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The mitotic spindle is a complex macromolecular machine that coordinates accurate chromosome
segregation. The spindle accomplishes its function using forces generated by microtubules (MTs)
and multiple molecular motors, but how these forces are integrated remains unclear, since the
temporal activation profiles and the mechanical characteristics of the relevant motors are largely
unknown. Here, we developed a computational search algorithm that uses experimental
measurements to ‘reverse engineer’ molecular mechanical machines. Our algorithm uses
measurements of length time series for wild-type and experimentally perturbed spindles to identify
mechanistic models for coordination of the mitotic force generators in Drosophila embryo spindles.
The search eliminated thousands of possible models and identified six distinct strategies for
MT–motor integration that agree with available data. Many features of these six predicted strategies
are conserved, including a persistent kinesin-5-driven sliding filament mechanism combined with
the anaphase B-specific inhibition of a kinesin-13 MT depolymerase on spindle poles. Such
conserved features allow predictions of force–velocity characteristics and activation–deactivation
profiles of key mitotic motors. Identified differences among the six predicted strategies regarding the
mechanisms of prometaphase and anaphase spindle elongation suggest future experiments.
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Introduction

Mitosis, the process by which identical copies of the replicated
genome are distributed to the products of each cell division,
involves a highly dynamic sequence of coordinated motility
events mediated by a bipolar mitotic spindle (Karsenti and
Vernos, 2001; Pines and Rieder, 2001; Scholey et al, 2003)
(Figure 1A). The motility is driven by forces generated by
multiple molecular motors—kinesins and dyneins—together
with dynamic microtubules (MTs) (Figure 1B) (Kline-Smith
and Walczak, 2004; Brust-Mascher and Scholey, 2007) whose
activities are controlled by kinases, phosphatases and pro-
teases (O’Farrell, 2001; Parry and O’Farrell, 2001; Peters, 2002).
These force-generating and regulatory proteins form a vast
network that coordinates spindle assembly, maintenance and
elongation, as well as orchestrating chromosome segregation.

In the Drosophila syncytial embryo, hundreds of mitotic
spindles progress synchronously through a well-defined and

reproducible sequence of transitions, in which periods of rapid
pole–pole separation are interspersed with quiescent pauses
(Sharp et al, 2000a). Each mitosis begins with prophase when
the centrosomes located on the nuclear envelope separate with
roughly hyperbolic kinetics to reach a steady-state separation
distance of about 6–8 mm. Then following nuclear envelope
breakdown at the onset of prometaphase, the spindle
elongates further to reach another steady-state length of
10 mm in metaphase. Sister-chromatid segregation occurs
during anaphase A and then the spindle undergoes a final
linear episode of elongation to reach a final length of 14 mm in
anaphase B (Sharp et al, 2000b; Brust-Mascher and Scholey,
2002).

Mitotic spindle dynamics depends upon the combined effect
of several distinct molecular processes including, for example,
force-generating mechanisms, changes in the concentration
of MT components, the presence or absence of centrosomes,
the establishment of morphogen gradients, etc. (Sharp et al,
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2000a; Karsenti and Vernos, 2001; Mitchison and Salmon,
2001; Mitchison et al, 2005). The extent to which these distinct
processes influence mitotic spindle behavior appears to differ
in different systems. However, the important idea that
balances of antagonistic forces contribute to mitosis is thought
to apply to a broad range of mitotic spindles. This idea was
originally proposed by Ostergren (1951) to explain chromo-
some positioning and provided a plausible explanation for
spindle pole dynamics in experimentally perturbed diatom
spindles (Leslie and Pickett-Heaps, 1983). On the basis of
observations of interactions among mutant genes encoding
members of the yeast kinesin-5 and kinesin-14 families
(Lawrence et al, 2004), it was proposed that the corresponding
motor proteins could exert antagonistic outward and inward
forces on spindle poles, respectively (Saunders and Hoyt,
1992; Hoyt and Geiser, 1996). The idea that these counter-

balancing forces are generated by an ‘antagonistic sliding
filament mechanism’ was supported by biochemical studies
showing that purified kinesin-5 is a slow, plus-end-directed
bipolar homotetramer capable of crosslinking and sliding
apart antiparallel MTs, whereas kinesin-14 is a minus-end-
directed homodimeric MT bundling motor that could slide
antiparallel MTs inwards (McDonald et al, 1990; Walker et al,
1990; Sawin et al, 1992; Cole et al, 1994; Kashina et al, 1996;
Kapitein et al, 2005; Oladipo et al, 2007; Furuta and
Toyoshima, 2008). The hypothesis that pole–pole separation
depends upon a balance of forces generated by such an
antagonistic sliding filament mechanism is further supported
by observations that purified kinesin-5 and kinesin-14 can
antagonize and balance one another in motility assays (Tao
et al, 2006), although further work is needed to establish if and
how this mechanism contributes to spindle pole dynamics.
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Figure 1 The spindle protein machinery. (A) A cartoon that shows all major components of the spindle. Four MT populations (astral (as), kinetochore (kt), chromosome
arm (chr) and inter-polar (ip) MTs) extend from the poles creating the spindle. Molecular motors bind to MTs and either regulate their ends’ kinetics, or slide them, or exert
forces on the chromosomes and centrosomes. (B) Eight possible MT–motor combinations, with the respective velocities and forces acting on a single MT. asMT: cortical
dynein pulling the MT generates an outward force F1 on the spindle pole. chrMT are anchored at the pole, while MT polymerization and chromokinesins generate a
pushing force F2; a force F3 is associated with such an MT if depolymerases are activated at the MT’s minus end in addition to motor activity at the MT’s plus end. ktMT:
an inward force, F4 is generated on an MT anchored at the pole while kt motors act on the MT plus end; modified force F5 acts on an MT depolymerized at the minus end
in addition to the plus end motor activity; force F6 is exerted if ktMT is depolymerized at its minus end and anchored at its plus end. ipMT: an outward force, F7 results from
the combination of kinesin-5 and kinesin-14 actions on the MT anchored at the pole, while a force F8 is exerted by these motors on an MT being depolymerized at its
minus end. (C) The experimentally measured time series for spindle length (pole–pole distance) in wild type (WT) and inhibited spindles used in the optimization process
(details in Supplementary Figure 1, referenced in Supplementary Table 2). Colors correspond to motor colors in the legend. Previous studies revealed that the double
inhibition of kinesin-5 and kinesin-14 fully rescues metaphase spindle assembly (dashed blue line, not used here) (Sharp et al, 2000b). However, recent studies suggest
that this effect results from the partial inhibition of kinesin-5, whereas a more complete inhibition leads to prometaphase spindle collapse even in kinesin-14 null mutants
(green line, used here), suggesting that an additional unknown inward force also opposes kinesin-5 and contributes to the collapse (Brust-Mascher and Scholey,
in preparation).
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In the Drosophila syncytial embryo, a motor-generated force
balance produced by systems of complementary and antag-
onistic motors is proposed to play a dominant role in spindle
assembly/elongation and chromosome segregation (Sharp
et al, 2000b). For example, comparison of the temporal
changes in Drosophila embryo spindle length in five mutant
and biochemically inhibited spindles reveals characteristic
defects in pole–pole separation compared to wild-type (WT)
spindles. Each defect can be most naturally explained by a
shifting force balance in the spindle resulting from the
inhibition of specific molecular motors (Figure 1C). For
example, when either dynein or kinesin-5, presumably pulling
the astral (as) MTs outward or sliding the inter-polar (ip) MTs
outward, respectively, are inhibited, spindle length decreases.
On the other hand, both kinesin-13 and -14 are hypothesized to
contribute to the inward force on spindle poles by shortening
the MTs connecting the poles and chromosomes and by sliding
inward ipMTs, respectively, and when either of these motors is
inhibited, spindle length increases.

Recently, mathematical modeling (reviewed in Gardner and
Odde, 2006; Mogilner et al, 2006) was used to examine the role
of forces and MT dynamics in spindle development (Nédélec,
2002; Cytrynbaum et al, 2003; Brust-Mascher et al, 2004;
Gardner et al, 2005; Civelekoglu-Scholey et al, 2006; Burbank
et al, 2007; Cheerambathur et al, 2007). For example, one of
these models explained pre-nuclear envelop breakdown
spindle elongation to the steady state during prophase as
being the result of a balance between a constant cortical
dynein-generated force pulling asMTs outward and an
antagonistic spindle length-dependent Ncd-generated force
pulling the ipMTs that link the poles inward (Cytrynbaum et al,
2003). Another model (Brust-Mascher et al, 2004) quantita-
tively explained how the persistent sliding apart of ipMTs by
kinesin-5 motors, combined with changes in the activity of an
antagonistic MT depolymerase on the spindle poles, produces
poleward flux in pre-anaphase B spindles and drives anaphase
B spindle elongation. These models provided a successful
description of the experimental data because of the relative
biochemical simplicity of prophase, during which most mitotic
motors are sequestered in the nucleus and do not contribute to
the pole–pole separation mechanism, and the structural
simplicity of anaphase B, during which the ipMTs dominate
spindle pole dynamics. However, even these relatively simple
models were based on guessing (plausible values of) a
formidable number of parameters. When model complexity
grows beyond certain level, intuition alone is insufficient.
Reverse engineering, an approach complementary to this
‘explicit’ modeling of a simplified system, uses computational
optimization to automatically identify the appropriate model
parameter values by constraining the parameters with
quantitative experimental data.

Now that the inventory of mitotic force-generating and
regulatory molecules is close to completion (e.g. Bettencourt-
Dias et al, 2004; Goshima et al, 2007), the task of elucidating
the mechanism of action of the mitotic spindle at a systems
biology level is becoming realistic. Part of this task is to
‘reverse engineer’ the spindle—i.e. using experimental data to
understand the temporal activation sequence and the mechan-
ical characteristics of the force generators acting during
mitosis—and reconstituting the spindle in silico. This presents

a challenge that seems prohibitive: with more than 10
molecular motors being involved, each characterized by
unknown mechanical, kinetic and regulatory parameters,
and the structural complexity of the spindle, especially in
metaphase, it is impossible to use intuition and traditional
modeling to explain the dynamics associated with the
sequence of transitions characteristic of mitotic progression.
To address this challenge, here we develop and utilize a novel
computational algorithm that automatically builds force
balance models from a few MT–motor modules and uses
quantitative experimental data to screen and optimize them.
This algorithm ultimately identifies all plausible activation
sequences and mechanical characteristics of the molecular
motors that mediate spindle elongation in the Drosophila
embryo.

Results

Force balance model

We divide the complex spindle machinery into its elementary
structural components based on four distinct MT populations
that are known to act within the spindle, namely astral (asMT)
inter-polar (ipMT), chromosomal (chrMT) and kinetochore
(ktMT) (Figure 1B). For each MT population, we first calculate
the force acting on a single MT. For example, to obtain the force
acting on a single chrMT, we consider two possible scenarios
shown in Figure 1B. In the first case, the chrMT’s minus end
is anchored at the pole, while its plus end is connected to
the chromosome through the chromokinesin motor on the
chromosome arm. Then, the relative velocity between
the motor and the chrMT is the difference between the pole
velocity, Vpole, and the chromosome velocity, Vchr. We
characterize each mitotic motor with an assumed linear
force–velocity relation (Nédélec, 2002; Cytrynbaum et al,
2003) characterized by two parameters—maximal stall force
and free unloaded velocity (in this case, Fchr,mx and Vchr,mx,
respectively): if the MT does not move relative to the motor,
then the motor pushes the MT in the poleward direction with
the maximal, stall, force. However, if the MT slides poleward
with the rate (Vpole–Vchr) relative to the chromokinesin motor,
then the force exerted by this plus-end-moving motor on the
chrMT is lower,

F2 ¼ Fchr;mx 1 � Vpole � Vchr

Vchr;mx

� �
ð1Þ

(there is zero force if Vpole�Vchr¼Vchr,mx). In principle,
multiple force generators can contribute to this force on the
chromosome arm, including MT polymerization. In the model,
we combine them into one single ‘composite’ motor and
assume that it can be characterized by a linear force–velocity
relation.

An alternative possibility is that the chrMT is not anchored
at its minus end, but rather is being actively depolymerized by
the pole-associated MT depolymerase (i.e. kinesin-13, or a
combined effect of all the MT depolymerases; Figure 1B). In
this case, we have to consider the force balance on this MT.
Since the viscous drag for a single MT is negligible (Howard,
2001), we simply have to balance two motor forces (on the
chromosome arm and at the pole: left- and right-hand sides of
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the equation, respectively), each characterized by its own
force–velocity relation:

�Fchr;mx 1 �
Vchr

speckle � Vchr

Vchr;mx

 !

¼ Fdep;mx 1 �
Vchr

speckle � Vpole

Vdep;mx

 !
ð2Þ

where Vchr
speckle is the velocity of the chrMT in the laboratory

frame of reference (that could be observed as the velocity of a
fluorescent tubulin ‘speckle’). Linear equation (2) is easily
solved, giving us the chrMT velocity Vchr

speckle such that the
motor forces acting on that MT are balanced. Then, the force
pushing the spindle pole outward can be computed by
substituting this Vchr

speckle into the negative depolymerase force:

F3 ¼ �Fdep;mx 1 �
Vchr

speckle � Vpole

Vdep;mx

 !
ð3Þ

To compute the total force on the chrMT population,
we have to determine which motors are active and when.
We do not explicitly model the mitotic regulatory network,
but rather reduce it to the effective binary ‘on’ and ‘off’
‘switches’ of the molecular motors. We define the binary
switch time-dependent parameters Pdep(t) and Pchr(t) (for
depolymerase and chromokinesin) that are equal to 1 if the
respective motor is engaged and generating force and
either MT movement or growth/shortening occurs and to 0
otherwise. Using these switch parameters and equations (1)
and (3), we obtain the total force on the entire population
of chrMTs:

Fchr tð Þ ¼ Pchr tð ÞNchr
Achr

p S � Dð Þ2

� 1 � Pdep tð Þ
� �

F2 þ Pdep tð ÞF3

� �
ð4Þ

Equation (4) works as follows. Expression F¼((1�Pdep(t))F2þ
Pdep(t)F3) represents the single MT force: if the depolymerase
at the pole is active, Pdep¼1, and F¼F3, otherwise, Pdep¼0, and
F¼F2. Nchr is the total number of chrMTs, so NchrF is the
maximal possible total chrMT force. If the chromokinesin
motor is active, Pchr¼1, otherwise Pchr¼0 and the whole force
is zero. Finally, Achr, additional parameter, is the chromosome
arm area, while the difference between S(t), the pole-to-pole
distance, and D(t), the inter-sister chromatid distance, is the
double pole-to-chromosome distance. The dimensionless
geometric factor Achr/p(S�D)2 determines the fraction of the
MTs impinging on the chromosome arm.

