

@

@Xl
dXl

� �
d3X

ðA6Þ

This is then integrated by parts to give:

dF ¼ �
ZZ

@V

X

l;m

nmPp
lmdXl dAþV

X

l;m

@

@Xm
Pp

lm

� �
dXl d

3X

ðA7Þ

where n is the unit outward normal vector to the
surface element dA, ¶V is the surface of the gel, and the
isotropic polymer stress due to changes in volume is
defined as:

Pp
lm ¼ /

@H
@/
�H

� �
dlm ðA8Þ

This also gives a force per volume:

2f p ¼ �rX �Pp ðA9Þ

where rX is the gradient over the displaced coordinates,
X.

In a similar fashion, we can find the stress from the
trace term:

rtr;ij ¼ �
/

NxVm

X

l

@Xi

@xl

@Xj

@xl
ðA10Þ

and we have used that:

! ¼ /init

NxVm
Tr gij
� �

ðA11Þ

Combining these two terms, the total stress on the
polymer is:

rp
ij ¼ Pp

ij þ rsh;ij ðA12Þ

Appendix B: components of the gel free energy

The total free energy for the gel component can be
broken up into six independent components arising from
the elasticity of the polymer, the entropic mixing due to
the fluid, interactions between polymer chains, the
pressure due to the counter ions, Coulombic interac-
tions, and a term that depends on gradients in the vol-
ume fraction as:

F ¼ Fel þ Fmix þ Fint þ Fion þ Fcoulomb þ Fgrad ðB1Þ

We choose an elastic free energy based on rubber
elasticity (Flory 1953):

Fel ¼
kBT

2NxVm

ZZZ

V
/ Tr gij

� �
� 3� ln

/0

/

� �� �
d3X ðB2Þ

where / is the polymer volume fraction, gij is the metric
between the initial coordinates, x, and the final coordi-
nates, X, kB is Boltzmann�s constant, T the absolute
temperature, Nx the number of monomers between
crosslinks, /0 is a material parameter that sets the un-
stressed volume fraction, Vm is the equivalent volume
occupied by one monomer, and V is the volume of the
gel. From these definitions, the number of chains per
volume is //NxVm. For the isotropic case:

gij ¼
/init

/

� �2=3

Î ðB3Þ

and:

Fel ¼
kBT

2NxVm

ZZZ

V
/

/0

/

� �
� 1� 1

3
ln

/0

/

� �� �
d3X ðB4Þ

We choose the entropic mixing free energy defined by
Flory theory (Flory 1953):

Fmix ¼
kBT
Vm

ZZZ

V
1� /ð Þln 1� /ð Þd3X ðB5Þ

and the solvent–polymer interaction energy representing
two-body interactions is given by:

Fint ¼
kBT
Vm

ZZZ

V
v/ 1� /ð Þd3X ðB6Þ

where v is the Flory parameter that measures the
strength of interaction between the polymer chains
(Flory 1953). It is common to assume that v is inde-
pendent of volume. However, in principle, it can be a
function of /; here we assume a dependence:

v ¼ v0 þ v1/
2 ðB7Þ

to approximate the glass–rubber transition for swelling
gels.

The contribution to the energy from the counterions
is obtained by assuming an ideal solution of charges
with each species of charge labeled by the subscript i
(English et al. 1996):

Fion ¼ �kBTNA

ZZZ

V

X

i

Ciln Cið Þð1� /Þ d3X ðB8Þ

where Ci is the molar concentration of the ith mobile
counterion and NA is Avogadro�s number. The factor of
(1)/) in the integral is because the ions only reside in the
fluid component of the mixture. Likewise, Ci is the
concentration with respect to the fluid volume, dV f, not
the total volume, dVT.

The contribution to the free energy from Coulombic
interactions is:
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Fcoulomb ¼
ZZZ

V

X

i

zieUselfCi d
3X þ

ZZZ

V
zFeUselfCF d

3X

ðB9Þ

where zi is the valence of the ith mobile counterion, e
is the electronic charge, /self is the self-consistent
potential created by the polymer charges and the
mobile ions, and CF is the fixed charge density of the
polymer.

For cases where large differences in the volume
fraction might exist over small lengths, such as volume-
phase transitions in gels (Sekimoto et al. 1989; Tanaka
1997), it is common to include a term that defines the
energy required to maintain the sharp gradient. As in
Landau–Ginzburg theory and Cahn–Hilliard theory
(Cahn and Hilliard 1958), we assume the form of the
energy to be:

Fgrad ¼
ZZZ

V

c
2
r/r/ d3X ðB10Þ

where c is a material parameter that has units of energy/
length. This type of energy has already been suggested
for gels (Tanaka 1997).

Appendix C: the counterion swelling pressure of the gel

In Eq. (B8), the energy of the counterions is that of an
ideal solution of charges. We assume that the diffusion
of the ions is much quicker than the motions of the
solvent and polymer. Therefore, we use the steady-state
concentrations for the ions inside the gel. Because the
counterions are confined within the solvent, the con-
centration is taken with respect to the solvent volume,
dVf=(1)/)dVT, where dVT is a total unit volume of the
gel. If we assume that there is an effective charge per
monomer, a, on the polymer, the fixed charge density of
the polymer is equal to aN/(dVf) where N=//Vm is the
number of monomers per volume and Vm is the volume
of a monomer. From this, the fixed charge density of the
polymer is:

CF ¼
a/

ð1� /ÞVm
ðC1Þ

Assuming a univalent salt in the solvent, the
concentrations of the positive and negative ions, C+

and C), respectively, can be related to the fixed
charge density via the Donnan equilibrium (Overbeek
1956). Equating the chemical potentials across the
boundary:

Cþ ¼
1

2
4C2

b þ C2
F

� �1=2�CF

	 


C� ¼
1

2
4C2

b þ C2
F

� �1=2þCF

	 
 ðC2Þ

where Cb is the bulk molar concentration of positive
(or negative) ions outside the gel. Therefore, the
total molar ion concentration inside the gel,
Cion=C++C), can be related to the fixed charge con-
centration:

Cion ¼ 2Cb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a/
2 1� /ð ÞNAVmCb

� �2
s

ðC3Þ

Note that in the limit of the neutral gel, Cion=2Cb

(2Cb is the total ion bath concentration), while in the
limit of a highly charged gel, the concentration is (1/
Vm)(a//(1)/)). As /! 1, this concentration diverges.
We expect that the effective fixed charge per monomer
decreases with volume fraction due to the condensation
of charges onto the polymer as the gel dehydrates.
Demanding that in the absence of solvent all the charges
are condensed onto the polymer sets a / ¼ 1ð Þ ¼ 0. To
satisfy this constraint, we choose a=a0(1)/), with a0 a
constant.

Using Eqs. (C1) and (C2), we can find the Coulombic
contribution to the energy:

Fcoulomb ¼
ZZZ

V
eUselfðCþ �C�Þd3X þ

ZZZ

V
zFeUselfCF d

3X

¼
ZZZ

V
�eUselfCF d

3X þ
ZZZ

V
zFeUselfCF d

3X

¼ 0 ðC4Þ

Therefore, the electrostatic contribution to the total free
energy is zero. This is only valid at low ionic strengths
and when the diffusion of the ions is much quicker than
the dynamics of the polymer.

The free energy for the gel can now be written com-
pletely in terms of the polymer volume fraction and a
shear term. Using the free energy given in Appendix B
and Eq. (A8) and (A10) to calculate the polymer stress,
we find:

Vm

kBT

� �
Pp

ij ¼ hð/Þdij �
/

NxVm

X

l

@Xi

@xl

@Xj

@xl
ðC5Þ

where:

hð/Þ ¼ �lnð1� /Þ � /� v/2 þ NAVm Cion � 2Cbð Þ

þ /
2Nx
þ c /r2/� 1

2
r/ð Þ2

� �
ðC6Þ

Experiments have shown that, at low volume frac-
tions, the gel shear modulus is much less than the bulk
modulus (Tanaka and Fillmore 1979). If we neglect
the shear component [which is the same as using the
isotropic form of the elastic free energy (Eq. B4)] and
the term that comes from the gradient squared piece
in the energy, the polymer stress in Eq. (C5) reduces
to:
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Vm

kBT

� �
Pp

ij ¼ hð/Þdij ðC7Þ

where:

hð/Þ ¼ �lnð1� /Þ � /� v/2 þ NAVm Cion � 2Cbð Þ

þ /0

Nx

1

2

/
/0

� �
� /

/0

� �1
3

 !