Similar arguments are used in the Supplementary informa-
tion to calculate the total forces Fip, Faster and Fkt acting on the
three other MT populations, and we summate them to obtain
the total forces applied to the spindle pole, Fipþ Fchrþ
Faster�Fkt, and to the chromosome, Fkt�Fchr�Fcohesion. (The
results indicate that the kt forces are usually directed inward,
while all others outward, hence the expression to the resulting
net outward force on the pole. A chromosome is pulled
outward by the kt force resisted by inward chromokinesin
force and cohesion between the sister chromatids; the latter is
approximated by a linear spring.) One additional twist of the
model is that to calculate the ipMT forces, we calculate the
dynamic overlap between the ipMTs at the spindle equator and

assume that two active motors (kinesin-5 and -14) and passive
crosslinkers generate additive sliding forces proportional to
the overlap length. In the low Reynolds number environment
of the cell, pole and chromosome separation velocities are
determined by the balance of the total MTand cohesion forces
and the effective viscous drag (Nédélec, 2002; Cytrynbaum
et al, 2003; Brust-Mascher et al, 2004; Civelekoglu-Scholey
et al, 2006):

mpole

2

dS

dt
¼ Fip þ Fchr þ Faster � Fkt ð5Þ

mchr

2

dD

dt
¼ Fkt � Fchr � Fcohesion ð6Þ

where mpole and mchr are the effective pole and chromosome
drag coefficients, respectively. (The coefficients 1

2 are included
to account for the fact that the pole and chromosome
rates of movement away from the spindle equator are half
that of the respective pole–pole and chromosome–chromo-
some separation velocities.) By solving equations (5) and (6),
we recover the temporal dynamics of spindle poles and
chromosomes.

Thus, our model has a modular character: we construct the
‘virtual spindle’ (Figure 1A) from the ‘building blocks’—eight
possible MT–motor configurations (Figure 1B)—using a
combinatorial approach, in which the ‘building blocks’
composition changes over time based on the 11 time-
dependent binary switch parameters representing the activity
timing of all major known force generators in the spindle
(Figure 1). We allow each motor to switch its activity only once
during mitosis: the ith motor (where i¼1,y, 8) is active or not
active all the time, or it is active (inactive) in the beginning and
switches off (on) at a random time tiswitch. In addition to these 8
switching times, each such virtual spindle is characterized by a
random choice of 3 more switching times (regulating changes
in MT numbers and chromosome cohesion), 16 stall forces and
free unloaded velocity of 8 mitotic motors, and 8 other
geometric, kinetic and mechanical parameters, 39 parameters
in total. Each parameter’s value can vary in certain wide range
justified by available information (see the Supplementary
information, Supplementary Table 1). This formulation allows
us to define a 39-dimensional ‘model parameter space’ and
encode multiple models by points in this space corresponding
to a large number of possible combinations of force–velocity
relations, variations in the kinetics and timing of the regulatory
switches.

The model is simple, based on drastic assumptions of
perfectly symmetric, an effectively one-dimensional spindle, a
homogenous distribution of motors, no dependence of motor
affinity on the generated forces, only binary variations in the
motor activities and MT numbers, additive multiple motor
forces, etc. Even with this conceptual simplicity and a
relatively small number of spindle structural elements, the
total number of possible ways in which multiple mitotic
motors of various characteristics can be integrated to build
different mitotic spindles is astronomical. Thus, a straightfor-
ward scan of the entire model space is impossible, and we
resort to the stochastic optimization process to identify the
model parameters that obey experimental constraints.

Reverse engineering of mitotic force integration
R Wollman et al

4 Molecular Systems Biology 2008 & 2008 EMBO and Nature Publishing Group



Results of computational searches of the model
space

To determine if the temporal regulation of mitotic motors’
activity is essential, we searched for ‘virtual spindles’ that
could mimic the spindle elongation in WTembryos (Figure 1C)
without any motor switching during mitosis, and we did not
identify any good fit for the data under these conditions. We
then searched for models that could explain the kinetics of
spindle pole separation (Figure 1C) and chromosome motility
(Supplementary Figure 4) in WT embryos, with motors
allowed switching on or off only once. The number of models
identified this way was very high (B10 000). Figure 2A–D
shows the time series for forces acting on four MT populations
in the virtual spindle for just four out of the thousands of
different models that agree with the WT data predicting almost
exactly the time series for WTspindle elongation in Figure 1C.
In the first two of these models (Figure 2A and B) that are very
similar to each other, the spindle is governed by a large inward
ktMT force being balanced by a large outward force generated
by chrMTs. The ipMTand asMT forces in these two models are
almost negligible. In the third, conceptually different, model
(Figure 2C), all four MT populations participate in the force
balance, but only up to the anaphase onset, after which all
forces decrease by several orders of magnitude from hundreds
to single picoNewton range. In the fourth, also very distinct,
model (Figure 2D), the forces generated by all four MT
populations are significant at certain time intervals (Supple-
mentary information and Supplementary Figure 2).

To analyze the multiple models statistically, we developed a
quantitative distance measure that estimates how similar pairs
of models are. This distance measure is based on differences in
the magnitudes of forces and in the activity profiles for model
pairs (Supplementary information). To illustrate the inter-
model distances that are hard to visualize in high (39-)
dimensional parameter space, we used this distance measure
and projection onto a two-dimensional manifold in the model
parameter space (Supplementary information; Figure 2E). In
this figure, the metric two-dimensional distance between the
model pairs reflects the multi-dimensional distance between
full parameter sets characterizing the pairs of models. The
positions of four sample models from Figure 2A–D in this
projection, the quantitative similarity of models A and B, and
significant differences among models B–D can be seen in
Figure 2E.

The results of this first search lead us to the following
conclusions: (i) there is a tremendous variety of plausible model
parameters that can explain the WT behavior, whose combina-
tion can be complex and counterintuitive—there is no way to
come up with a motor combination generating the force sequence
shown in Figure 2D, for example. So, the WT data set, on its own,
is not sufficient to discriminate between the multiple potential
mechanisms of mitosis in this system. (ii) Many models are
qualitatively different from each other, like those illustrated in
Figure 2B–D, but some are very similar to each other, such as the
pair shown in Figure 2A and B—the difference between those is
in the small variation of a few parameters, and biologically, this
pair describes basically the same molecular mechanism. This
demonstrates the need for proper clustering of the models
resulting from the computer search.

Clustering analysis (Supplementary information and Sup-
plementary Figure 3) of the B10 000 models identified B1000
distinct model groups. Even this large number of possible
distinct model types is an underestimate of the expected
number of force integration scenarios. Convergence analysis
(Supplementary information) showed that the search is still far
from a complete exploration of total model space, and we
estimate that there are B1500 possible model groups that can
explain the WT data (Supplementary information).

To further constrain plausible models, we repeated the
above search in an iterative manner, using at each iteration
more of the experimental data on the dynamics of spindle
length following inhibition of different motors (Figure 1C), in
addition to the WT data. Specifically, we first used data for
both WT spindles plus those with inhibited dynein, then WT,
dynein- and kinesin-5-inhibited spindles, then we added data
for kinesin-13-inhibited spindles, then for kinesin-14-null
spindles and finally we incorporated the data for kinesin-5-
inhibited/kinesin-14-null spindles (explained in Figure 1). The
models were deemed successful if they predicted, with only a
small error, the time series for spindle length dynamics both
for WT, and for experimentally perturbed spindles. At the
present, we do not have the data for the time-dependent inter-
chromosomal distance for the perturbed spindles; as discussed
in the Supplementary information, such data probably would
not be of much use constraining plausible models. With each
iteration, the search was conducted independently of previous
iteration thereby not restricting the possible models to ones
that were previously identified.

As expected, we saw that the addition of more experimental
data decreased the number of identified model groups.
Figure 2F shows the predicted number of groups from the
convergence analysis as the experimental data accumulate. We
saw that from B1500 model groups, when only WT data were
used, there were only 6 different model groups ‘surviving’ the
scrutiny of the whole body of the experimental data after 5
iterations. Furthermore, with each additional iteration, the
models that were in agreement with more experimental data
occupied a lesser segment of the parameter space (shown in
the two-dimensional projection (same as that in Figure 2E) in
Figure 2G). This suggests that the additional experimental data
can indeed constrain the number of viable spindle models.
This trend can be seen further in the properties of individual
components of the spindle machinery. For example, Figure 2H
shows the probability density estimates of two parameters
(switching time and force) that characterize the kinesin-14
motor, Ncd. The initially wide and almost unconstrained
distributions of the possible parameter values obtained when
only WT data are used are observed to narrow down
significantly as the additional inhibition data are used. A
similar trend was seen for parameters characterizing other
force generators.

Comparison of conserved model features with
experimental data

The final result of this iterative elimination process is a set
of B1000 models that are clustered into six groups (Figure 3;
the temporal changes in total force generated by each MT
array and the ‘on–off’ motor switching are shown for all
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these models in Figure 3A and for one selected model
as an illustrative example in Figure 3B). Convergence
analysis suggests that the search reached saturation and that
all possible model types were identified (Supplementary
information and Supplementary Figure 2). Interestingly,
though the available data are insufficient to definitively

narrow down the number of spindle model groups to one,
thereby identifying the ultimate Drosophila spindle model,
we discovered that several model properties were highly
conserved among all B1000 models belonging to the six final
groups, hinting that these properties are required for proper
spindle design and mitotic progression in this system.
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Thus, in all the models, the depolymerase(s) (Pdep in
Figure 3), shortening the MTs at the pole thereby counteracting
the outward thrust of other motors, must be active throughout

mitosis to restrain spindle elongation, and must be switched
off only at the onset of anaphase B to allow rapid pole–pole
separation, in agreement with previous experimental data
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(Brust-Mascher and Scholey, 2002; Brust-Mascher et al, 2004;
Rogers et al, 2004). The timing of kinesin-5 activity (Pk5 in
Figure 3) is also highly conserved among all the models. This
motor has to be switched on during prometaphase to exert
outward forces on ipMTs until the end of anaphase B and it is
the main force generator sliding the poles apart, again in
agreement with experimental observations (Sharp et al, 1999).
Dynein (Pdyn in Figure 3) switches off uniformly before the end
of metaphase and does not contribute to the outward force in
the end of mitosis—this model prediction is surprising, since
previous work suggested that cortical dynein contributes to
spindle pole separation during late anaphase B (Sharp et al,
2000b). This (possibly transient) downregulation of dynein
activity would be hard to predict using intuition without the
system-level search, and it needs to be tested in the future.

Also, the forces exerted on asMTs and ipMTs are conserved:
outward asMT forces of hundreds of picoNewtons pull the
poles apart before metaphase and switch off afterward, and
then ipMTsliding forces of hundreds of picoNewtons take over
and push the poles apart during late prometaphase and
metaphase and drastically decrease at the anaphase onset. All
six model groups predict that the spindle is largely balanced by
the outward ipMT forces, assisted at early stage by asMT forces
and by inward ktMT forces. The magnitude of the forces and
the timing of their action are model predictions that can be
tested in the future. Other conserved mechanical features are
discussed in the Supplementary information.

In addition to illuminating properties of the entire spindle,
the modeling suggests that specific biophysical properties of
the participating molecular motors are conserved. The plus-
end-directed kinesin-5 and minus-end-directed kinesin-14
motors are proposed to act antagonistically on the antiparallel
overlap zone of the ipMTs (Figure 1). Our search predicts that
to reproduce the experimental results, kinesin-5 should be
strong (great stall force) and slow (small unloaded velocity),
while kinesin-14 should be weak (small stall force) and fast
(great unloaded velocity). Figure 4 shows the predicted force–
velocity curves for these two motors. Interestingly, this
prediction was recently supported by in vitro biochemical
studies: the experimentally measured unloaded velocities of
the two motors are shown in the inset of Figure 4; indirect
measurements reported in Tao et al (2006) are consistent with
the notion that the stall force of kinesin-5 is greater than that of
kinesin-14. Note, that the predicted motors’ force–velocity
relations (Figure 4) illustrate the robustness of the models to a
few-fold parameter fluctuations, but not to order of magnitude
changes. Qualitative feature of intersection of the force–velo-
city curves of the opposing motors is conserved as well.
Predictions of other motors’ force–velocity properties can be
gleaned from the Supplementary information, Supplementary
Table 3 and Supplementary Figure 6.

Open questions: differences between the six
identified model groups

While many of the model features are conserved among all
identified models, the six identified model groups have
interesting biological differences among them summarized in
Table I. Group 1 is unique in its difference from the other five

groups in the following respect: outward forces resulting from
chromosome arms, due either to chromokinesins or to MT
polymerization, are downregulated during anaphase B. To
maintain the balance of forces, the inward kt forces in this
group are much smaller in magnitude than in the rest of the
groups. This smallness is due to ktMT polymerization
counteracting the effect of the inward-thrusting motors.
Therefore, in this group of models, the balance of small,
picoNewton-level forces is characteristic for the anaphase B
spindle, unlike hundreds of picoNewton forces at the end of
mitosis predicted by all other groups. The largeness of the
parameter space corresponding to this group (Figure 3) could
also mean that this is the most robust strategy of the spindle
design, though at the present we cannot support or reject this
statement. Below, we describe in detail the sequence of
molecular events predicted by this group.

Group 2 is unique among the six groups since it is the only
one that has a strong component of cortical forces that
contribute to prometaphase elongation. Mechanistically, this
is achieved by having a high number of asMT (B200) with the
cortical dynein active and pulling on the asMTs comparing to a
low number of asMT (B20) in the rest of the groups. Although
in groups 2–6, forces on the chromosome arms are generated
during anaphase B, in groups 2–3 and 5–6, these forces’
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Table I Differences among six identified model groups

Group number 1 2 3 4 5 6

Strong cortical forces during
prometaphase

� + � � � �

Chromosome arm forces—active during
prometaphase

+ + + � + +

Chromosome arm forces—active during
anaphase B

� + + + + +

ktMTs are in polymerization state during
prometaphase

� � � + + �

ktMTs are in depolymerization state
during metaphase

� � + � � �

ktMTs are in polymerization state during
anaphase B

+ � � � � �
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contribution starts early in prometaphase, whereas group 4 is
unique in that the chromosome arm forces are activated only
during anaphase B. The rest of the differences among the
remaining groups all result from differences in ktMT
dynamics. Group 3 is unique since it is the only group where
ktMT switch into depolymerization mode in metaphase.
Groups 4 and 5 have ktMTs in polymerization state in early
prometaphase, while in group 6, ktMTs are inactive until they
start depolymerizing during anaphase B. Mechanistically,
these differences in ktMT activity are achieved by differences
in the switching times regulating activities of several partici-
pating motors and MT dynamics.

Predicted sequence of molecular events guiding
spindle elongation

We chose one of the models from the largest model group 1 to
describe the predicted sequence of molecular events guiding
the spindle elongation (Figure 5). In this model, at the
beginning of prometaphase, cortical dynein pulling forces
supported by pushing forces from the chromosome arms are
balanced by inward forces resulting from MT minus end
depolymerization at the poles. Then, recruitment of kinesin-5
to the antiparallel ipMTs increases the net outward force, while
dynein is switched off followed by the switching on of MT

depolymerases at the kts. All these pre-metaphase events
result in relatively small force balance changes, because strong
antagonism between kinesin-5 and kinesin-13 on ipMTs
largely determines the total force. Upregulation of kinesin-14
then reduces the net ipMT outward force to produce the
metaphase steady state and the subsequent downregulation of
the chromosome arm forces and degradation of cohesins
substantially reduce the ktMT tension and mark the transition
to anaphase A. Finally, anaphase B is the result of the
switching off of MT depolymerization at the poles. Figure 5A
shows the predicted time series for the spindle length,
faithfully imitating the WT data. Figure 5B shows the forces
acting on all four MT populations and generating the predicted
spindle elongation, while Figure 5C illustrates the timing of
switching of the mitotic motors responsible for generation of
these forces. Prediction of this, likely most plausible, mechan-
istic scenario of the Drosophila embryo mitotic spindle
elongation is arguably the most valuable modeling result,
and would have been impossible to obtain without such
a massive computer search.

Testable predictions generated by modeling

Variability of the multiple resulting mechanisms suggests that
a few alternative activity profiles of mitotic force generators
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are possible and that further experimental work is needed to
narrow down the number of groups and to identify the
ultimate mechanism of spindle pole separation in Drosophila
embryo mitosis. In other systems, it has been shown that
chromokinesins are degraded in an APC-dependent manner
during the metaphase-to-anaphase transition (Funabiki and
Murray, 2000) and that this degradation is essential for entry
into anaphase. It is yet to be determined whether this is the
case in the Drosophila embryo system. The possibility that
forces are generated by chrMT polymerization even after the
chromokinesins are degraded further complicates the issue, so
biophysical measurements of forces on the chromosome arms,
as well as a chromokinesin-GFP-tagging experiment will be
required to discriminate among models in group 1, group 4 and
all other groups.

Time lapse movies of spindles with GFP-labeled tubulin (our
unpublished data) together with immunofluorescence micro-
scopy (Sharp et al, 1999) suggest that the density of asMT is
higher during later stages of mitosis than in early stages. This
evidence does not support group 2 where the number of asMT
in prometaphase is predicted to be much higher than in the
later stages. The caveat of this observation is that it is
impossible to determine the exact number of asMTs that are
actively engaged with the actin cortex by using GFP-tubulin
studies alone. Reconstruction of the MT array using serial
section electron microscopy (EM) at different stages of mitosis
would be required to resolve this issue. Finally, determining
the state of ktMTs is very challenging since it is very difficult to
distinguish between the different MT populations, let alone
their dynamic state, by using fluorescence microscopy. The
use of EM could be very helpful in this respect as well: it will be
possible soon to determine the MT dynamic state in a fixed EM
image based on the MT structure. Systematic characterization
of kt fibers during consecutive mitotic stages would provide
information necessary to distinguish among groups 1, 3, 2–6,
and 4–5. In principle, if and when the data described in these
two paragraphs become available, Table I demonstrates that
such data will be sufficient to choose a single model group
from the current six possibilities.

The computational modeling described above also allows
computer experiments, suggesting additional future experi-
mental studies. Previous studies revealed that the double
inhibition of both kinesin-5 and kinesin-14 fully rescues
metaphase spindle assembly (Figure 1C, dashed blue line)
(Sharp et al, 2000b), but in recent studies we observed that the
inhibition of kinesin-5 in null mutants totally lacking kinesin-
14 function sometimes caused a collapse of the spindle
(Figure 1C, green line). While this apparent discrepancy
requires further experimental scrutiny, its analysis using the
model suggested that the observed differences in the extent of
inhibition of kinesin-5 activity could be a critical factor.
Specifically, we ran simulations of the models from group 1
that were modified so that the kinesin-5 motor was partially
inhibited—its maximal force was factored by a parameter less
than unity. The simulations predicted that the partial inhibi-
tion of kinesin-5 to a concentration of B90% would result in a
phenotype similar to that seen in embryos containing a WT
level of kinesin-5. Further simulations predicted that the effect
of more severe partial inhibitions of kinesin-5 would produce
shorter metaphase spindle than those seen in WTspindles but

should have little effect on anaphase B spindle elongation
(Figure 6). This prediction is in contrast with previous models
for spindle length carried out in Drosophila S2 cells (Goshima
et al, 2005), which suggested that metaphase spindle length is
insensitive to the levels of kinesin-5. In addition, recent
unpublished experiments suggest that the kinesin-5-depen-
dent force balance that maintains the prometaphase spindle
requires inward forces generated by kinesin-14 together with
another unidentified factor. Our model further predicts that
this additional inward force could be produced by a kinesin-13
depolymerase acting on ipMTs at the spindle poles and future
experiments will be directed at testing this prediction. These
examples illustrate the utility of our modeling strategy in
identifying key, experimentally testable predictions.

Discussion

To summarize, we performed computer searches in the vast
model space and identified six strategies for the temporal and
structural organization of mitotic motors and MTs within the
spindle, which quantitatively explain our observations of
spindle elongation kinetics in WT, mutant and inhibited
Drosophila embryos. Each of these strategies is characterized
by specific activity timing and mechanical properties of each
motor, MT number and a few other parameters. Note that the
discovered models could not be obtained simply by combining
earlier explicit models of specific mitotic stages, for example
the inactivation of dynein (on asMTs) prior to the end of
metaphase has not been considered nor suggested so far.
Importantly, a number of features are conserved for all
predicted models, including the timing of the activity of
dynein and a few kinesins, as well as the forces and velocities
of crucial mitotic motors. The search also revealed that large
inward and outward forces in the range of hundreds of
picoNewtons are closely balanced, which hints at a general
design principle of mitotic spindle mechanics. In addition, the
search also uncovered areas of uncertainties, mostly regarding
the role of forces generated on the chromosome arms by MT
polymerization and chromokinesins, the exact forces at
the kts, and MT numbers and lengths. We make suggestions
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about future experiments that could help to resolve these
uncertainties.

The use of an unbiased systematic computational search
revealed a plethora of models producing basically the same
overall phenotype. Even the most restricted search identified
hundreds of model variants, all predicting almost identical
spindle dynamics. Polymorphism is well known to exist
among protein molecules such as those composing parts of
the mitotic machinery. Our analysis suggests that a parallel
polymorphism exists in terms of accurate model representa-
tion, so that there is not necessarily ‘one true model’, but
rather a set of models, all slightly different in their characteri-
stics but capable of generating the same overall phenotype.
This ‘model polymorphism’ makes our computational search
approach a useful ‘hypothesis generator’ that can identify key
experiments that are needed to further elucidate the mechan-
ism of spindle elongation.

As is true for any model, our models depend on a set of
assumptions, and this introduces a number of caveats into our
modeling strategy. For example, (i) it is plausible that other,
either known (e.g. kinesin-6), or yet to be identified, force
generators act during mitotic progression; (ii) motor forces
may not be additive; (iii) force–velocity relations may not be
linear and (iv) motors may switch on and off more than once
during mitosis. In addition, we assumed that the microinjected
antibody inhibitors (Figure 1) serve only to reduce the effective
concentrations of the target motor, but other effects (e.g. the
antibody-induced inhibition of the mechanochemical cycle)
could contribute to the observed inhibition (Ingold et al,
1988). Such problems will be addressed in future applications
of our modeling methodology.

Furthermore, the large-scale search comes with a price. It
requires using an approximation similar to a mean-field
approximation in theoretical physics and other simplifying
assumptions to reduce the computation time for each possible
set of parameters. In reality, the Drosophila embryo spindle is
highly stochastic (Cheerambathur et al, 2007), but this feature
was ignored in the search. Incorporating realistic stochasticity,
originating from MT dynamic instability and relatively small
(in a thermodynamic sense) number of motors, into the entire
search is computationally prohibitive, so instead we focused
on investigating how the ‘winning models’ behave following
incorporation of simplified stochasticity, such as white
Gaussian noise and spread of individual MT lengths as a
result of dynamic instability. The simulation results (not
shown) demonstrated that incorporating the MT dynamic
instability and additional stochasticity in motor concentration
would not change the predicted pole–pole separation profile,
supporting the deterministic approximation used in the large-
scale search.

This study builds on and extends several previous spindle
models that were developed for the Drosophila embryo (Brust-
Mascher et al, 2004; Cheerambathur et al, 2007) and other
systems (Nédélec, 2002; Burbank et al, 2007). We extended the
idea of model screening and parameter search first proposed
for spindle models by Nédélec (2002) and improved it from
random sampling to more efficient search that uses repeated
stochastic optimization. The improved efficiency is crucial
since, unlike in the work of Nédélec (2002), in which the goal
was to identify regions of parameter space that produce

qualitatively interesting behavior, in this study the goal was to
produce good fit to experimental data, similar to Gardner et al
(2005).

Some predictions derived from all six groups of models
appear to contradict available data (Sharp et al, 2000b; Brust-
Mascher and Scholey, 2002). For example, the models predict
that kinesin-14 is only activated after prometaphase, that ktMT
flux is virtually absent during metaphase (Supplementary
Figure 5) and that the partial inhibition of kinesin-5 produces
instability in the metaphase steady states. These discrepancies
indicate areas of uncertainty that merit further attention. It is
possible, based on preliminary estimates, that changing
assumptions (i) and/or (iii) would lead to a correct prediction
of the timing of kinesin-14 activation, while changing
assumption (iv) would lead to a correct value for ktMT flux.
(In the present form, the model has ktMTs permanently
attached to the kts and, in fact, agrees with recent observations
of DeLuca et al (2006)). We see these inconsistencies as
supporting the credibility and usefulness of the modeling,
since they identify topics where further work is needed to
reconcile theory and experiment, which is healthy for the
discovery process.

The ultimate goal of systems biology is to construct
comprehensive quantitative models for cellular function.
One possible strategy is to ‘build with a scaffold’ (Ideker and
Lauffenburger, 2003) by initially constructing coarse grain
models and later building on the results of these models to
construct more elaborate detailed models. The construction of
the initial models can be based on high-throughput data or, as
in our case, reverse engineering of simplified models. A few
pioneering studies have used similar reverse engineering
approaches to different biological systems (reviewed in
Ma’ayan et al (2005)), mainly applying them to cell regulatory
networks (Sachs et al, 2005). Our study applied a reverse
engineering approach that uses global indirect quantitative
data to perform a comprehensive computational search to
identify the mechanical design of the spindle that can explain
such data. Our strategy allows us to examine numerous
possible parameter values and alternative mechanisms using
coarse grain models and later refine the ‘promising’ models to
include additional components with more detailed models.
The suggested framework can be easily adapted to mitotic
spindles in other organisms and in vitro (that may be designed
differently) and, in fact, to many other biomechanical systems
for which sufficient quantitative data exist.