(C8)

is the dimensionless swelling pressure and we have as-
sumed that the parameters v, /0, a0, Nx, and c are
constants. We have also subtracted 2NAVmCb to ac-
count for the ion pressure outside the gel.

If we only assume a purely entropic energy as given
by Eq. (B5), then:

hð/Þ ¼ �lnð1� /Þ � / ðC9Þ

Plugging this into Eqs. (5) and (7), we find that:

f
@u
@t
� v

� �
¼ � kBT/

Vm 1� /ð Þ

� �
r/ ðC10Þ

For small /, this should reproduce normal diffusion.
Using that Cm�//Vm is the concentration of gel
monomer per fluid volume, we get:

f
@u
@t
� v

� �
¼ �kBTCmrCm ðC11Þ

For normal diffusion, the drag coefficient, fD, is de-
fined as the drag per particle. In our representation, f is
the drag per total volume. The relation between these is
f ¼ fDCm, which shows that these equations reproduce
pure diffusive behavior when only entropic effects are
considered and we recover the Einstein relation for the
diffusion coefficient, D ¼ kBT =fD:

Appendix D: linear approximation

The gel equations are a coupled, nonlinear set of
equations. To gain insight into the dynamics that
they describe, we linearize the isotropic expansion
equations about an initial polymer volume fraction,
/init, setting /=/init(1)�), and using the rescalings
u! Lu, with L a relevant length scale. We use
Eqs. (3), (5), and (7), and expand to first order in � to
obtain:

e � �ru
ut ¼ Ar2uþ Br� r� uð Þ

� � ðD1Þ

where:

A ¼ 1� /initð Þ 4~l=3þ /init @h=@/initð Þð Þ ðD2Þ

and:

B ¼ 1� /initð Þ ~l=3þ /init @h=@/initð Þð Þ ðD3Þ

with:

~l ¼ Vm=kBTð Þl ðD4Þ

h is the dimensionless swelling pressure that is derived in
Appendix C, and @h=@/init the derivative of h with re-
spect to / evaluated at /=/init. The latter is equivalent
to the equation derived by Tanaka et al. (1973) with
bulk modulus:

K ¼ kBT=Vmð Þ 1� /initð Þ/init @h=@/ð Þ ðD5Þ

This equation can now be used to calculate the rate of
change in polymer volume fraction and the fluid velocity
for swelling of a gel near some initial configuration /init.
This can then be compared with the work that has al-
ready been done on spherical swelling which has ne-
glected fluid velocity.

We begin by assuming that all variables are only
functions of r, the radial coordinate, and that all vectors
are only in the radial direction, u ¼ uðrÞr̂ and v ¼ vðrÞr̂.
This allows the conservation equation to be integrated
and the solvent velocity is obtained in terms of the
polymer velocity:

vðrÞ ¼ cðtÞ
1� /ð Þr2 �

/ut

1� /ð Þ ðD6Þ

with c(t) a time-dependent constant. For a finite solution
at r=0, c(t)=0, giving (1)/)v+/ut=0, i.e. the center of
mass of the gel is stationary. Thus v>0 for hydrating
gels; the fluid flows into the gel at a velocity equal to the
ratio of gel volume to fluid volume. Using this result, the
first-order polymer velocity equation is:

ut � ~lþ /init

@h
@/init

� �
r2

r u ðD7Þ

with rr being the radial gradient. This gives a diffusive
dynamics:

ut ¼ �Dr2
r u ðD8Þ

with a diffusion coefficient:

D ¼ � kBT
fVm

1� /initð Þ ~lþ /init

@h
@/init

� �
ðD9Þ

[The minus sign in the diffusion constant is due to the fact
that as the gel swells, the displacement increases. In
Eq. (D9), D>0.] If we assume a neutral gel, a=0, and
utilize reasonable values of /0=0.1, Vm=10)22 cm3,
v=0.6, Nx=60 (English et al. 1996), l=200 dyn/cm2,
and f=2·1011 dyn s/cm4 (Tanaka and Fillmore 1979),
we find D=6.8·10)7 cm2/s with /init=0.05 and
D=4.7·10)7 cm2/s with /init=0.025, which are compa-
rable to the diffusion constants previously observed for
gels with these polymer volume fractions and the ratioD5/
D2.5=1.45 is what is experimentally observed (Tanaka
et al. 1973). Using the continuity equation (Eq. 2) and the
linearized equations, we obtain the effective diffusion
equation for the polymer volume fraction:
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et ¼ Dr2
r e ðD10Þ

When the gel/solvent interface is sufficiently perme-
able, water can flow into the gel to satisfy any imposed
boundary condition on the gel. Using a zero stress
boundary condition sets the polymer volume fraction at
the interface to the unstressed volume fraction and the
gel will relax to this unstressed state on a characteristic
time scale given by s�L2/D. This time decreases as the
charge per monomer, a, is increased. Therefore, a
polyelectrolyte gel swells faster than a neutral gel, as is
observed experimentally.

To calculate the swelling radius versus time for the
linear approximation of the spherically symmetric gel,
we use the result derived in Tanaka and Fillmore
(1979):

DaðtÞ ¼ 6

p2

� �
Da0

X
n�2exp

�Dn2t
a2

� �
ðD11Þ

where Da is the change in radius of the gel, Da0 is the
total change in radius, D is the diffusion coefficient
found in Eq. (D9) and the sum is over n.

Appendix E: equations for the swelling gel

In this Appendix, we derive a dynamic equation for the
polymer volume fraction, /, in a Lagrangian frame of
reference with respect to the initial coordinates. The
coupled dynamic equations for the gel can be reduced to
one equation by neglecting shear. Symmetry conditions
permit this for certain geometries (e.g., spheres and
slabs). For other geometries, the magnitude of the shear
term is a few orders of magnitude smaller than that of
the volume deformation term for a wide range of
physically relevant parameters (Tanaka and Fillmore
1979). Moreover, we will see that neglecting shear
greatly simplifies the analysis, yet fits the experimental
data closely.

For the purposes of our calculations, it is easier to
work in a reference frame fixed on the initial position
of the gel, since this frame does not change in time. In
this frame, the continuity equation for the polymer
volume fraction does not contain convection, and,
therefore:

@tjx/ ¼ �/rX � 2ut ðE1Þ

where @tjx represents the partial derivative with respect
to time at fixed material point xinit. Derivatives with
respect to the initial position are given by:

@

@Xi
¼ @xinit;j

@Xi

� �
@

@xinit;j
ðE2Þ

and we can define the metric as:

gij ¼
@Xk

@xinit;i

@Xk

@xinit;j
ðE3Þ

Substituting Eq. (5) into Eq. (2) and adding and
subtracting the divergence of the polymer velocity,
yields:

rX �
1

f
/� 1ð Þ2f p þ 2ut

� �
¼ 0 ðE4Þ

Plugging this into Eq. (E1) and using Eqs. (E2) and
(E3) leads to a dynamic equation for /:

@tjx/ ¼ �
/2

/init

@

@xinit;i

/init

f/
1� /ð Þf p

i

� �
ðE5Þ

where f p
i is the ith component of the polymer force and

it has been used that the metric determinant:

g1=2 ¼ /init=/ ðE6Þ

For a spherically symmetric gel:

R
r

� �2@R
@r
¼ /init

/
ðE7Þ

where R is the radial coordinate and r is the radius of the
initial state.