Materials and methods
In brief, the analysis, performed automatically by the computer
algorithm, proceeds as follows: (i) model parameters are chosen
randomly from the allowed ranges; (ii) at each computational step,
total MT forces for the four MT populations are found using equations
similar to equation (4), the spindle geometry is updated by
numerically solving equations (5) and (6), then the forces are updated
for the updated geometry, etc., for the time tE280 s. The solutions for
each such parameter choice predict time series for the spindle forces
and length. (iii) We collected several experimental data sets for time-
dependent changes in spindle length in WT and experimentally
perturbed spindles, and we averaged, smoothed and aligned the data
(Supplementary information and Supplementary Figure 1; Figure 1C).
The predicted time series for the spindle length are automatically
compared with the corresponding data (Figure 1C), and a ‘score’ is
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assigned to the model, so that if certain mathematical difference
between the predicted and measured length time series is great, then
the model’s score is poor; while if the difference is small, the score is
good (quantitative details in Supplementary information). The model
is ‘screened’ so that if the score is poor (good), the model is discarded
(selected). (iv) Another set of model parameters is chosen randomly,
until thousands of ‘good’ models are amassed. (v) A genetic algorithm
then automatically modifies or ‘mutates’ the successful ‘selected’
models, and repeated stochastic optimization results in the evolution
of increasingly adequate multiple models, each producing excellent
fits to all the available experimental data. (vi) Finally, a cluster analysis
determines which of the adequate models are qualitatively different
from each other, and which differ just by slightly distinct parameter
values, and identifies minimal sets of successful strategies for force
integration in mitosis. We conducted this optimization search process
until a convergence analysis showed that the search had reached
saturation and all possible model groups had been found. All
optimizations and simulations were performed on an 11-node Linux
cluster (each node had a 2� Opteron-246 processor) using a
combination of Matlab and C codes. Full description of the details of
the numerical analysis and computational search is provided in the
Supplementary information.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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1. Description of 'model space' 
1.1 Introduction 

Here we derive a general model for spindle elongation during mitosis from prometaphase to the 
end of anaphase B. This derivation is based on calculating additive molecular motor forces that act 
on spindle poles and on ordinary differential equations describing the kinematics and movements of 
the spindle. To construct our model, we follow a reductionist approach and divide the spindle into its 
structural components – different populations of spindle microtubules (MTs) – and analyze each of 
the components separately. The analysis of each component is based on a detailed biophysical 
description of the balance of various MT/motor force generators. The spindle components are then 
combined together to form a complete ‘virtual spindle’. 

  
The spindle is highly dynamic and undergoes several transitions during mitosis. These transitions 

are a result of a complex biochemical regulatory network of kinases, phosphotases and proteolytic 
enzymes that regulate both force generators and spindle structure. To translate this regulatory 
network into mathematical language, we introduce the notion of binary switches. Binary switches are 
a simplified representation of the biochemical regulation during mitosis that controls the activity 
profiles of mitotic molecular motors, and, ultimately, mitotic forces. When certain switch is ‘on’ 
(=1), the corresponding motor is engaged and is ‘force-generating’; when a switch is ‘off’ (=0), the 
motor is not engaged. We allow each force generator to switch at most once during mitosis, so 
respective variable P(t) is equal to either 0 or 1for the whole duration, or it switched from 0 to 1 at 
some t = τ, or it switched from 1 to 0 at some t = τ. τ is the random parameter, independently chosen 
for each switch. The different combinations of forces encoded by the switch parameters determine 
the overall time-dependent forces acting on the spindle poles and chromosomes. The model is 
general in the sense that tremendous number of possible multiple scenarios are encoded in the 
unified mathematical framework by the binary switch parameters and mechanical parameters for 
molecular motors. By ‘shuffling’ through all possible combinations of the multiple binary switches, 
and ‘scanning’ mechanical parameters, we can in principle generate every possible force balance 
model of the spindle.  

 
To construct the model, we first divide the spindle MTs into four populations of different MT 

types: astral (asMT), inter-polar (ipMT), kinetochore (ktMT) and chromosome-arm (chrMT) (Fig 
1b). In each of these MT populations, there are potentially several possible configurations of force 
generators on each single MT in that population. These configurations differ from each other based 
on the activity of different molecular motors that are localized on that MT population. Due to a 
negligible viscous drag and significant rigidity of each individual MT (Howard, 2001), MTs can be 
modeled as force propagators that connect either both poles (ipMT), or pole and chromosome (ktMT 
and chrMT), or pole and cell cortex (asMT). The analysis of each MT population starts with going 
through possible motor configurations on a single MT, and then combining single MTs mechanically 
to compute the total forces for each MT population. Finally, four MT populations are combined 
together with chromosome dynamics to calculate the overall spindle dynamics. The result is a set of 
differential-algebraic equations with time dependent parameters. These equations are solved 
numerically to generate the simulated pole and chromosome separation. Note, that our spindle has 
mirror symmetry: the spindle ‘equator’ does not move. The sister poles’ speeds are equal in 
magnitude and opposite in direction, and so are sister chromatids’ speeds. The velocities are positive 
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in the outward direction, so are the forces on asMTs, chrMTs, ipMTs (Fig 1b). The forces on ktMTs, 
however, are positive in the inward direction (Fig 1b). Note, that in Fig 5, the total ktMT force is 
plotted negative, opposing all other positive forces, for illustrative purposes. 

 
    We define the following model dependent variables (Fig 1a):  
 
1. S – distance between the poles 
2. D – distance between the sister chromatids 
3. L – ipMTs’ overlap length at the equator 
4. poleV  - velocity of the pole. 
5. chrV  - velocity of the chromosome. 
 

To determine the above variables, we will derive a set of 5 differential equations to be solved 
numerically, dependent on the total forces on each MT population, also derived below. Note that 

1
2pole

dSV
dt

=  and 1
2chr

dDV
dt

= . 

 
1.2 Force on the asMT population 

There is a unique possible single configuration of motors that can generate a force on asMT. In 
this configuration, Dynein is localized to the plus-end of the asMT and the asMT is anchored at its 
minus-end to the pole. This configuration is shown in Fig 1b. In section 1.2.1 we examine the force 
on a single MT and in section 1.2.2 we generalize to the whole population of asMTs.  

1.2.1 Single MT analysis 
When there is no depolymerizer at the minus-end, we assume that a MT is anchored to the pole 

either by the inactive depolymerizing motor or by some other anchoring protein. In the early 
developmental stage of Drosophila embryo, the distance from the pole to the cortex is constant 
(Cytrynbaum et al., 2005), so there are no relative pole/cortex movements, and no need to take into 
account Dynein’s force-velocity relation. Therefore, the overall force will be constant and equal to 
the motor’s maximal force: 

1 ,dyn mxF F=  

1.2.2 Total force 
Both the number of asMTs that reach the cortex and the number of active Dynein motors that 

generate force are important for the calculation of the total force. The number of asMTs can either 
increase or decrease. Here we approximate transitions between the two states by using a step 
function for the total number of asMTs. We assume two levels of the number of MTs reaching the 
cortex: low, low

asN , and high, high
asN . We define two switch variables that control the temporal behavior 

of the number of asMTs reaching the cortex and Dynein's activity as asP and dynP , respectively. (They 
can be equal to 0 or 1, same as all other switches described below.) The total force generated by the 
asMT population is:  

( )( ) 11high low
as dyn as as as asF P P N P N F= + −   (1) 
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    If the Dynein switch parameter is equal to zero, Dyneins are inactive, and there is no pulling force on 
asMTs. If the asMT switch parameter is equal to zero, low

asN asMTs pull the pole, otherwise high
asN  

asMTs pull the pole. The switches described below regulate the total respective forces in a similar 
fashion. 

 
 1.3 Force on chrMT population 

For chrMTs, there are two possible single chrMT configurations (Fig. 1b). In both configurations, 
the chrMTs are pushed away from the chromosome arms, either by plus-end polymerization or by 
chromokinesin motors. To simplify, we ‘lumped’ these two force generators into a single ‘abstract’ 
motor. What differentiates the two chrMT configurations is the activity of the minus-end 
depolymerizer. In 1.3.1 and 1.3.2, we analyze the two potential configurations, and in 1.3.3 we 
generalize to the entire MT population. Note, that we describe the motors mechanically with linear 
force-velocity relations (Brust-Mascher et al., 2004; Civelekoglu-Scholey et al., 2006) so that the 
effective motor-generated force is proportional to the relative velocity of this motor and the 
respective chrMT. The force is maximal at stall, when the relative velocity is zero. The force is equal 
to zero when the motor glides with its maximal velocity in the unloaded regime.  

 

1.3.1 Without depolymerizer at the pole 
Without depolymerization, we only need to consider one force-velocity relation:  

2 ,
,

1 pole chr
chr mx

chr mx

V V
F F

V
 −

= −  
 

   (2) 

where 2F is the resulting force, pole chrV V− is the motor velocity on the chromosome arm in the plus-
end-direction relative to the pole, and ,chr mxV is the unloaded gliding velocity of this motor. Below, 
similarly, more involved force-velocity relations are analyzed for other motors and configurations. 
 

1.3.2 With depolymerizer at the pole 
Here we need to consider the force balance between two motors – one at the minus-end, and 

another at the plus-end of the chrMT. Equalizing their generated velocity-dependent forces: 
 

, ,
, ,

1 1
chr chr

speckle chr speckle pole
chr mx dep mx

chr mx dep mx

V V V V
F F

V V
  − −

− − = −     
   

 

 
we compute the velocity of a single chrMT ( chr

speckleV ): 

, , , ,
, ,

, , , ,

1 1pole chr
dep mx chr mx dep mx chr mx

dep mx chr mxchr
speckle

dep mx chr mx chr mx dep mx

V VF F V V
V V

V
V F V F

    
+ + +          =

+
  (3) 

Substituting this velocity into the previous equation, we find the total force on a single chrMT:   

3 ,
,

1
chrk

speckle pole
dep mx

dep mx

V V
F F

V
 −

= − −  
 

  (4) 
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1.3.3 Total force 
The two configurations above assume that the chromosomal force generators are active. This is 

not necessarily the case. We therefore define a switch variable chrP that controls the total force on 
this MT population. When 0chrP = , the overall force on this MT population is zero. When 1chrP = , 
the total force is a product of one of the two configurations’ forces considered above by the total 
number of chrMTs that reach the chromosome. The choice of the configuration depends on the 
activity of pole depolymerization. Therefore, we define a switch parameter depP that controls this 
activity. When 0depP = , the force is F2 and when 1depP =  the force is F3. The total force is a product 
of the single chrMT force by the total number of chrMTs. The number of chrMTs reaching the 
chromosome arm is a function of the maximal number of MTs that are growing toward the 
chromosome ( )chrN , the surface area of the chromosomes ( )chrA , and the distance between the pole 

and the chromosome ( )S D− . The mathematical representation of the above arguments is the 
following expression for the total force generated by the chrMT population:   

( )
( )( )2 32 1chr chr

chr chr dep dep
N AF P P F P F

S Dπ
= − +

−
  (5) 

The denominator reflects the fact that the MT number reaching from the pole to the chromosome 
arm decreases with distance (Joglekar and Hunt, 2002). 
 

 1.4 Force on ktMT population 
For ktMTs, there are three possible configurations (Fig. 1b), because force generators can be 

located on the minus-end, plus-end, or both ends of the single ktMT.  In 1.1.6, 1.1.7 and 1.1.8, we 
analyze all three scenarios for a single ktMT and in 1.1.9 we generalize for the whole ktMT 
population. 

1.4.1 Without depolymerizer at the pole 
We consider three types of force generators at the kinetochore (kt). These represent plausible 

functional groups that are co-regulated: ktF is a combination of Dynein and CENP-E-generated 
forces (Civelekoglu-Scholey et al., 2006), kt

depF is the force from depolymerizing kin-I kinesin, similar 

to Kinesin-13 at the pole, and kt
polyF is the direct effect of ktMT polymerization force (Scholey and 

Mogilner, 2002). These functional groups are not independent of each other; specifically, 
kt

depF and
kt
polyF are mutually exclusive forces, and only one of them can be active at a time. These 

dependencies are incorporated into the switch parameters. We define a switch variable 
mtP responsible for ktMT dynamics: in the presence of polymerization or depolymerization, 1mtP = , 

while in the absence of both effects 0mtP = . An additional switch, polyP accounts for the actual type of 
the ktMT activity: 1polyP = when the force is generated by polymerization and 0polyP = when the force 
is generated by depolymerization. The activity of the kt motor is represented by the switch ktP .  

Similar to chrMTs, when there is no depolymerizer at the minus-end, we assume that the ktMT is 
anchored to the pole either by the inactive depolymerizing motor or by some other anchoring 
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protein. The movement rate of the kt motors is the rate of pole movement minus the kt movement 
rate, so that if both pole and kt move at the same rate in the same direction, the motor moves relative 
to the ktMT with zero speed.  The resulting force based on the motors’ force-velocity relations is: 

( )4 ,
, , ,

1 1 1 1pole chr pole chr pole chrkt kt
kt kt mx mt poly dep poly polykt kt

kt mx dep mx poly mx

V V V V V V
F P F P P F P F

V V V

     − − −
= + + − + − −                 

  (6) 

where ,kt mxV , ,
kt
poly mxV and ,

kt
dep mxV are the unloaded motor velocities and ,kt mxF , kt

polyF  and kt
depF are the 

maximal forces for the kt, polymerization, and depolymerization motors on the kt, respectively.  
 

1.4.2 With depolymerizer at the pole and force generators on the kt 
In this case, the depolymerizer at the ktMT minus-end is active, and there are active motors on the 
kt. Therefore, we need to find the depolymerization velocity of the ktMT first by examining the 
force balance on the ktMTs at the minus-end and plus-end (left- and right-hand-side, respectively): 

( )

, ,
, ,

, ,

1 1

1 1 1

kt kt
speckle pole chr speckle

dep mx kt kt mx
dep mx kt mx

kt kt
chr speckle chr specklekt kt

mt poly dep poly polykt kt
dep mx poly mx

V V V V
F P F

V V

V V V V
P P F P F

V V

   − −
− = − +     

  
    − −

+ − − − +              
A straightforward (yet tedious) solution of this equation: 

(7) 
allows calculating the force of a single ktMT from the following formula:  
 

5 ,
,

1
kt

speckle pole
dep mx

dep mx

V V
F F

V
 −

= −  
 

   (8) 

 

1.4.3 With depolymerizer at the pole but without force generation on the kt 
In this case, only the depolymerizing motor is active, and we assume that the ktMTs are anchored at 
their plus-ends. Therefore the corresponding force is:  

6 ,
,

1 pole chr
dep mx

dep mx

V V
F F

V
 −

= +  
 

   (9) 

1.4.4 Total force 
In the general case, for multiple ktMTs, we need to take into account all possible switch 
configurations. In the ktMT case, due to the dependencies between switches, the expression is more 
cumbersome than those for other MT populations; nevertheless, the concept is the same as before.  
 
 

( ), , , , , , , ,
, , , ,

1 1 1 1 1pole kt kt kt ktchr chr chr
dep mx kt kt mx mt poly dep mx poly poly mx poly mx dep mx kt mx dep mkt kt

dep mx kt mx dep mx poly mxkt
speckle

V V V VF P F P P F P F V V V V
V V V V

V

        
 + − − − − − − +                       =

( ), , , , , , , , , , , , , , , ,1

x

kt kt kt kt kt kt kt kt
dep mx poly mx dep mx kt mx kt kt mx poly mx dep mx dep mx mt poly dep mx poly mx kt mx dep mx mt poly poly mx dep mx kt mx dep mxF V V V P F V V V P P F V V V P P F V V V+ + − −
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The total force is the product of the single ktMT force, 4 5,F F or 6F , and of the number of ktMTs,  

ktN :    

( ) ( )( )( ) ( )( )( ) ( )( )( )4 5 61 1 1 1 1 1 1 1 1kt kt dep mt kt dep mt kt dep mt ktF N P P P F P P P F P P P F= − − − − + − − − + − −   
(10) 

 
 1.5 Force on ipMT population 

There are two possible configurations for ipMTs: (i) sliding motors in the anti-parallel ipMT 
overlap zone at the spindle equator, without depolymerizing motors at the pole on the ipMT minus-
ends, and (ii) sliding motors with depolymerizing motors.  In both configurations, we assume that 
there is some ‘protein friction’ (Tawada and Sekimoto, 1991) caused by dynamic cross-linkers in the 
anti-parallel ipMT overlap zone at the spindle equator.  

 

1.5.1 Without depolymerizer at the pole 
The force on a single ipMT is generated by the action of Kinesin-5 and Kinesin-14 on the overlap 

region of length L, so without minus-end depolymerization, we have:  

7 5 61 , ,
61 , ,

2
1 1 2pole pole

kin F mx Ncd Ncd mx pole
F mx Ncd mx

V V
F P LF P LF L V

V V
ξ−

   
= − − + −      

   
  (11) 

Here 61 ,F mxV , ,Ncd mxV are the unloaded velocities, and 61 ,F mxF , ,Ncd mxF are the maximal forces of Kinesin-
5 and Kinesin-14, respectively. Different signs account for the fact that those are plus- and minus-
end directed motors, respectively. The magnitude of the relative velocities between ipMT and the 
motors are different for Kinesin-5 ( )poleV and Kinesin-14 ( )2 poleV , since Kinesin-5 is a bipolar motor 
and moves along both ipMTs, and therefore is stationary relative to the lab frame of reference, 
whereas Kinesin-14 binds a single ipMT and moves along the other ipMT. The last term accounts 
for the viscous-like drag force produced by the dynamic cross-linkers. This force is proportional to 
relative sliding rate 2 poleV of anti-parallel ipMTs at the spindle equator, andξ  is the respective 
friction coefficient. Note that all forces are proportional to the length of the overlap region L, so we 
implicitly assume that the ipMT length is a limiting factor in the motors’ numbers, and that there is a 
certain number of Kinesin-5, Kinesin-14, and cross-linkers per unit overlap length. Respective 
forces are per micron of the ipMT length. We also assume that the multiple motor forces on a single 
ipMT are additive. 
 

1.5.2 With depolymerizer at the pole 
In a similar fashion to chrMT and ktMT, if we define the relative velocity between a sliding 

motor and the ipMT it slides on as
ip

speckleV , we obtain that the balance of forces on a single ipMT is:  
 

 
 

5 61 , , ,
61 , , ,

2
1 1 2 1

ip ip ip
speckle speckle speckle poleip

kin F mx Ncd Ncd mx speckle dep mx
F mx Ncd mx dep mx

V V V V
P LF P LF L V F

V V V
ξ−

     −
− − + + + = −         
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Therefore, the velocity is:  

(12) 
and the force is: 

8 ,
,

1
ip

speckle pole
dep mx

dep mx

V V
F F

V
 −

= − −  
 

   (13) 

 

1.5.3 Total Force 
Again, the total force is the product of the single ipMT force and the number of ipMTs. Similar to 

asMTs, we assume that there are two possible ipMT numbers:
high
ovrlpN and

low
ovrlpN , and we assign a 

switch parameter ovlpP to control this number. The total force on a single motor is: 

( )( ) ( )( )7 81 1high low
ip ovlp ovrlp ovlp ovrlp dep depF P N P N P F P F= + − − +   (14) 

The overlap length is one of the model dependent variables. It changes over time following a 
simple kinematics equation (Brust-Mascher et al., 2004):  

( )( )2 2 1ip ip
poly dep pole dep speckle

dL V P V P V
dt

= − − +  

where ip
polyV  is the ipMT plus-end polymerization velocity.  

 
 1.6 Chromosome and Pole movement 

1.6.1 Chromosome movement 
The algebraic equations (1-15) provide the total force on all four MT populations in the spindle. 

Here, we combine these forces to analyze how the distance between sister chromatids changes over 
time. Two out of four MT populations’ forces are applied to the chromosomes, so D, the distance 
between the sister chromatids, is increased by the sum of these two forces and the force of cohesion 
between the sister chromatids: 

2
chr

kt chr cohesion
dD F F F
dt

µ
= − −  

Here chrµ is the effective viscous drag coefficient of the chromatid. Note, that the equation of 
motion is based on low Reynolds number hydrodynamics conditions in the cell (Scholey and 
Mogilner, 2002), therefore the velocities of all objects in the cell are proportional to forces applied 
to them. The signs of forces are due to the fact that the ktMT force pulls chromatids outward, while 
the chrMT force pushes them inward assisted by the cohesion. Total kt and chromosome arm forces 
are defined above (5,10), and we define the cohesion force as a simple linear spring:  

( )0cohesion cohesionF P D dβ= −   (15) 

5 61 , , , 61 , , ,
,

5 61 , , , , 61 , , 61 , , , , 61 , ,

1

2 2

pole
kin F mx Ncd Ncd mx dep mx F mx Ncd mx dep mx

dep mxip
speckle

kin F mx Ncd mx dep mx Ncd Ncd mx F mx dep mx F mx Ncd mx dep mx dep mx F mx Ncd mx

V
P LF P LF F V V V

V
V

P LF V V P LF V V LV V V F V Vξ

−

−

  
− + +      =

+ + +
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where 0d is the cohesion spring rest length,β is its spring constant, and cohesionP is the cohesion switch 
which is equal to one before anaphase, and is equal to zero at the anaphase onset when the cohesion 
between the sister chromatids is dissolved.  

1.6.2 Pole movement 
Similarly, based on the same low Reynolds number approximation, the rate of pole separation is 

given by the following equation:  

2
pole

ip chr aster kt
dS F F F F
dt

µ
= + + −  

where poleµ is the effective viscous drag coefficient associated with the pole movement, and the right 
hand side is the sum of all MT populations’ forces applied to each pole (interpolar, astral, and 
chromokinesin forces push the poles apart, while the kt force pulls them together). 

 

 1.7 Final set of equations and their numerical solution.  
The final set of differential equations of the model is:  

2
pole

ip chr aster kt
dS F F F F
dt

µ
= + + −   (16) 

2
chr

kt chr cohesion
dD F F F
dt

µ
= − −   (17) 

( )( )2 2 1ip ip
poly dep pole dep speckle

dL V P V P V
dt

= − − +   (18) 

1
2pole

dSV
dt

=    (19) 

1
2chr

dDV
dt

=   (20) 

complemented by the algebraic equations (1-15). 
These differential-algebraic equations are then solved numerically using stiff SUNDIALS' IDA 
solver (http://www.llnl.gov/casc/sundials/). Representative models were additionally solved using 
Matlab's ode15s stiff solver for comparative purpose to test solver accuracy and performance. In 
cases of numerical instability, a penalizing score was assigned. Finally, to determine if a model is a 
sufficient fit to the experimental data, a manually selected predefined cutoff was used.  To account 
for the motors’ on and off switching, after the up to 11 times at which the switching occurs are 
chosen by the computer, the whole time domain is divided by these times into up to 12 sections 
within each of which the model parameters stay constant. The equations were then solved 
separately for each section, where the solutions at the end of each section were used as the next 
section’s initial conditions. Note, that this partitioning is different for each individual model, and 
that the duration of the sections is completely random in principle.  
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 Supplementary table of parameters  
Symbol Meaning Units Possible 

Values / 
Range 

depP  Kinesin-13  activity Number switch 

chrP  Chromosome arm motor activity  Number switch 

dynP  Dynein activity at the cortex Number switch 

5kinP −  Kinesin-5 activity Number switch 

NcdP  Kinesin-14 activity  Number switch 

ktP  kt motor activity  Number switch 

mtP  ktMTs activity on the kt.  Number switch 

polyP  Polymerization activity of ktMT Number switch 

asP  Level of astral MTs Number switch 

ovrlpP  Level of overlapping MTs Number switch 

cohesionP  Activity of the cohesion spring Number switch - fixed 

β  Spring constant for cohesion  [pN/µm] [500,5000] 

0d  Sister chromatid rest length [µm] [0.1, 2] 

61 ,F mxF  Kinesin-5 maximal load force per 1 µm of MT length [pN/µm] [1,100] 

,ncd mxF  Kinesin-14 maximal load force per 1 µm of MT length [pN/µm] [1,100] 

,dep mxF  Kinesin-13 maximal load force [pN] [1,10] 

,
kt

dep mxF  
kt depolymerization maximal force  [pN] [1,10] 

,
kt
poly mxF  

kt polymerization maximal force  [pN] [1,10] 

,dyn mxF  Dynein maximal load force [pN] [1,10] 

,kt mxF  kt motor maximal load force [pN] [1,10] 

,chr mxF  Chromokinesin maximal load force [pN] [1,10] 

61 ,F mxV  Kinesin-5 free load velocity [µm/sec] [0.01 0.1]  

,chr mxV  Chromokinesin free load velocity [µm/sec] [0.01 0.1]  

,dep mxV  Kinesin-13 free load velocity [µm/sec] [0.01 0.1]  

,
kt

dep mxV  
kt depolymerizing motor free load velocity [µm/sec] [0.01 0.1]  

,
kt
poly mxV  

ktMT polymerization free load velocity [µm/sec] [0.01 0.1]  

,kt mxV  kt motor free load velocity [µm/sec] [0.01 0.1]  

,ncd mxV  Kinesin-14 free load velocity [µm/sec] [0.01 0.1]  

ip
polyV  

Polymerization velocity of ipMTs [µm/sec] [0.01 0.1]  

chrµ  Chromosome drag coefficient [pN sec/µm] [5 50] 
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poleµ  Pole drag coefficient [pN sec/µm] [50 500] 

high
asN  High value of asMT number Number [50,500] 

low
asN  Low value of asMT number Number [5,50] 

high
ovrlpN  

High value of overlapping ipMT number Number [50,500] 

low
ovrlpN  

Low value of overlapping ipMT number Number [5,50] 

chrkN  Number of chrMTs Number [50,500] 

ktN  Number of ktMTs Number [50,200] 

ξ  Cross-linkers friction coefficient density [pN sec/µm2] [0 10] 

chrA  Chromosome area [µm2] [10 250] 

 
Supplementary Table 1 This table shows 39 parameters that represent the ‘model parameter space’. 
In the first column are the symbols used in the mathematical equations above. The second column 
provides a brief description of each parameter. The third column shows the units for each parameter, 
and the last column shows the range for each parameter that was allowed during the stochastic 
optimization process. The parameter ranges were chosen based on the following considerations. 
Cohesion spring constant is of the order of magnitude characteristic for protein elasticity (Howard, 
2001). Cohesion rest length is of the order of magnitude of the values ~1 µm observed 
experimentally (Goshima et al. 2005). All motor forces were assumed to be in a pN range, which is 
known for several motors similar to Drosophila mitotic motors (Scholey and Mogilner, 2002). Motor 
force densities for motors acting at the overlap between anti-parallel MTs are based on the same 
range for the force of an individual motors, and an assumption that there is ~ 10 motors per µm, 
supported by a number of observations (Sharp et al. 1999; Tao et al. 2006). Range for the motor 
velocities is of the order of magnitude of those measured for a few mitotic motors (Tao et al., 2006). 
Drag coefficients are of the orders of magnitude estimated in (Cytrynbaum et al., 2003). MT numbers 
are of the orders of magnitude estimated from the EM data (Mastronarde et al., 1993; McDonald et 
al., 1992). Order of magnitude of the cross-linkers friction coefficient density is estimated in (Tao et 
al., 2006). Estimates for the chromosome area are available from (Marshall et al., 2001). 
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2. Computational search in 'model space'  
 2.1 Experimental data and scoring individual models 

  We collected the experimental data for the scoring from the literature and unpublished data 
collected in our lab (supplementary table 2; SupFig. 1). To facilitate the comparison between the 
experiments and simulations, the experimental data was smoothed and aligned. To smooth the data, 
a piece-wise polynomial (spline) with 10-15 points was fitted to the data. The spline was re-sampled 
to get 55 points (from 0 to 278.3 seconds at 5.15 seconds intervals) generating a uniform time 
spacing for all different measurements. All experimental plots were aligned relative to the timing of 
the nuclear envelope breakdown and the timing of the slope change in prometaphase elongation. 
Interestingly, the anaphase B elongation that was not used for alignment, aligned well between 
different experimental curves providing an external validation for the alignment procedure.   