If shear is neglected, and we assume isotropy:

gij ¼ /
/init

� �2=d

dij ðE8Þ

where d is the dimension of space and dij is the Kro-
encker delta function, then the polymer force can be
written completely in terms of / and @/=@xinit. This
simplifies the dynamics by giving a single nonlinear PDE
for / rather than the coupled set of equations (Eqs. 2, 3,
4, 5), and greatly simplifies the problem.

For the drug delivery swelling problem, Eq. (E5) was
solved numerically on a spherically symmetric volume
with initial volume fraction /0=0.95 everywhere, except
at the boundary point where we seed the low-energy
swollen state with /=0.1. We used boundary conditions
(see Eq. F1) with the drag coefficient discussed in
Appendix G. The microscopic energy parameters were
found from fits to the experimental data (see Appendix
G). Equation (E5) was solved on the fixed initial coor-
dinates using a variable time step method (MATLAB
routine ode15s) and a forward explicit numerical
scheme.

Appendix F: boundary conditions for a swelling gel

Taking the functional derivative of the free energy pro-
duces both an integral over the volume and surface
terms [see, for example, Eq. (A8)]. The integrand of the
volume integral gives the force per volume that acts on
the gel. The integrand of the surface area integral pro-
vides the natural boundary conditions on the stress. In
circumstances where there are no external forces acting,
these boundary conditions apply. For the swelling gel,
the natural boundary conditions are:
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rp � n̂ ¼ 0
c/r/ � n̂ ¼ 0

ðF1Þ

Tokita and Tanaka (1991) found that f / /1:5 when
/<1; this is expected from Flory scaling theory since the
drag coefficient scales like 1/n2, where n is the length
correlation for the gel. Scaling theory suggests that
n / /�3=4. We use this dependence for the drag coeffi-
cient. We assume a volume fraction dependence on c,
and find the best fits to the data when c / /�1:

Appendix G: parameter fits from swelling experiments

Our model depends on a number of microscopic
parameters that describe the material and physical
properties of gels. The data of Budtova and Navard
(1998) allow us to fit a number of the microscopic
parameters in this model and enable us to fit the dy-
namic behavior of the swelling of dry gels (see Fig. 2 and
Fig. 3). In fig. 2 of Budtova and Navard (1998), the
swelling curves for spherical poly(0.75 sodium acrylate–
0.25 acrylic acid) gels of differing radii are plotted. The
bath ion concentration for this plot is Cb=0. Based on
the mole fraction of the crosslinking density to that of
the monomer, an estimate of the number of monomers
per crosslink for these gels is Nx=1600 (Budtova and
Navard 1998). If we assume that the volume of a
monomer is �0.1 nm3 (English et al. 1996), then the only
parameters left to fit are v, a0, f, and /0. f sets the overall
time scale for the process, and is found by scaling the
computer time (time step interval) to the experimental
time, giving f(/=1)�1013 dyn s/cm4, which is compa-
rable to experiment (Tokita and Tanaka 1991). v0, a0,
and /0 were fit to provide a swelling ratio comparable to
that observed in the experiments (Budtova and Navard
1998). v1 was set by fitting the experimental swelling
data to the numerical results. We find v=0.6+2.3/2,
a0=1.0, and /0=0.5. These values are reasonable
compared to what has been measured previously (Eng-
lish et al. 1996).

Appendix H: model equations for cell crawling

We model the dynamics of the 1-D cytoskeletal strip of
gel with the following four equations:

/init

/
¼ 1þ @u

@x
ðH1Þ

@

@x
/
@u
@t
þ 1� /ð Þv

� �
¼ 0 ðH2Þ

f v� @u
@t

� �
¼ � @p

@x
ðH3Þ

fex
@u
@t
þ f

@u
@t
� v

� �
¼ @r

p

@x
ðH4Þ

Here Eqs. (H1) and (H2) are 1-D conservation equa-
tions for the polymer (Eq. 3) and the gel (Eq. 2),
respectively. Equation (H3) is the 1-D force balance for
the liquid (Eq. 4). Finally, Eq. (H4) is the 1-D gel force
balance (Eq. 5), where we have added the effective vis-
cous drag between the cytoskeleton and the surface; fex
is the corresponding viscous drag coefficient. The gel
stress is:

rpð/Þ ¼ ðkBT=VsiteÞhð/Þ ðH5Þ

where the stress due to changes in volume, h(/) is given
by Eq. (C8). The shear terms are absent in 1-D in both
the polymer and liquid force balance equations. We
solve the problem on the moving boundary domain
r(t)<x<f(t), where r(t) and f(t) are the coordinates of
the rear and front of the cell, respectively. The rates of
movement of the cell edges are given by the gel velocities
at the edges, plus the rate of polymerization at the front
and depolymerization at the rear, respectively. Thus the
boundary conditions are:

dr
dt
¼ Vd þ

@u
@t
jx¼rðtÞ;

df
dt
¼ Vpðr; f Þ þ

@u
@t
jx¼f ðtÞ; Vpðr; f Þ

¼
V 0
p

f � r � l1
ðH6Þ

Here Vd is the constant depolymerization rate. The
polymerization (protrusion) rate at the front is the
decreasing function of the cell length, l(t)=f(t))r(t); l1 is
a model parameter.

We assume that the pH gradient regulates the
external drag coefficient so that fex=3f(1+0.8 -
tanh((x)r)l2)/l3)), where l2 and l3 are model parame-
ters. (The internal drag coefficient, f, is given in
Table 2.) The external drag coefficient is small and al-
most constant under the cell body but constant and
large under the lamellipod. We also assume that the
number of dimers between the adjacent crosslinks in
the gel increases significantly from 25 at the front to 75
at the rear. We describe this effect quantitatively with a
function similar to drag coefficient spatial behavior:
Nx=50)25 tanh((x)r)l2)/l3). Finally, we reason that
the equilibrium volume fraction of the gel scales as
/ / N1=2

x . Indeed, the equilibrium size of a long flexible
filament is proportional to the square root of its con-
tour length (Landau et al. 1980). Thus, the number of
MSP dimers in unit volume scales like the number of
dimers between the adjacent crosslinks divided by the
equilibrium distance between these crosslinks, Nx=N 1=2

x .
Therefore, we assume that:

/0 ¼ 0:005N 1=2
x ðH7Þ

where the coefficient is set such that the equilibrium
volume fraction at the front is approximately 0.035. as is
observed experimentally. For simplicity, we keep other
model parameters constant; they are given in Table 2. In
simulations, we used the length scale L=10 lm, the time
scale:
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fVsiteL2
�

kBT � 0:01 s ðH8Þ

and the force scale:

kBTL2
�

Vsite � 100 dyn ðH9Þ

We also used additional parameters: l1=5 lm,
l2=12 lm, l3=(1/15) lm, Vd=0.2 lm/s, V 0

p¼ 0:4lm=s.
We non-dimensionalized the model equations using
these scales.

Then, we used Eqs. (H2) and (H3) to express the fluid
velocity in terms of the hydrostatic pressure gradient:

v ¼ �/
1
@p
@x

ðH10Þ

(This equation is valid up to a constant, but this
constant is almost zero due to the conditions at the
leading edge, where v=0, and the pressure gradient is
exponentially small.) From Eqs. (H3) and (H4) we find:

@p
@x
¼ @r

p

@x
� 1ex

@u
@t

ðH11Þ

Substituting into Eq. (H4), we obtain:

fex 1� /ð Þ þ fð Þ @u
@t
¼ 1� /ð Þ @r

@x
ðH12Þ

where:

r ¼ rð/Þ;/ ¼ /init

1þ @u
@x

ðH13Þ

We solve the equations on a uniform grid using a
forward explicit integration method. At each time step,
we update the gel displacement, u, using the gel stress
from the previous step. Then, we use Eqs. (H10) and
(H11) to find the pressure gradient and liquid velocity.
Then, using Eq. (H13) we compute the new values of the
gel stress using zero stress boundary conditions. Finally,
we use the boundary conditions (Eq. H6) to move the
cell boundaries. We start from the initial conditions of
zero stress and velocities everywhere and compute until
the asymptotically stable steady stress, density, and
velocity distributions evolve.
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