 

Experiment Reference 
WT pole and chromosome separation  (Sharp et al., 2000); This work 
Dynein – antibody injection (Sharp et al., 2000) 
Kinesin-5 antibody injection  (Sharp et al., 2000); This work  
Kinesin-13 antibody injection  (Rogers et al., 2004) 
Kinesin-14 null  (Brust-Mascher and Scholey, 2002) 
Kinesin-5 antibody injection, Kinesin-14-null background (Sharp et al., 2002); This work 
Supplementary Table 2 References for the experimental data that were used for the optimization and 
that are presented in Fig 1c.  

 
In the previous section, we derived a general mathematical model for spindle elongation and 

chromosome segregation during mitosis. These equations, together with the set of parameters, 
represent a very large set of potential models, each of them being a putative mechanistic explanation 
for spindle development in Drosophila embryo. Here we describe the computational search 
performed in that model parameter space in order to identify models that are in good agreement with 
the experimental data. 

The computational search was done by combining repeated stochastic optimization and clustering. 
The problem of finding good models can be represented as an optimization problem, in which the 
objective function is the goodness of fit to the experimental data. Since the possible number of 
models that are a good fit to the experimental data is high, we repeated the optimization thousands of 
times to exhaustively explore the solution space. Comparison to the data was done based on the sum 
square of error criteria (SSE) between the data for the spindle length and/or chromosome separation  
time series and the model simulation results (measured in microns) over a discretized grid of 55 time 
points. In addition to SSE to the original pole (or chromosome) separation data, we found that using 
the SSE of the separation velocity of separation (the first derivative) substantially improves the 
optimization. The derivative residuals were scaled (×100) to have similar magnitude as the pole 
separation data. To allow the use of the derivative of the experimental data (which is noisy), we first 
smoothed and aligned the data using spline interpolations (SupFig. 1). The SSE between the 
smoothed derivative of the experimental data and the model prediction (measured in microns per 
second) and scaled as described above, was added to the SSE of the spindle length (with dimensions 
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‘stripped’ off), and the sum was used as a numerical score for the model. In addition, for the WT 
data, the SSEs for the inter-chromosomal distance and scaled derivative of this distance were added 
to the score. Based on visual inspections of thousands of fits, a cut-off score was determined. Fits 
below this cut-off score were accepted as adequate, whereas those above it were regarded as 
inadequate. This threshold was unique to each WT or inhibition dataset, and a model to be accepted, 
it would have to produce good fits for all datasets separately. The thresholds for the SSE (sum of the 
pole separation in microns and its weighted (×100) derivative in microns per second with stripped off 
dimensions) were: WT: 5 (including in addition, chromosome separation data), Kinesin-5: 2.2, 
Kinesin-14 1.5, Kinesin-13: 3, Dynein: 3 and the double inhibition Kinein-5 and Kinein-14: 4.5. 

 
As expected, many of the independent optimization runs yielded very similar models. Therefore, 

we performed an additional clustering step that identified distinct groups of models that are 
biologically different and in good agreement with experimental results. Finally, we analyzed the 
search and demonstrated that it was saturated, i.e. we identified all major groups of distinct strategies 
for pole separation in the Drosophila embryo.  

The computational search described here was repeated six times, each time with increasing 
amount of experimental data (Fig 1c and SupFig. 2). The computational procedure described is a 
single iteration of the search.  

 
 2.2 Optimization 

The optimization process searched for models (points in the multi-dimensional model space) such 
that their numerical solutions are in good agreement with the experimental data. The description of 
the optimization process is organized as follows: We first define the objective function that was used 
to compare the simulation results and experimental data. The objective function assigns a score for a 
point in the model space based on the agreement of the solution of a corresponding model with the 
experimental data. Then, we describe the optimization algorithms that were used to identify points in 
the model space that are in good agreement with experimental data, i.e. they are local minima of the 
objective function. Finally, we describe the extension of the model space to include additional 
inhibition parameters and an improvement of the optimization algorithm to deal with those additional 
parameters. Those additional parameters allow simulation of both WT and inhibition cases and their 
comparison to the experimental data.  

2.2.2 Genetic Algorithm  
The objective function assigns a goodness-of-fit score to the results of the numerical solution of 

each model (a smaller score is a better fit to the experimental data). To identify models that provide 
a good fit and could potentially explain the experimental results, we used a genetic algorithm 
approach (Mitchell, 1996). The genetic algorithm mimics the process of evolution where a 
population of solutions evolves by mutation, recombination and selection toward a minimal value of 
the objective function. Specifically, in our case this means that ‘successful’ models encoded by the 
set of model parameters, both changed their parameters randomly (mutation), exchanged values of 
the parameters with each other (recombination), and were accepted or rejected based on the scores 
(selection). The optimization was done with a custom Matlab code that was adapted based on the 
GEATBX package (http://www.geatbx.com/docu/index.html). The following operators were used in 
the optimization: 

Mutation: Mutation scheme followed the Breeder Genetic Algorithm scheme. 
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Recombination: Two separate recombination operators were used for switch and 
mechanical/kinetic parameters. For non-switch (mechanical / kinetic) parameters, a 
recombination event was as follows: First, for each parameter, a random number δ between -0.2 
to 1.2 was chosen. Then, the new parameter value was calculated using the following formula:  
C=δ×P1+(1-δ) ×P2 where C is the new ‘offspring’ parameter value and P1 and P2 are the values 
of the parameter in two recombined 'parent' models. For switch parameters, a variant of the 
above calculation was used due to the ‘circular’ nature of the switch parameters (i.e. turning a 
switch off at t=0 or turning it on at t=278.3 seconds have the same biological meaning). The 
two parent models were placed on a circle using the periodic boundary condition. The pairs of 
parent models always defined two arcs that separate them on the circle. The recombination 
happened on the shorter of the two possible arcs using the same formula as the one for the non-
switch parameters.    
Migration: The population was divided into 20 subpopulations, each comprised of 50 
individuals. Every 10 generations, 20% of the populations were mixed randomly.  
Selection: Selection was performed using Roulette Wheel Selection with 80% new individuals 
inserted at each generation.  

2.2.3 Multiple-objective optimization  
To test whether a specific model fits not only the WT data, but also the data from different 

experimental perturbations, we extended the optimization process to allow scoring by comparing 
multiple simulations to multiple experimental conditions. To do so, we extended the model to 
include additional parameters that are specific to the different experimental conditions. These 
parameters all encode the extent of inhibition by antibody injection.  In addition to extending the 
model space, we also solved the equations multiple times for each one of the inhibition datasets.  

2.2.4 Using the switch parameters to mimic biochemical inhibitions 
The optimization process described above compared a single simulation run to experimental data 

from WT pole separation and chromosome segregation curves. We extended that optimization 
process to identify points in the model space that are also a good fit to the experimental data, where 
a specific force generator was inhibited either genetically or biochemically using antibody 
injections. The specific datasets used are described in supplementary table 2. To allow a comparison 
between the model and those additional datasets, the model was ‘inhibited’ by lowering the maximal 
value of the activity of the switch that corresponds to the molecular identity of the inhibited force 
generator. We considered null mutant data (Kinesin-14-null embryo) as complete inhibition, i.e. 
Kinesin-14 activity was always zero regardless of its switching behavior. For inhibitions that were a 
result of an antibody injection, an additional parameter that determines the extent of inhibition was 
added to the optimization, increasing the dimensionality of the model space. Overall, 7 additional 
parameters were used, increasing model space dimensionality from 38 to 45. To compare the model 
and experimental data, the model equations were solved nine times for WT and all inhibition 
experiments. The overall objective function score was the weighted sum of these nine simulations 
and included pole separation curves and their derivatives.   

2.2.5 Deterministic improvement 
In addition to the stochastic optimization described above, we included a deterministic gradient 

descent step that helped to improve the fit to the experimental data in cases where multiple pole 
separation curves were used. The deterministic optimization was done in Matlab using the 
optimization toolbox. The specific improvement was done in two steps: first, a multi-parameter 
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optimization using Matlab’s fminsearch function that uses a simplex-based algorithm was used. 
Then, to fine-tune fits to all mutant curves, a single parameter optimization was performed for each 
of the additional inhibition parameters using Matlab’s fminbnd function that is based on golden 
section search and parabolic interpolation. A sample plot shows the evolution of the optimization 
score in SupFig. 2a. The plot shows both stochastic and deterministic portions of the optimization. 
The stochastic portion required ~240 min, whereas the deterministic improvement required ~20 min 
of CPU time. 

 
 2.3 Clustering  

Clustering was used to identify groups of models that are qualitatively different from one 
another. The optimization process was repeated thousands of times to explore different regions in the 
model space. Many of the successful optimization runs yielded models that were very similar to each 
other, while others were qualitatively different. To identify all groups of essentially different models, 
we performed clustering procedure as follows: First, we defined a distance measure between any two 
models. Second, we used standard hierarchical clustering to build a linkage tree of all models. 
Finally, we used a convexity criteria to recursively identify distinct models in the hierarchical tree.  

2.3.1 Distance measure 
To be able to cluster models into distinct groups it is necessary to have a measure that can 

identify how similar two models are. There are two types of parameters, defined in supplementary 
table 1: switch and kinetic/mechanical parameters. Both types determine the forces that are acting 
on the MT populations. The sum of these forces is what drives pole separation. Biologically similar 
models have similar force dynamics, whereas biologically dissimilar models are characterized by 
essentially different force dynamics. Therefore, we used combined forces’ difference as a natural 
measure of the models’ similarity. Specifically, the square root of the time-average square of the 
differences between all 4 MT populations’ forces predicted by a pair of models was used as a 
measure of distance between these two models. In addition, since we identified cases in which 
models that were different biologically still gave a similar force profile, we added an additional 
measure: the square root of the average square difference between all switches. The overall distance 
measure is the sum of the difference between the forces and the difference between switches 
appropriately weighted to have similar magnitude. For the nonlinear scaling and dimensionality 
reduction in Fig. 2g,e, we used the Matlab statistical toolbox command mdscale with default 
parameters based in the dissimilarity matrix that was later used for clustering. Metric 
multidimensional scaling is an optimization-based method that identifies a lower dimensional 
representation of the data that maximizes the similarity between the distance matrix in the low 
dimensions and the original distance matrix. 

 

2.3.2 Linkage analysis 
Given a dissimilarity matrix between all pairs of models, a linkage analysis was performed to 

determine the hierarchical tree. The linkage was calculated using standard statistical procedure, the 
furthest distance method. 

2.3.3 Dividing into clusters 
We developed a criterion to identify a set of models that are from the same cluster. The criterion 

was inspired by the definition of a biological species which is defined as having a reproductive 
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barrier. This criterion was then applied to the hierarchical tree in a recursive fashion to identify 
distinct groups of models that are different from one another.  

2.3.3.1 Clustering criterion 
We reasoned that if a set of models forms a distinct cluster, then combinations of models from 

this cluster should also be a good fit to the experimental data. In practice, we generated 1000 new 
models that are all combinations of the old models by using a convex sum of the parameters: 
C=δ×P1+(1- δ)×P2 where 0< δ<1. We then scored all those new 1000 models using the objective 
function as described above. If the median of the 1000 new scores was smaller than the cutoff used 
for evaluating models, we considered the set of models a distinct cluster. The mathematical 
implication of this criterion is that models are expected to be topological convex sets in the 
parameter space. This is a reasonable assumption given the convex nature of the force balance 
relations in the models. An illustration of the clustering criterion is shown in SupFig. 2b. In that 
figure, a hypothetical 2-dimensional fitness landscape is shown. There are two peaks in the 
landscape that are above a threshold; they are considered a good fit. The figure shows two pairs of 
good models; in one pair, the line that connects them is crossing a ‘valley’, and as a result, models 
on this line will not be considered ‘viable progenies’. However, the line connecting the two models 
that are on the same peak will correspond to the models producing good fits, and therefore will be 
considered belonging to the same group.  

2.3.3.2 Identifying clusters on a tree 
Using this clustering criterion and the hierarchical tree, we identified distinct clusters by a 

recursive descend on the tree, where in each node we determined whether the set of models below 
that node is a distinct cluster based on the above criteria. The natural stopping condition for the 
recursion was either identification of a cluster, or a ‘terminal leaf’ – a cluster consisting of a single 
model. 

2.3.4 Improvement of clustering robustness 
The clustering methodology described above depends heavily on the topology of the hierarchal 

tree. We observed that, as is the case in other usages of hierarchical clustering, the topology of the 
tree can change substantially with a small change in the population of models that are tested. To 
improve the robustness of the clustering, we used an ensemble method. In general, ensemble 
methods cluster sets of variables based on several clustering variants and determine the final 
grouping based on a consensus between all clustering variants (Topchy et al., 2004). 

Ensemble clustering: to generate cluster variants, we used a re-sampling approach. We re-
sampled 20 new sets of models by a ‘jackknife’ procedure that randomly chose 95% of the models 
and generated a clustering assignment for the subset of models. Each subset was clustered using the 
same clustering procedure as above.   

Choosing consensus clustering: To choose the final clustering, we chose the best ‘consensus’ 
cluster out of the 20 sets where the ‘consensus’ clustering was defined as the clustering that has the 
best agreement with the rest of the 19 clustering possibilities. 

 
 2.4 Convergence analysis 

We performed six searches in the model space, using WT data only and using increasing amount 
of experimental datasets (Fig 2c and supplementary table 2). To determine that the search for models 
was exhaustive, we used a re-sampling approach. We re-sampled smaller sets of models and 
clustered them as described above. The result of the number of clusters as a function of the sample 
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size is shown in SupFig. 2c. If the search converges, then increasing the sample size should not 
increase the total number of model groups. However, if the search is far from convergence, then as 
we increase the sample size, the number of identified clusters should increase. This problem is 
analogous to a problem in ecology, where the number of species in a habitat is estimated (Chao and  
Bunge, 2002). As can be seen in SupFig. 2c, all re-sampling datasets follow the expected hyperbolic 
curve. It is computationally prohibitive to reach saturation for all datasets, therefore we focused our 
attention at the final stage that includes all the experimental data and reach saturation at six groups 
(SupFig. 2c, SupFig. 3 and Fig. 3).  
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3. Additional results 
3.1 Demonstration of the fit to experimental data for a representative model 

In SupFig. 4, we show a representative model from group 1. Panel a shows the fit where panels b-
f give the parameters value for this model.  Similar figures can be easily generated for other plausible 
models or for any specific hypothesis or data from future experiments. 

 
3.2 Chromosome separation after inhibition 

It is interesting to note that different model groups did not differ regarding their predictions of 
chromosome separation after the different types of inhibitions. This observation is notable for two 
reasons. First, it suggests a level of robustness in chromosome separation. As long as the poles 
separate, so do the chromosome, and in inhibitions that increase the rate of pole separation, 
chromosome separation is mostly unaltered. In addition, this demonstrates that not all new 
experimental data would be useful to further constrain the six model group and that rational 
experimental design is necessary.  

 
3.3 Virtual Speckle analysis 

As an intermediate step in the calculation of pole separation over time, the mathematical 
formulation requires calculating the velocities of single MTs in the different MT populations. It is 
interesting to examine these velocities, since they can be compared to experimental data. 
Fluorescence speckle microscopy allows measurement of MT velocities by tracking speckles of the 
fluorescence marker over time (Danuser and Waterman-Storer, 2006). SupFig. 5 shows the median 
speckle velocity on all three (besides astral) MT populations in a set of ~200 representative models 
from the last iteration of the optimization. This analysis shows that the three different MT 
populations undergo different dynamics. ipMTs show high levels of velocities that peak when the 
spindle elongates. chrMTs show profiles similar to ipMTs until anaphase A, but unlike ipMTs, they 
do not change their profile in either anaphase A or B. ktMTs show lowest levels of velocities to the 
extent that the MT velocity decreases to zero during metaphase. This prediction is not supported by 
the experimental data (Sharp et al., 2000; Brust-Mascher and Scholey 2002); however, since the 
experimental distinction between the three MT populations is very challenging experimentally, it is 
hard to make specific assertions regarding this apparent disagreement between the experimental and 
simulation results. Another indication for this disagreement can be seen in SupFig 5 showing the 
predicted MT speckle velocity for all models of the final search iteration. The histogram shows a 
small variation with an average value of 0.02 µm/sec. Experimental measurements show a much 
higher variability and a higher average of 0.06 µm/sec (Brust-Mascher et al., 2004). These 
discrepancies are resolvable, and are likely a result of the model limitations. The modeling 
framework assumes that all MTs in a single population are identical without taking individual MT 
dynamic instability into account. A specific formulation of multiple individual MTs was too 
computationally intensive to allow a search in parameter space.  

 
3.4 Slow maximal velocity of Kinesin-13 

Analysis of Kinesin-13 shows that the maximal velocity is tightly conserved and is of small 
magnitude. However, the maximal force is not much different from that generated randomly (p-
value > 0.8, t-test). There is no correlation between the maximal force and unloaded velocity (r = -
0.01). This supports the notion that the spindle is robust to the magnitude of the maximal force, and 



19/24 

its actual value is insignificant for the spindle elongation. This is in sharp contrast to the maximal 
velocity that seems to be sensitive to changes in parameter values and is tightly conserved.  

 
3.5 Activity profiles – switch parameters 

The mathematical formulation of models includes 11 switch parameters that can change the 
molecular activity once over the course of time from prometaphase till end of anaphase. Out of these 
11 switches, the cohesion switch was set to turn off at T=178 sec, when chromosomes start to 
segregate. All other 10 switches were not predefined, and the optimization process determined the 
exact timing of those switches. From the 10 remaining switches, 4 show highly conserved values 
among all models, suggesting that they represent the essential unique activity in the spindle. Of the 
other 6 switches, 2 exhibit a bi-model histogram suggesting two alternative biological scenarios, and 
4 others have multi-modal distributions that can either suggest that the spindle is robust to the 
biological feature represented by these parameters, or alternatively that our analysis was unable to 
determine the correct model due to lack of appropriate experimental data. SupFig. 6 shows the 
activity of the switch parameters and the resulting forces for all models at all search iterations. As the 
amount of experimental data is increased, the number of possible values for the switching time 
decreases. Here we describe a few of those conserved switch parameters and their biological 
significance. 

 

3.5.1 Pole depolymerization, Kinesin-13 (Klp10A)  
Previous experimental and computational work (Brust-Mascher and Scholey, 2002; Brust-

Mascher et al., 2004) demonstrated that spindle elongation during anaphase B is a result of a switch 
in pole depolymerization activity. During metaphase and anaphase A, the MTs are depolymerized at 
the pole, which causes net MT flux (Rogers et al., 2005). At the onset of anaphase B, MT 
depolymerization at the spindle pole end (Brust-Mascher and Scholey, 2002) causes the MTs to push 
the poles and elongate the spindle. In all models in the sixth iteration (SupFig. 6), the activity of the 
pole depolymerizer is tightly regulated.  

 

3.5.2 Inter-polar MT force generators, Kinesin-5 (Klp61F) and Kinesin-14 (Ncd) 
Previous experimental studies identified Kinesin-5 as a bipolar kinesin that is capable of sliding 

MTs (Kapitein et al., 2005) and is localized to the anti-parallel ipMT overlap zone (Sharp et al., 
1999). In a variety of different organisms, this motor was shown to be important for mitotic 
progression (Cole et al., 1994; Cottingham et al., 1994; Enos and Morris, 1990; Heck et al., 1993; 
Saunders and Hoyt, 1992; Hoyt et al., 1992; Sawin et al., 1992; Straight et al., 1998). Inhibition of 
Kinesin-5 causes poles’ collapse in a variety of organisms further supporting its role as an outward 
force generator.  We found that in all models of the final iterations (SupFig. 6), Kinesin-5 is up-
regulated in the late prometaphase. Kinesin-5 is antagonized by Kinesin-14 (Tao et al., 2006; Sharp 
et al., 1999). We found that in all these models, Kinesin-14 is up-regulated during the transition 
from prometaphase to metaphase. The temporal change in the two regulatory events suggests a 
mechanism for prometaphase elongation where only the outward motor (Kinein-5) is active. When 
Kinesin-14 starts working, the elongation is stopped as well causing the metaphase steady state. In 
our model the activity of Kinesin-14 lasts till the end of mitosis.  

The predicted activity profile of Kinesin-14 is slightly different from the one that was inferred in 
previous experimental work (Brust-Mascher and Scholey, 2002; Sharp et al., 2000). The two main 
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differences are in late prometaphase and anaphase B. In late prometaphase in the models, Kinesin-5 
works without Kinesin-14 antagonism, while interpretation of the experimental data suggests 
otherwise. In anaphase-B, Kinesin-14 is active in the model, but is thought to be inactive in the 
actual spindle. The latter discrepancy is easy to resolve. In this case, since the model only allows a 
single switch per motor, and Kinesin-14 “used up” its switch already at an earlier mitotic stage, it is 
not allowed to go through a second regulatory transition. In the model, these results in the pole 
separation slope in anaphase-B in WT embryo being different from that in Kinesin-14 null embryos 
(see SupFig. 4a). This difference in the slopes does not exist in the experimental data; in fact, this 
difference in the slopes is the only failure, in which the simulation fails to reproduce the 
experimental data. This supports the claim that Kinesin-14 is inactive during anaphase-B and shows 
the limitations of this modeling framework. This limitation – only one switch per motor – is hard to 
overcome due to an enormous increase in the number of possibilities that allowing multiple switches 
per motor would generate. However, this can also be looked at as a power of the search: a negative 
result, i.e. the inability to fit the anaphase-B slope, demonstrated that one of the model assumptions 
is probably incorrect.  

The second discrepancy – the activity of Kinesin-14 during prometaphase – is not resolved. 
Further computational and experimental work is needed to identify the source of this discrepancy. A 
possible reason is that other motors and/or cross-linking proteins that were not modeled explicitly 
and were not assigned specific switch parameters go through regulatory transitions, and the activity 
profile identified by the computational search is an approximation for those multiple factors.  

 

3.5.3 Astral MT force generators, Dynein  
Dynein motors acting on the cortex are thought to generate pulling forces on the poles and 

participate in pole separation. Inhibition by antibody injection into the early Drosophila embryo 
prevented prometaphase elongation (Sharp et al., 2000). Consistent with these findings, our 
computational analysis shows that in all models resulting from the final search iteration (SupFig. 6), 
Dynein is active in prometaphase, and its activity is being down-regulated during the end of 
prometaphase elongation and the beginning of metaphase. Interestingly, the exact timing of Dynein 
down-regulation seems to be less conserved compared to the other three motors (SupFig 6a-c). Two 
possible explanations to this wider distribution are: (i) The step-wise switch approximation is 
inaccurate, and in fact Dynein’s down-regulation takes place over ~ 50 second. (ii) There is a 
polymorphism in Dynein’s activity, different embryos and even different spindles within the same 
embryo might down-regulate Dynein at different times and still exhibit a similar pole separation 
phenotype. 

  
3.5 Activity profiles – switch parameters 

The ultimate quantitative results of the search are the parameter value distributions for the six 
model groups shown in SupFig. 6. In addition, the average parameter values are gathered in the 
supplementary table 3. 
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Group # 
 

Param     .   

1 2 3 4 5 6 

depP  -0.21339 -0.21176 -0.21576 -0.21619 -0.21511 -0.215

chrP  -0.4756 -0.04609 -0.10268 0.38919 -0.03027 -0.07024

dynP  -0.71909 -0.72415 -0.74943 -0.79578 -0.73496 -0.77101

5kinP −  0.074206 0.059334 0.069793 0.06712 0.073361 0.069085

NcdP  0.25383 0.23307 0.24478 0.24487 0.25998 0.26664

ktP  0.15301 0.12363 -0.07524 0.05904 0.005275 -0.02041

mtP  0.38487 0.10252 0.094426 -0.3726 -0.78127 0.60356

polyP  0.39893 -0.0901 -0.68795 -0.4988 -0.38425 -0.54832

asP  0.48194 -0.38489 0.60931 0.55908 0.59661 0.59807

ovrlpP  -0.2184 -0.17327 -0.17482 -0.22563 -0.16763 -0.13945

cohesionP  -0.38 -0.38 -0.38 -0.38 -0.38 -0.38
β  4465.8 4052.2 4544.9 3980.2 4322.2 4388.7

0d  0.91947 0.83379 0.93163 0.91567 0.93932 0.92677

61 ,F mxF  64.273 65.419 66.139 67.409 64.725 66.88

,ncd mxF  10.894 9.0618 10.584 9.8751 11.365 12.756

,dep mxF  5.144 6.6178 6.6383 6.2448 6.744 5.2918

,
kt

dep mxF  5.2942 5.3704 6.0726 5.2791 5.2149 5.6327

,
kt
poly mxF  4.9669 5.2208 5.3736 6.4934 6.2738 5.1811

,dyn mxF  6.5897 3.4108 7.1749 6.8242 6.1525 8.366

,kt mxF  6.7091 6.5411 5.6165 5.8757 5.6024 5.9444

,chr mxF  4.2893 4.2044 3.966 3.8222 3.9296 4.0275

61 ,F mxV  0.033661 0.030423 0.029943 0.030879 0.0331 0.034898

,chr mxV  0.048789 0.035911 0.045173 0.016966 0.038036 0.037935

,dep mxV  0.014563 0.013846 0.013187 0.014288 0.014768 0.014956

,
kt

dep mxV  0.050058 0.037377 0.02842 0.042479 0.051354 0.0118

,
kt
poly mxV  0.040317 0.047747 0.046817 0.044596 0.051777 0.044893

,kt mxV  0.042136 0.036948 0.03992 0.041582 0.025197 0.049582

,ncd mxV  0.060667 0.059003 0.0623 0.061003 0.061039 0.059122
ip
polyV  0.028411 0.029958 0.029687 0.028757 0.028892 0.028284

chrµ  30.23 29.108 35.031 22.888 31.641 33.725

poleµ  301.47 262.18 170.39 322.97 268.57 252.21
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high
asN  219.2 189.57 230.23 212.94 247.31 229.28
low
asN  37.3 27.056 39.22 34.902 35.717 41.202
high
ovrlpN  365.16 401.76 390.48 319.91 347.32 349.4
low
ovrlpN  26.234 25.866 25.728 26.496 25.218 26.82

chrkN  217.93 224.78 210.26 194.03 186.76 198.29

ktN  108.46 118.15 113.52 110.35 115.48 106.26
ξ  5.388 5.0907 5.396 5.9555 5.7317 5.2909

chrA  102.72 102.38 92.196 114.93 85.135 95.25
 

Supplementary Table 3 Average parameter values for the identified six model groups.  
 

4. Model assumptions and limitations 
The model is based on the following assumptions: 

- the spindle has a mirror symmetry about the equator; 

- the spindle is effectively one-dimensional, and MT elasticity does not contribute to the force 
balance;  

- all motors are homogenously distributed in the spindle, and it is the MT lengths, not the motor 
concentrations, that are limiting factors in the numbers of the working motors;  

- there is no dependence of motor affinity on the generated forces; 

- only binary variations of the motor activities and MT numbers are allowed; 

- the multiple motor forces are additive;  

- only one switch per motor is allowed; 

- force-velocity relations characterizing the motors are linear. 

Some of these assumptions (mirror symmetry of the spindle) are reasonable based on the 
observations. Others are reasonable from theoretical considerations (i.e., one-dimensional character 
of the model is likely adequate for the rough force balance). Yet others are widely accepted in the 
literature, and probably not very critical (additive motor forces and linear force-velocity relations). 
Changing of some of the assumptions, made here for the sake of tractability, would probably 
significantly change the results (i.e., homogenously distribution of motors, no dependence of motor 
affinity on force, only binary variations of MT numbers, only one switch per motor). At this point, it 
is rather difficult to assess how this formidable combination of assumptions can affect adequacy of 
our model. 
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Supplementary figure 1. Raw data
The experimental data used for this study is shown. Upper left corner is the data after it has been processed and is the 
same as main Fig. 1c. The other panels shows the raw data for each of the 5 datasets used, dots representing single 
spindle data (each color - a different spindle), and black lines are the dots averages. For Kinesin-14 and Dynein, single 
spindle measurements were not available and only the averages are shown. 
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Supplementary figure 2: Optimization and clustering.
 a A sample optimization run. Evolution of the optimization scores as a function of CPU time. A single optimization required 
~4 CPU hours. Blue line is the stochastic optimization and the red line is the deterministic improvement that follows. b An 
illustration of the clustering criterion. The color codes a hypothetic two-dimensional fitness landscape. Three points in this 
space represent identified models. The dotted line shows a pair of models that will generate 'nonviable progeny' models that 
are not good fits for the data. The dashed line shows a pair of models that generate 'viable progenies' - all points along the 
dashed line generate models that are a good fit to the experimental data. To determine if a set of models is indeed a group, 
1000 new models are generated as a mixture of the models in that set. That set is identified as a cluster if more than half of the 
pairs are 'viable'. c Convergence analysis of the six search iterations. As the sample size increases, the number of identified 
model clusters increases in a hyperbolic fashion. 



2
0

04
0

06
0

08
0

01
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

04
0

06
0

08
0

01
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

04
0

06
0

08
0

01
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

04
0

06
0

08
0

01
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

04
0

06
0

08
0

01
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

04
0

06
0

08
0

01
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

04
0

06
0

08
0

01
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

04
0

06
0

08
0

01
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

04
0

06
0

08
0

01
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

04
0

06
0

08
0

01
0

0
01
2

0
0

2
0

04
0

06
0

08
0

01
0

0
01
2

0
0

2
0

04
0

06
0

08
0

01
0

0
01
2

0
0

2
0

04
0

06
0

08
0

01
0

0
01
2

0
0

2
0

04
0

06
0

08
0

01
0

0
01
2

0
0

2
0

04
0

06
0

08
0

01
0

0
01
2

0
0

2
0

04
0

06
0

08
0

01
0

0
01
2

0
0

2
0

04
0

06
0

08
0

01
0

0
01
2

0
0

2
0

04
0

06
0

08
0

01
0

0
01
2

0
0

5
0

1
0

01
5

02
0

02
5

03
0

0

5
0

1
0

01
5

02
0

02
5

03
0

0

5
0

1
0

01
5

02
0

02
5

03
0

0

5
0

1
0

01
5

02
0

02
5

03
0

0

5
0

1
0

01
5

02
0

02
5

03
0

0

5
0

1
0

01
5

02
0

02
5

03
0

0

5
0

1
0

01
5

02
0

02
5

03
0

0

5
0

1
0

01
5

02
0

02
5

03
0

0

5
0

1
0

01
5

02
0

02
5

03
0

0

2
04

06
08

01
0

01
2

01
4

01
6

01
8

0

2
04

06
08

01
0

01
2

01
4

01
6

01
8

0

2
04

06
08

01
0

01
2

01
4

01
6

01
8

0

2
04

06
08

01
0

01
2

01
4

01
6

01
8

0

2
04

06
08

01
0

01
2

01
4

01
6

01
8

0

2
04

06
08

01
0

01
2

01
4

01
6

01
8

0

2
04

06
08

01
0

01
2

01
4

01
6

01
8

0

2
04

06
08

01
0

01
2

01
4

01
6

01
8

0

2
04

06
08

01
0

01
2

01
4

01
6

01
8

0

1
0

02
0

03
0

04
0

05
0

06
0

0

1
0

02
0

03
0

04
0

05
0

06
0

0

1
0

02
0

03
0

04
0

05
0

06
0

0

1
0

02
0

03
0

04
0

05
0

06
0

0

1
0

02
0

03
0

04
0

05
0

06
0

0

1
0

02
0

03
0

04
0

05
0

06
0

0

1
0

02
0

03
0

04
0

05
0

06
0

0

1
0

02
0

03
0

04
0

05
0

06
0

0

1
0

02
0

03
0

04
0

05
0

06
0

0

1
0

02
0

03
0

04
0

05
0

06
0

07
0

08
0

0

1
0

02
0

03
0

04
0

05
0

06
0

07
0

08
0

0

1
0

02
0

03
0

04
0

05
0

06
0

07
0

08
0

0

1
0

02
0

03
0

04
0

05
0

06
0

07
0

08
0

0

1
0

02
0

03
0

04
0

05
0

06
0

07
0

08
0

0

1
0

02
0

03
0

04
0

05
0

06
0

07
0

08
0

0

1
0

02
0

03
0

04
0

05
0

06
0

07
0

08
0

0

1
0

02
0

03
0

04
0

05
0

06
0

07
0

08
0

0

1
0

02
0

03
0

04
0

05
0

06
0

07
0

08
0

0

a

b

c

d

e

f

Fas Fip Fchr Fkt Fcoh Pdep PovrlpPasPpolyPmtPktPk14Pk5PdynPchr

T ime from P rometaphase [sec]

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

1500

-1500

0



Supplementary figure 3. Search results

This figure shows the results of the cluster analysis for models that fit all available experimental
data for all six iterations of the search. Dendrogram shows the hierarchical tree of all models.
The identified clusters within the tree are color-coded. Time series for the forces on the four MT
populations and cohesion forces from prometaphase (t=0) till the end of anaphase B (t=278 s)
follow immediately below the dendrogram. Each imaginary vertical line across the panel
corresponds to a specific model fitting all available experimental data. The forces (in pN) are
color coded according to the bar shown at the upper left corner. For the reference, the time series
for the pole-pole distance are shown at the bottom of the figure. Time series for ten motor
switches’ activity follow immediately below the force time series. White and black correspond to
active and inactive motors, respectively. The switches are: Pdep – pole depolymerizer; Pchr –
chromokinesin; Pdyn – dynein; Pk5 – Kinesin-5 sliding motor; Pk14 – Kinesin-14; P Pkt –
combined kt motors; Pmt – MT plus end depolymerization activity at the kinetochore; Ppoly – MT
plus end polymerization activity at the kinetochore; Pas – switch regulating the number of astral
MTs; Povrlp – switch regulating the number of MT at the overlap zone at the spindle equator. The
six iteration shown are a WT b WT and Dynein c WT, Dynein and Kinesin-5, d WT, Dynein,
Kinesin-5 and Kinesin-13. e WT, Kinein-5 Kinesin-13 and Kinesin-14 f WT, Kinein-5
Kinesin-13, Kinesin-14, and double inhibition of Kinesin-5 and Kinesin-14.
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Supplementary figure 4. Example of a successful model
The same model that is shown in Fig. 5 is shown here. The fit for the different experimental datasets (a) is 
shown. The pole separation data is shown in blue, chromosome separation in green and the simulation results, 
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During the division of eukaryotic cells, the duplicated set of
chromosomes is separated by the mitotic spindle, a large
multicomponent assembly consisting of several hundred
proteins in human cells (Sauer et al, 2005). Researchers have
started to move from putting together the parts list of spindle
components and from generating an atlas of their localizations
toward trying to understand at a systems level the dynamic
interplay between these components that ultimately translates
into spindle function. This requires, in part, shifting the focus
from biochemistry to mechanics. It is clear now that the
mechanical properties of microtubules and molecular motors
are crucial for spindle structure and function. But how they
work together is still a mystery and there is a need for modeling
this interplay, because our intuition reaches its limits when
trying to understand it. The paper by Wollman et al (2008) in
this issue reports on the next step of the development of a
model that allows one to describe one aspect of spindle
behavior for which good quantitative experimental data exist,
namely spindle elongation during the period between pro-
phase and anaphase B in Drosophila embryos. As their model
is based on the mechanical properties of major elements of the
spindle, the quantitative comparison with available data
allows the authors to make predictions about how the
concerted action of the different mechanical elements leads
to spindle elongation.

Among others, there are two major challenges when trying
to model the spindle (Karsenti et al, 2006). (1) What is the right
level of description? This means what is the minimal set of
molecular activities that needs to be considered and how much
detail needs to be included in the model to have a chance of a
rather close description of reality by the model? (2) What are
the actual values of the parameters chosen to describe the
properties of the molecular players considered in the model? In
the ideal case, one would simply measure these parameter
values experimentally and then use them for the model to see if
it recapitulates the experimental measurement.

Wollman et al addressed these two challenges in the
following manner. They chose a one-dimensional representa-
tion of the spindle as the basis of their model, as spindle
elongation is essentially a one-dimensional problem. They
assumed a pre-existing geometry of interconnected spindle
components such as chromosomes, spindle poles, microtu-
bules and motors that can vary in their exact configuration.
They differentiated between different microtubule populations
such as astral microtubules connecting the spindle poles to the

cortex, microtubules connecting the spindle poles either to
kinetochores or to chromosome arms and microtubules
extending from opposite poles toward the spindle center where
they overlap. Different motor populations localized to the
cortex, kinetochores, chromosome arms or to the antiparallel
microtubule overlap and regulated microtubule dynamics
produce forces by acting selectively on one or the other
microtubule population. The authors calculated the variation
in spindle length from the sum of all forces produced by the
different populations of the mechanical elements considered in
their model. Variations in motor activity, microtubule dy-
namics or number of microtubules were represented by binary
switches that change enzyme activity or microtubule number
in a step-like manner during spindle elongation. In summary,
the authors constructed a fully deterministic model for spindle
elongation expressed as a system of ordinary differential
equations with around 40 parameters.

Although the model contains strong simplifications, its total
parameter value space is still enormous. Because it is not
obvious how to solve the system of differential equations
analytically, the full range of model behaviors cannot be
grasped easily. Wollman et al therefore performed a massive
screen of a very large range of parameter value combinations,
an approach similar to a recent in silico screen of a pair of
interacting microtubule asters (Nedelec, 2002). The system of
differential equations for each parameter value combination
was solved numerically and its output of spindle lengths was
compared quantitatively with experimental data measured in
Drosophila embryos, in spirit similar to an approach of another
previous study where a theoretical model for kinetochore
movements was quantitatively fit to experimental data of
budding yeast spindles (Gardner et al, 2005).

The authors obtained a very large set of model variants that
could reproduce spindle elongation in wild-type Drosophila
embryos. Interestingly, and to a certain extent also expectedly,
the number of model variants producing realistic behavior was
significantly reduced when more experimental results from
mutants were used as constraints (despite even an increase in
the number of parameters in the model). Optimization
strategies and cluster analysis boiled down the result to six
distinct molecular scenarios potentially underlying spindle
elongation, each scenario comprising several slightly different
model variants perhaps reflecting a certain robustness of the
scenarios. A major outcome was that certain features were
shared between all identified scenarios suggesting core
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characteristics of spindle functioning that are conserved. The
analysis showed that outward forces originating from motors
pushing on interpolar microtubules in the spindle center (in
early prophase assisted also by forces of motors at the cortex
pulling on astral microtubules) are largely balanced by inward
kinetochore microtubule forces. Active microtubule depoly-
merization at the poles counteracted spindle elongation
promoted by the outward-pushing motors in the spindle
center. This depolymerization stops at the onset of anaphase B
when the spindle elongates.

Although the number of possible scenarios could be
gradually decreased considerably by successively adding more
and more experimental constraints, this study has not yet
identified the ‘ultimate’ scenario for Drosophila spindle
elongation. It will be interesting to see if considering further
experimental results in the future will narrow down the
number of scenarios finally to one, representing the ‘ultimate’
model, or if it will drop even to below one, necessitating
modification of the model. In the latter case, a critical
evaluation of the assumptions inherent to the model would
be required.

Despite the considerable number of model parameters,
plausible, yet drastic simplifications had to be made to keep
the model manageable. For example, a choice had to be made
for the minimal set of essential spindle components required
for the process under study. Furthermore, linear force–velocity
relationships were used for entire populations of motors,
although one expects theoretically that collective motor
behavior is nonlinear (Klumpp and Lipowsky, 2005; Campas
et al, 2006). Other examples for simplifications are the binary
nature of the activity and number switches, simplified
treatment of biochemical equilibria (no saturation) or the
exclusion of the possibility of local concentration variations
along the spindle axis. Finally, the deterministic nature of the
model neglects any stochasticity that might be inherent to the
real functioning of the spindle.

Continued development of modeling approaches such as the
one chosen by Wollman et al and of alternative approaches
with different degrees of coarse-graining as chosen by other
researchers (Nedelec, 2002; Gardner et al, 2005; Goshima et al,
2005; Pecreaux et al, 2006; Schaffner and Jose, 2006; Burbank
et al, 2007; Kozlowski et al, 2007) promises to move this field
forward, especially if combined with experimental measure-
ments of crucial parameter values identified by the modeling.

Two lines of experimental research will most likely be
important in the future: gathering more quantitative informa-
tion about the detailed dynamics of the key mechanical
elements of the spindle as measured directly inside intact
spindles. These experimental data will serve as a reference for
the quantitative evaluation of the output produced by different
models. Furthermore, it will be important to verify some of the
key assumptions going into the modeling in well-defined

systems by biochemical reconstitution approaches aiming at
building more complex, functional subelements of the micro-
tubule cytoskeleton from purified components in vitro. Such
well-controlled in vitro systems have the charm of offering the
possibility of having a rather complete knowledge of most of
the parameter values relevant for the description of the system
and provide therefore a rather direct test for the validity of the
choice of simplifying assumptions going into the modeling
(Surrey et al, 2001). Despite still some skepticism among some
researchers regarding the feasibility of such engineering
approaches, either in the test tube or in the computer, they
have the potential for finally leading us to understand three-
dimensional spindle morphogenesis and spindle function
based on the physical properties of its components.
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